
Differential Geometry and its Applications 46 (2016) 164–203
Contents lists available at ScienceDirect

Differential Geometry and its Applications

www.elsevier.com/locate/difgeo

Pure spinors, intrinsic torsion and curvature in even dimensions

Arman Taghavi-Chabert
Masaryk University, Faculty of Science, Department of Mathematics and Statistics, Kotlářská 2, 
611 37 Brno, Czech Republic

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 February 2014
Received in revised form 23 
November 2015
Available online 15 March 2016
Communicated by M.G. Eastwood

Keywords:
Complex Riemannian geometry
Pure spinors
Distributions
Intrinsic torsion
Curvature prescription
Spinorial equations

We study the geometric properties of a 2m-dimensional complex manifold M
admitting a holomorphic reduction of the frame bundle to the structure group 
P ⊂ Spin(2m, C), the stabiliser of the line spanned by a pure spinor at a point. 
Geometrically, M is endowed with a holomorphic metric g, a holomorphic volume 
form, a spin structure compatible with g, and a holomorphic pure spinor field ξ up 
to scale. The defining property of ξ is that it determines an almost null structure, 
i.e. an m-plane distribution Nξ along which g is totally degenerate.
We develop a spinor calculus, by means of which we encode the geometric properties 
of Nξ corresponding to the algebraic properties of the intrinsic torsion of the 
P -structure. This is the failure of the Levi-Civita connection ∇ of g to be compatible 
with the P -structure. In a similar way, we examine the algebraic properties of the 
curvature of ∇.
Applications to spinorial differential equations are given. In particular, we give 
necessary and sufficient conditions for the almost null structure associated to a pure 
conformal Killing spinor to be integrable. We also conjecture a Goldberg–Sachs-type 
theorem on the existence of a certain class of almost null structures when (M, g)
has prescribed curvature.
We discuss applications of this work to the study of real pseudo-Riemannian 
manifolds.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let M be a complex manifold of dimension n, and denote by TM and T∗M its holomorphic tangent 
and cotangent bundles respectively, and by FM its holomorphic frame bundle. Following [28], we define 
a holomorphic metric on M to be a non-degenerate holomorphic section g of the bundle �2T∗M — here 
� denotes the symmetric tensor product. We identify TM and T∗M by means of g. The pair (M, g)
will be referred to as a complex Riemannian manifold, and is characterised equivalently by a holomorphic 
reduction of the structure group of FM to the complex orthogonal group O(n, C). Analogously to real 
pseudo-Riemannian geometry, there is a unique torsion-free holomorphic affine connection ∇ preserving g, 
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also referred to as the Levi-Civita connection of g, with associated curvature tensors, which depend holo-
morphically on M. We shall also assume the existence of a global holomorphic volume form ε ∈ Γ(∧nT∗M)
normalised to g(ε, ε) = n! — here, we have extended g to a non-degenerate bilinear form on the bundle 
∧•TM of holomorphic differential forms, and its dual. This induces a further holomorphic reduction of the 
structure group of FM to the complex special orthogonal group SO(n, C). The pair (g, ε) can be used to 
define a holomorphic Hodge duality operator � on ∧•T∗M. We shall henceforth assume n = 2m. Then �
squares to plus or minus the identity on ∧mT∗M, and thus splits ∧mT∗M as a direct sum of the two eigen-
subbundles ∧m

±T∗M of �. Elements of ∧m
±T∗M are referred to as holomorphic self-dual and anti-self-dual

m-forms.
This article is concerned with the local geometric properties of an almost null structure on (M, g), i.e. a 

holomorphic rank-m distribution N ⊂ TM totally null with respect to g, i.e. g(v, w) = 0 for all v and w in 
Np, and dimNp = m at any point p of M. Being determined (i.e. annihilated) by a holomorphic m-form, 
an almost null structure may be either self-dual or anti-self-dual, and is also referred to as an α-plane or 
β-plane distribution accordingly.

There is a slick way to describe an almost null structure if we assume in addition (M, g) to be spin, i.e.
it admits a holomorphic reduction to Spin(2m, C), the two-fold covering of SO(2m, C). In this case, (M, g)
is endowed with two irreducible spinor bundles S+ and S−. Sections of TM acts on sections of S± via 
Clifford multiplication · : TM × S± → S∓. In particular, a holomorphic section ξ of S+ or S− determines 
a distribution Nξ on M in the sense that

(Nξ)p := {v ∈ TpM : v · ξp} , at any point p in M.

The defining property of the Clifford multiplication tells us that Nξ is totally null. When Nξ has dimension 
m at every point, ξ is said to be pure. If we refer to a pure spinor ξ defined up to scale as a projective pure 
spinor [ξ], it is clear that a projective pure spinor field [ξ] determines a unique almost null structure Nξ. 
Conversely, any almost null structure arises in this way. Whether ξ lies in S+ or S− corresponds to whether 
Nξ is self-dual or anti-self-dual. All spinors in S± are pure in dimensions two, four and six, but when m > 3, 
the property of being pure imposes non-trivial algebraic conditions on the components of a spinor.

The geometric properties of an almost null structure Nξ associated to a projective pure spinor [ξ] can be 
expressed in terms of the covariant derivative of [ξ]. For instance, if Nξ is integrable, i.e. [Γ(Nξ), Γ(Nξ)] ⊂
Γ(Nξ), then one can show that the leaves of its foliation are totally geodetic, i.e. ∇XY ∈ Γ(Nξ) for any 
holomorphic sections X, Y of Nξ. This condition can also be expressed as [20]

∇Xξ = λXξ , for any X ∈ Γ(Nξ), and some holomorphic function λX dependent on X, (1.1)

where, with a slight abuse of notation, ∇ denotes the spin connection induced from the Levi-Civita connec-
tion. Note that (1.1) is independent of the scale of ξ. Further, if ξ satisfies (1.1), then

C(X,Y, Z,W ) = 0 , for all X,Y, Z,W ∈ Γ(Nξ). (1.2)

where C denotes the Weyl tensor of ∇, i.e. the conformally invariant part of the Riemann tensor of ∇.
The investigation of conditions such as (1.1) and (1.2) will be the subject of this article. For this purpose, 

we note that an almost null structure Nξ on (M, g) associated to a projective pure spinor field [ξ] is 
equivalent to a holomorphic reduction of the structure group of FM to the stabiliser P ⊂ G := Spin(2m, C)
of [ξ] at a point. This P is an instance of a parabolic subgroup, and is isomorphic to the semi-direct product 
G0 � P+ where part G0 is reductive, and P+ is nilpotent. The Lie algebras p ⊂ g ∼= so(2m, C) of P is 
isomorphic to g0 ⊕ p+, where g0 ∼= gl(m, C) and p+ ∼= ∧2

C
m are the Lie algebras of G0 and P+ respectively. 

Here, we have identified (Nξ)p ∼= C
m at any point p.
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Condition (1.1) is intimately connected to the notion of intrinsic torsion or structure function of a first-
order G-structure [9,3,40]. In the present context, where the structure group is P , this is an invariant of Nξ, 
which, at any point, lies in the P -module W := V ⊗g/p, where V ∼= C

2m is the standard representation of g. 
Geometrically, it is the obstruction to finding a unique torsion-free connection compatible with Nξ. In other 
words, it measures the failure of the Levi-Civita connection to preserve Nξ. A number of geometric proper-
ties of Nξ can be encoded as P -invariant algebraic conditions on its intrinsic torsion. For instance, condition 
(1.1) can be shown to be equivalent to the intrinsic torsion belonging to a certain proper P -submodule of W. 
Identifying all the possible P -submodules of W provides a systematic way of ‘classifying’ G-structures with 
structure group P . Such an approach was adopted to provide a classification of almost Hermitian manifolds 
by Gray and Hervella in [17].

Dealing with condition (1.2) is similar. In general, if M is a finite G-module, P induces a filtration

{0} = M�+1 ⊂ M� ⊂ M�−1 ⊂ . . . ⊂ M−k+1 ⊂ M−k := M (1.3)

of indecomposable P -modules Mi for some k and �. The nilpotent part P+ acts trivially on each of the 
associated quotients Mi/Mi+1, while the reductive part G0, and hence P , acts reducibly on these. This 
applies in particular to the case where M is the space C of Weyl tensors at a point. We shall see, in this 
case, k = � = 2, and condition (1.2) tells us that the Weyl tensor belongs to the P -submodule C−1 := M−1

at a point. A precedent for this approach in almost Hermitian geometry can be found in [48,14].
The aims of the paper are to

• give a P -invariant decomposition of the space W of intrinsic torsions;
• give P -invariant decompositions of the spaces of curvature tensors, in particular, the tracefree Ricci 

tensors, Cotton–York tensors and Weyl tensors;
• apply these decompositions to the study of almost null structures and pure spinor fields on complex 

Riemannian manifolds.

An integral part of this article will be the construction of a spinor calculus in relation to the P -structure 
above. This essentially impinges on the remark [20,7] that if ξ ∈ Γ(S+) is pure, then any Z ∈ Γ(Nξ) satisfies

g(Z,X) = 〈ζ,X · ξ〉 , for some ζ ∈ Γ((S−)∗) and for any X ∈ Γ(TM). (1.4)

Here 〈·, ·〉 is the natural pairing between S− and (S−)∗. This fact will allow us to construct maps whose 
kernels can be used to define certain P -submodules of a given P - or G-module. This is a standard procedure 
in representation theory where (irreducible) representations are described in terms of kernels of suitable 
multilinear maps. For instance, the kernel of the symmetrisation map ⊗2

C
m → �2

C
m is the irreducible 

SL(m, C)-module ∧2
C

m. The only difference here is that the maps will now depend on [ξ].
Before we proceed, it is important to note that there will be obstructions to the global existence of 

a holomorphic metric or of a holomorphic volume form, not to say of a holomorphic spin structure on a 
complex manifold. While these issues are interesting in their own right, we shall not be concerned with them 
in this article, some of which are dealt with in [28]. This being said, all our considerations will essentially 
be local. In particular, we must emphasise that a spin structure can always be introduced locally, and our 
use of spinors in this context arises essentially from practical considerations.

What is more, a complex manifold M can always be manufactured by complexifying a real-analytic 
oriented manifold M′ — see [49,51,13]. In this case, M is endowed with a reality structure that singles 
out M′ as a real slice in M. Any real analytic structure on M′ can be extended to a holomorphic one 
in a neighbourhood of M′ in M. This will apply more particularly to a metric g′ and spin structure on 
M′. We then obtain a spin complex Riemannian manifold (M, g) from (M′, g′). This approach is typically 
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exemplified by the study of real-analytic four-dimensional Lorentzian manifolds, which was central to the 
development of twistor theory — see [36,37] and references therein.

In fact, it is instructive to recall how (1.1) and (1.2) look like when (M, g) is a four-dimensional complex 
Riemannian manifold. First, Spin(4, C) is no longer simple, but isomorphic to SL(2, C)+ × SL(2, C)− where 
SL(2, C)± are two copies of SL(2, C) acting on S±. Following [36], we adorn elements of S+ and S− with 
abstract indices, e.g. ξA′ and ζA respectively. Let us fix a projective spinor [ξA′ ] in PS+. Using the fact that 
TM ∼= S− ⊗ S+ in dimension four, the relation (1.4) simply tells us that any vector ZAB′ tangent to the 
distribution defined by ξA

′ must be of the form ZAB′ = ζAξB
′ for some ζA. Then, equation (1.1) can be 

re-expressed as

ξB
′
ξA

′∇AA′ξB′ = 0 , (1.5)

where ∇AB′ is the Levi-Civita connection. Similarly, condition (1.2) can be shown to reduce to one on the 
self-dual part of the Weyl tensor, which we identify with a totally symmetric spinor1 ΨA′B′C′D′ :

ΨA′B′C′D′ξA
′
ξB

′
ξC

′
ξD

′
= 0 . (1.6)

When (M, g) is the complexication of a real-analytic four-dimensional Lorentzian manifold, equation (1.5)
describes a real-analytic shearfree congruence of null geodesics, and any spinor ξA′ satisfying (1.6) is referred 
to as a (gravitational) principal spinor of ΨA′B′C′D′ . Both concepts play an important rôle in the study of 
exact solutions of Einstein’s field equations.

Finally, while complexifying a smooth pseudo-Riemannian manifold will present difficulties in general, 
the present work can be easily adapted to the setting of an oriented and time-oriented smooth real manifold 
M equipped with a metric g of signature (m, m) and a spin structure, without the need of complexification. 
One can then define smooth real almost null structures on (M, g) associated to smooth real pure spinor 
fields.

An odd-dimensional analogue of the present paper is given in [44].

Structure of the paper Section 2 contains a construction of a spinor calculus based on a choice of pure 
spinor up to scale. Proposition 2.9 is a new algebraic characterisation of intersections of α- and β-planes. 
Algebraic applications are then given in sections 3 and 4: Proposition 3.2 gives an invariant decomposition 
of the space of intrinsic torsions, while Propositions 4.1, 4.2 and 4.3 give invariant decompositions of the 
spaces of Ricci tensors, Cotton–York tensors and Weyl tensors respectively.

Geometric applications can be found in section 5: Proposition 5.4 is a direct consequence of Proposi-
tion 3.2, and characterises the intrinsic torsion of an almost null structure Nξ in terms of the covariant 
derivative of its associated projective pure spinor [ξ]. Proposition 5.10 examines the conformal invariance of 
the intrinsic torsion of Nξ. Integrability conditions for the existence of geodetic and recurrent pure spinors 
are derived in Propositions 5.11 and 5.12 respectively. In section 5.2, we study the relation between solu-
tions to differential equations on pure spinor fields: Propositions 5.20 and 5.23 give necessary and sufficient 
conditions on a pure conformal Killing spinor for its associated almost null structure to be integrable. Next, 
we put forward Conjecture 5.27 generalising the complex Goldberg–Sachs theorem of [43]. Finally, in sec-
tion 5.3, we briefly discuss the extent to which the findings of the present article can be applied to real 
pseudo-Riemannian manifolds.

We round up the paper with three appendices. We have collected in Appendix A material describing the 
g0- and p-submodules of the spaces of curvature tensors. Appendix B contains a brief discussion of spinor 
calculus in dimensions four and six. In Appendix C we give some concise background on conformal spin 
geometry.

1 This is often referred to as the Weyl spinor in the extant literature, but we shall avoid the term in this article.
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2. Spinor calculus

The aim of this section is to construct a spinor calculus given a preferred pure spinor, emphasising its 
relation with representation theory. While we recall standard facts on the theory of spinors, which can be 
found in one form or another in the literature [8,6,7,22], in particular the appendix of [37], our approach, 
which extends the calculus of [20], is relatively novel. Details on the representation theory aspect are given 
in [1,15,11].

2.1. Clifford algebras and spinor representations

Let V be an n-dimensional complex vector space. We shall adopt the abstract index notation of [36] for 
most of this paper. Standard index-free notation will be used on occasion. Elements of V and its dual V∗

will carry upstairs and downstairs lower-case Roman indices respectively, e.g. V a ∈ V and αa ∈ V∗. This 
notation extends to tensor products of V and V∗, i.e. we write Tab

c
d for an element of ⊗2V∗ ⊗ V ⊗ V∗. 

We equip V with a non-degenerate symmetric bilinear form gab = g(ab) ∈ �2V∗. Here, as elsewhere, 
symmetrisation is denoted by round brackets, while skew-symmetrisation by square brackets, e.g. αabc =
α[abc] ∈ ∧3V∗. The metric tensor gab together with its inverse gab establishes an isomorphism between V
and V∗, so that one will lower or raise the indices of tensorial quantities as needed. We shall also make a 
choice of orientation, i.e. an element of ∧nV, and denote the associated Hodge star operator on ∧•V by �. 
Elements of the two eigenspaces ∧m

+V and ∧m
−V of � on ∧mV are referred to as self-dual and anti-self-dual 

m-forms respectively.
We shall be dealing with spinor representations, and for this reason, we shall essentially view any finite 

representation of the complex special orthogonal group SO(2m, C) as finite representation of the spin group 
G := Spin(2m, C), the two-fold covering of SO(2m, C).

The Clifford algebra C�(V, g) of (V, g) is defined as the quotient algebra 
⊗•

V/I where I is the ideal 
generated by elements of the form v ⊗ v + g(v, v), where v ∈ V. This implies that C�(V, g) is isomorphic 
to the exterior algebra ∧•V as vector spaces, the wedge product of the latter being now replaced by the 
Clifford product · : C�(V, g) × C�(V, g) → C�(V, g) defined by v ·w := v ∧w− g(v)�w for any v and w in V
viewed as elements of C�(V, g).

From now on, we assume n = 2m. Let N ⊂ V be a totally null m-dimensional subspace, i.e. g|N = 0, 
and fix a dual N∗ of N so that V ∼= N ⊕ N∗. Then the vector space S := ∧•N can be turned into a 
C�(V, g)-module by restricting the Clifford product to it: for any ξ ∈ ∧•S, (v, w) ∈ N ⊕N∗ ∼= V, the action 
of V ⊂ C�(V, g) on S is given by (v, w) · ξ = v ∧ ξ −w�ξ. The 2m-dimensional C�(V, g)-module S is known 
as the spinor space of (V, g). Further, S splits as S = S+ ⊕S−, where S± are the ±-eigenspaces of the 
orientation on V, viewed as an element of C�(V, g), with

S+ ∼= ∧mN⊕ ∧m−2N⊕ . . . , S− ∼= ∧m−1N⊕ ∧m−3N⊕ . . . .

The 2m−1-dimensional complex vector spaces S+ and S− are called the positive and negative (chiral) spinor 
spaces respectively, and can be shown to be irreducible representations of G = Spin(2m, C).

It turns out that the Clifford algebra can also be realised as the algebra of complex 2m × 2m-matrices 
acting on S = S+⊕S−. Elements of S+, respectively S−, will carry upstairs primed, respectively unprimed, 
upper-case Roman indices, e.g. ξA′ , respectively αA, and similarly for their duals (S+)∗ and (S−)∗ with 
downstairs indices, e.g. ηA′ and βA respectively. As we shall be working with S± rather than S, it will be 
convenient to think of the generators of the Clifford algebra C�(V, g) in terms of the (Van der Waerden) 
γ-matrices γaAB′ and γaA′B , which satisfy the (reduced) Clifford property

γ(aA′
Cγ b)C

B′
= −gabδ

B′

A′ , γ(aA
C′
γ b)C′

B = −gabδ
B
A , (2.1)
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where δB
′

A′ and δBA are the identity elements on S+ and S− respectively. Thus, only skew-symmetrised 
products of γ-matrices count, and we shall make use of the notational short hand

γa1a2...aqA
B′

:= γ[a1 A
C′

1γa2C′
1
C2 . . . γaq ]Cq−1

B′
, γa1a2...aqA′B := γ[a1 A′

C1γa2C1
C′

2 . . . γaq]C′
q−1

B ,

γa1a2...apA
B := γ[a1 A

C′
1γa2C′

1
C2 . . . γap]C′

p

B , γa1a2...apA′B
′
:= γ[a1 A′

C1γa2C1
C′

2 . . . γap]Cp−1
B′

, (2.2)

where p is even and q is odd. These matrices give us an explicit realisation of the isomorphism C�(V, gab) ∼=∧•
V as vector spaces. Since � : ∧kV 

∼=→ ∧2m−kV, it is enough to consider forms of degree from 0 to m.
The spinor space S and its dual S∗ are equipped with non-degenerate bilinear forms, which realise the 

isomorphisms

γA′B′ , γAB : S± ∼=−→ (S±)∗ , when m even,

γA′B , γAB′ : S± ∼=−→ (S∓)∗ , when m odd, (2.3)

by means of which we can raise or lower spinor indices. Thus, the γ-matrices (2.2) give rise to bilinear maps

γa1a2...apA′B′ , γa1a2...apAB , for p ≡ m (mod 2),

γa1a2...apA′B , γa1a2...apAB′ , for p ≡ m− 1 (mod 2), (2.4)

from S±×S± or S±×S∓ to ∧•V. The spinor indices of the maps (2.3) and (2.4) are subject to symmetries 
as explained in [37], and this allows us to prove the following technical lemma needed subsequently.

Lemma 2.1. When m − p is even,

γaA′Bγb1...bpBDγcC′D = (−1)m
(
γcab1...bpA′C′ + gcaγb1...bp−1bpA′C′

−2 p g[b1 |(a γ c)|b2... bp]A′C′ + p(p + 1)ga[b1 g|c|b2γb3...bp−1 bp]A′C′
)

In particular,

γa
A′Bγb1...bpBDγaC′D = (−1)m2(m− p)γb1...bpA′C′ .

When m − p is odd,

γaA′Bγb1...bpBD′γcC
D′

= (−1)m−1 (γcab1...bpA′C + gcaγb1...bp−1bpA′C

−2 p g[b1 |(a γ c)|b2... bp]A′C + p(p + 1)ga[b1 g|c|b2γb3...bp−1 bp]A′C

)
In particular,

γa
A′Bγb1...bpBD′γaC

D′
= (−1)m−12(m− p)γb1...bpA′C .

Our treatment will be overwhelmingly dimension independent, and for this reason, we shall avoid making 
use of the bilinear forms (2.3) and (2.4). It suffices to say that when p = m, the bilinear forms (2.4) are 
always symmetric, and yield injections from ∧m

±V to �2S±, and surjections from �2S± to ∧m
±V∗.

2.2. Null structures and pure spinors

Definition 2.2. A null structure on V is an m-dimensional vector subspace N ⊂ V that is totally null, i.e. 
gabX

aY b = 0 for all Xa, Y a ∈ N. A self-dual, respectively anti-self-dual, null structure is called an α-plane, 
respectively, a β-plane.
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Let ξA′ be a non-zero spinor in S+, and consider the map

ξAa := ξB
′
γaB′A : V → S− .

By (2.1), the kernel of ξAa : V → S− is totally null.

Definition 2.3. A non-zero (positive) spinor ξA′ is said to be pure if the kernel of ξAa : V → S− is 
m-dimensional, and thus defines a null structure.

The projectivisation of the line 〈ξA′〉 spanned by a pure spinor ξA′ will be referred to as a projective 
(positive) pure spinor [ξA′ ] ∈ PS+.

The same definitions apply to a negative spinor.

Leaving the details aside, one can show

Proposition 2.4. (See [8].) There is a one-to-one correspondence between projective pure spinors and null 
structures on (V, g). Positive, respectively negative, pure spinors correspond to self-dual, respectively anti-
self-dual, null structures.

Henceforth, we shall assume m > 2 leaving the special case m = 2 to Appendix B.1. For the remaining 
of this section and sections 3 and 4, ξA′ will denote a positive pure spinor. It goes without saying that our 
statements apply analogously to negative pure spinors. We set

S
m
4 := 〈ξA′〉 , S

m−2
4 := im ξAa : V → S− , V− 1

2 := V , V
1
2 := ker ξAa : V → S− , (2.5)

so that one can express the α-plane associated to ξA
′ as the filtration

{0} =: V 3
2 ⊂ V

1
2 ⊂ V− 1

2 . (2.6)

The full meaning of this notation, borrowed from [11], will be explained in the course of this section. For 
the moment, the reader should think of these numerical indices as homogeneity degrees. Thus, the map ξAa
yields an isomorphism between V− 1

2 /V
1
2 and S

m−2
4 , which we can write as(

V− 1
2 /V

1
2

)
⊗S

m
4 ∼= S

m−2
4 . (2.7)

While the factor Sm
4 on the LHS of (2.7) may appear notationally redundant, it nonetheless balances the 

degrees on each side of (2.7), i.e. −1
2 + m

4 = m−2
4 . From (2.7), it is also clear that Sm−2

4 is an m-dimensional 
subspace of S−.

With a slight abuse of notation, we can also think of the map ξAa dually as ξAa : V∗ ← (S−)∗ so that the 
dual counterpart of (2.7) is given by

V
1
2 ∼= S

m
4 ⊗

(
S−m−2

4 /S−m−6
4

)
, (2.8)

where we have defined

S−m−2
4 := (S−)∗ , S−m−6

4 := ker ξAa : V∗ ← (S−)∗ ,

and made use of V 1
2 ∼=

(
V− 1

2 /V
1
2

)∗
. Isomorphism (2.8) can be expressed concretely as follows.

Lemma 2.5. (See [20,7].) A non-zero vector V a is an element of V 1
2 if and only if V a = ξaBvB for some 

non-zero spinor vA in S−m−2
4 /S−m−6

4 .



A. Taghavi-Chabert / Differential Geometry and its Applications 46 (2016) 164–203 171
Since V
1
2 is a totally null m-dimensional vector subspace, we can now conclude

Proposition 2.6 ([20]). A non-zero spinor ξA′ is pure if and only if it satisfies

ξaAξBa = 0 . (2.9)

Applying Lemma 2.1 to Proposition 2.6, one recovers the following well-known characterisation of pure 
spinors due to Cartan.

Proposition 2.7. (See [8].) A non-zero spinor ξA′ is pure if and only if it satisfies

γa1...apA′B′ξA
′
ξB

′
= 0 , for all p < m, p ≡ m (mod 4),

γA′B′ξA
′
ξB

′
= 0 , when m = 0 (mod 4),

γa1...amA′B′ξA
′
ξB

′ �= 0 .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.10)

In particular, all non-zero spinors are pure when m ≤ 3

We shall refer to both equations (2.9) and (2.10) as the purity conditions of a spinor ξA′ .
Proposition 2.7 tells us that the only non-trivial irreducible component of the tensor product ξA′

ξB
′ of 

a pure spinor ξA′ lies in ∧m
+V. In fact, the self-dual m-form φa1...am

:= γa1...amA′B′ξA
′
ξB

′ annihilates V 1
2 , 

i.e. ξa1Aφa1a2...am
= 0. In particular, it must be null (or simple or decomposable), i.e.

φa1...am
= ξA1

a1
. . . ξAm

am
εA1...Am

∈ ∧mV
1
2 , for some εA1...Am

∈ ∧m
(
S−m−2

4 /S−m−6
4

)
.

The next proposition generalises Proposition 2.7 in a certain sense.

Proposition 2.8. (See [8].) Let αA′ and βA be two pure spinors of opposite chirality. Then the α-plane 
associated to αA′ intersects the β-plane associated to βA in a totally null k-plane where k ≡ m − 1 (mod 2)
and k ≤ m − 1 if and only if

γa1a2...apA′Bα
A′
βB = 0 , for all p < k, p ≡ k (mod 2),

γA′Bα
A′
βB = 0 , when m ≡ 1 (mod 2),

γa1a2...akA′Bα
A′
βB �= 0 .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.11)

Let βB and ρA be any two negative pure spinors not proportional to each other. Then the β-planes 
associated to βB and ρA intersect in a totally null k-plane where k ≡ m (mod 2) and k ≤ m − 2 if and only 
if

γa1a2...apABβ
AρB = 0 , for all p < k, p ≡ k (mod 2),

γABβ
AρB = 0 , when m ≡ 0 (mod 2),

γa1a2...akABβ
AρB �= 0 .

⎫⎪⎪⎬
⎪⎪⎭ (2.12)

The same result holds for any two positive pure spinors not proportional to each other.

An application of Lemma 2.1 leads to the following reformulation of Proposition 2.8 when k = m −1 and 
k = m − 2.



172 A. Taghavi-Chabert / Differential Geometry and its Applications 46 (2016) 164–203
Proposition 2.9. Let αA′ and βA be two pure spinors of opposite chirality. Then the α-plane associated to 
ξA

′ intersects the β-plane associated to βA in a totally null (m − 1)-plane if and only if

αaAβB′

a = −2αB′
βA , (2.13)

where αaA := γa
B′AαB′ and βaA′ := γa

B
A′
βB.

Let βB and ρA be any two negative pure spinors not proportional to each other. Then the β-planes 
associated to βB and ρA intersect in a totally null (m − 2)-plane if and only if

βa(A′
ρB

′)
a = 0 , (2.14)

where βaA′ := γa
B
A′
βB and ρaA

′ := γa
B
A′
ρB.

The same result holds for any two positive pure spinors not proportional to each other.

Finally, as a direct consequence of the previous propositions, we obtain

Corollary 2.10. Let ξA′ be a pure spinor, and let V 1
2 and S

m−2
4 be defined as in (2.5). Then

• Any non-zero spinor in S
m−2

4 is a pure spinor.
• The β-plane associated to any non-zero spinor in S

m−2
4 intersects the α-plane V

1
2 in a totally null 

(m − 1)-plane.
• The β-planes associated to any two non-proportional non-zero spinors in S

m−2
4 intersect in a totally 

null (m − 2)-plane.

Proof. Let βA and ρA be a two non-zero spinors in S
m−2

4 so that βA = baξAa and ρA = ρaξAa for some ba

and ρa not V 1
2 . In particular, we can assume ba, ρa to lie in a complementary subspace of V 1

2 in V, so that 
they are null, and thus annihilate βA and ρA respectively. Assume that β[AρB] �= 0. We simply check:

• βaA′
βB′
a = babbγaA

A′
γbB

B′(ξcAξBc ) + 4baβ(A′

a ξB
′) + 4babaξA

′
ξB

′ = 0.
• ξaAβB′

a = ξaA
(
−bcξCa γcC

B′ − 2baξB
′
)

= −2 βAξB
′ .

• Finally, since S
m−2

4 is a vector space of pure spinors, the sum of βA and ρB is also a pure spinor, and 
the result follows by polarisation, i.e. 0 =

(
βaA′ + ρaA

′
)(

βB′
a + ρB

′
a

)
= 2 βa(A′

ρ
B′)
a i.e. the algebraic 

condition (2.14) is satisfied.

The result follows by Proposition 2.9. �
Remark 2.11. The last part of Corollary 2.10 is an articulation of a standard theorem [10,7] which states 
that a sufficient and necessary condition for the sum of two pure spinors to be pure is that their respective 
totally null m-planes intersect in a totally null (m − 2)-plane.

Splitting It is often more convenient to eliminate the quotient vector spaces in the isomorphisms (2.7) and 
(2.8) in favour of splittings adapted to them. We split the filtration (2.6) as

V = V− 1
2
⊕V 1

2
, (2.15)

where V− 1
2
⊂ V− 1

2 is complementary to V 1
2

:= V
1
2 and is linearly isomorphic to V− 1

2 /V
1
2 . We note that 

V− 1
2

is a totally null m-plane dual to V 1
2

:= V
1
2 by virtue of V ∼= V∗. In particular, there exists a pure 

spinor ηA′ dual to ξA
′ such that V− 1 annihilates ηA′ , i.e.
2
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V− 1
2

= ker ηaA : V → (S−)∗ , (2.16)

Conversely, any choice of spinor dual to ξA
′ induces a splitting (2.15) of V.

With no loss, we normalise ξA
′ and ηA′ as ξA′

ηA′ = −1
2 . We set

S−m−2
4

:= im ηaA : V → (S−)∗ ,

so that by Lemma 2.5, any vector V a in V− 1
2

takes the form V a = ηaAv
A for some spinor vA in Sm−2

4
:=

S
m−2

4 , dual to S−m−2
4

.
Finally, to make the pairing between S−m−2

4
and Sm−2

4
more explicit, we introduce the map

IAB := ηaBξ
aA : S− → S− . (2.17)

By the Clifford property (2.1), IAB is idempotent with trace IAA = m. Thus, IAB must be the identity on 
Sm−2

4
, or dually, on S−m−2

4
.

2.3. The stabiliser of a projective pure spinor in so(2m, C) for m > 2

We now turn to the decomposition of the Lie algebra g := so(2m, C), which we shall identify with the 
space ∧2V∗ of 2-forms by means of gab. We remind the reader that we assume m > 2.

Filtration The filtration (2.6) on V induces a filtration of vector subspaces

{0} =: g2 ⊂ g1 ⊂ g0 ⊂ g−1 := g (2.18)

of g, where

g0 :=
{
φab ∈ g : ξaAξbBφab = 0

}
, g1 :=

{
φab ∈ g : ξbAφba = 0

}
. (2.19)

In fact, as can easily be checked from the definitions (2.19), g is a filtered Lie algebra, in the sense that the 
Lie bracket [·, ·] : g × g → g is compatible with the filtration on g, i.e. [gi, gj ] ⊂ gi+j , with the convention 
gi = {0} for i ≥ 2, and gi = g for all i ≤ −1.

Proposition 2.12. The Lie subalgebra p := g0 is the stabiliser of ξA′ , i.e.

φabγ
ab

B′A
′
ξB

′ ∝ ξA
′
.

Proof. From the identity ξaAξbBφab = −1
4φabξ

D′
γab

D′C
′
γc

C′AξBc , it follows that the stabiliser of ξA′ is 
contained in g0, and, by rewriting φabγ

ab
B′A

′
ξB

′ = φ ξA
′ for some φ, and using (2.9), in fact contains 

g0. �
The Lie subalgebra p is a Lie parabolic subalgebra of so(2m, C). From the Lie bracket commutation 

relation of gi, each vector subspace gi is a p-module.

Splitting The splitting (2.15) of V adapted to the null structure associated to ξA
′ endows g with the 

structure of a |1|-graded Lie algebra, i.e.

g = g−1 ⊕ g0 ⊕ g1 , [gi, gj ] ⊂ gi+j , (2.20)
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where gi ⊂ gi are complementary to gi+1, for each i = −1, 0, 1, and we set gi := {0} when |i| > 2 for 
convenience. Explicitly, we have

g−1 ∼= ∧2V− 1
2
, g0 ∼= V− 1

2
⊗V 1

2
, g1 ∼= ∧2V 1

2
.

In particular, g1 and g−1 are dual to one another, and g0 is isomorphic to gl(m, C), the Lie algebra of 
the complex general linear group GL(m, C) with standard representation V 1

2
. If ηA′ is a pure spinor with 

ηA′ξA
′ = −1

2 so that (2.16) holds, then we can write

φab = ηaAηbBφ
AB + 2 ξA[a η b]BφA

B + ξAa ξ
B
b φAB ∈ g−1 ⊕ g0 ⊕ g1 ,

where φAB = φ[AB] ∈ ∧2Sm−2
4

, φA
B ∈ S−m−2

4
⊗ Sm−2

4
, φAB = φ[AB] ∈ ∧2S−m−2

4
. Here, we emphasise 

that spinor indices should not be raised nor lowered, i.e. φAB , φAB and φA
B are independent of each other.

By the commutation relation, g1 is nilpotent. Further, since g0 is reductive, there is a direct sum decom-
position g0 = z0 ⊕ sl0 where z0 is the one-dimensional centre of g0, and sl0 is the simple part of g0, which 
is isomorphic to sl(m, C), the Lie algebra of the complex special linear group SL(m, C). The centre z0 can 
be seen to be spanned by the element

Eab := −ξA[a η b]A = −ξAa ηbA + 1
2gab , (2.21)

with respect to which any φab ∈ sl0 is tracefree, i.e. Eabφab = 0. More generally, any φab ∈ g0 admits the 
decomposition

φab = φωab + 2 ξA[a η b]BφA
B ∈ g0 = z0 ⊕ sl0 ,

where φ ∈ C and φA
B ∈ S−m−2

4
⊗ Sm−2

4
is tracefree in the sense that φA

BIAB = 0 where we recall 
IBA = ξaAηaB is the identity on Sm−2

4
(see (2.17)). Here, we have defined, for convenience, ωab := −2 Eab

so that ωa
cωc

b = gba.
The element Eab has the property ξbAEb

a = 1
2ξ

aA and ηbAEb
a = −1

2η
aA, i.e. Eab has eigenvalues ±1

2 on 
V± 1

2
. The action of Eab extends by derivation to any tensor product of V and V∗, and in particular Eab

has eigenvalues i on gi for i = −1, 0, 1. Now, the image of Eab in the Clifford algebra C�(V, g) restricted to 
End(S+) is EB′A

′ := −1
4Eabγ

ab
B′A

′ , and has eigenvalues m4 on Sm
4
, and similarly for the action of Eab on 

S− and their duals. For these reasons, Eab is referred to as the grading element of g.

Parabolic Lie subgroups Moving to the level of Lie groups, we denote by P the stabiliser of the projective 
pure spinor [ξ] in G = Spin(2m, C) so that P has Lie algebras p. More precisely, P admits a Levy decom-
position P = G0 �P+, where the image of G0 in SO(2m, C) under the covering map is the complex general 
Lie group GL(m, C) while P+ has nilpotent Lie algebra g1. Any of the p-invariant structures, including 
filtrations and associated graded vector spaces, considered in this article are also P -invariant and can be 
regarded as finite representations of P . Similarly, we can view g0-modules as G0-modules.

Associated graded vector space Associated to the filtration (2.18) is the graded p-module gr(g) =⊕1
i=−1 gri(g) where gri(g) := gi/gi+1. In fact, each gri(g) is a p-module since [g1, gi] ⊂ gi+1. Each gri(g) is 

lineraly isomorphic to the g0-module gi of the splitting (2.20). There is a further direct sum decomposition

gr0(g) ∼= g0
0 ⊕ g1

0 , where g0
0 := (g1 + z0) /g1 , g1

0 := (g1 + sl0) /g1 ,

of p-modules, where g0
0
∼= z0 and g1

0
∼= sl0 as vector spaces. Let us set g0

±1 := gr±1(g) for convenience. Then 
we can represent gr(g) in the form of a directed graph
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g0
0

g0
1 g0

−1

g1
0

(2.22)

where the arrows are defined by the property

g
j
i −→ gki−1 ⇐⇒ ğ

j
i ⊂ g1 · ğki−1 , (2.23)

for any irreducible g0-module ğji linearly isomorphic to gji . Here the · denotes the algebraic action of g on 
any g-module.

Such a description can be made explicit by defining the maps, for any φab ∈ g,

g

ξΠ
0
−1(φ) := ξaAξbBφab ,

g

ξΠ
0
0(φ) := ξabA

′
φab ,

g

ξΠ
1
0(φ) := ξcAφcb + 1

n
γbC′AξcdC

′
φcd . (2.24)

where ξA
′

ab := ξB
′
γabB′A

′ : ∧2V → S+ and S
m−4

4 := im ξA
′

ab : ∧2V → S+. Then the kernels of the maps gξΠ
j
i

correspond to the p-submodules of g, i.e.

g1 + z0 = {φab ∈ g : g

ξΠ
1
0(φ) = 0} , g1 + sl0 = {φab ∈ g : g

ξΠ
0
0(φ) = 0} ,

g0 = {φab ∈ g : g

ξΠ
0
−1(φ) = 0} , g1 = {φab ∈ g : g

ξΠ
0
0(φ) = g

ξΠ
1
0(φ) = 0} .

The inclusions g1 ⊂ g1 + z0 ⊂ g0 and g1 ⊂ g1 + sl0 ⊂ g0 now follow from ker g

ξΠi
0 ⊂ ker g

ξΠ0
−1. Passing now 

to the associated graded module gr(g), we can express the irreducible p-modules gj0 in terms of gξΠ
j
i , e.g.

g0
0 =

{
φab ∈ g0 : g

ξΠ
1
0(φ) = 0

}
/g1 , g1

0 =
{
φab ∈ g0 : g

ξΠ
0
0(φ) = 0

}
/g1 ,

and so on. The irreducibility of gji from the fact that the maps gξΠ
j
i are saturated with symmetries.

2.4. Generalisations

In more generality, for any arbitrary finite g-module M, the parabolic subalgebra p induces a filtration

{0} =: M�+1 ⊂ M� ⊂ M�−1 ⊂ . . . ⊂ M−k+1 ⊂ M−k := M , (2.25)

for some k and �, of p-modules, with associated graded p-module gr(M) =
⊕

gri(M), where gri(M) :=
Mi/Mi+1, on which the grading element E acts diagonalisably, with eigenvalues i. Each gri(M) splits 
as a direct sum of irreducible p-modules gri(M) = M0

i ⊕ M1
i ⊕ . . . ⊕ M�

i for some � depending on i, 
and each Mj

i is isomorphic to an irreducible g0-module M̆j
i . It is in fact easier to obtain the irreducible 

g0-modules of gr(M) by ‘branching’ from g to g0. Using ad hoc methods, one can construct suitable bases 
for the irreducible g0-modules, and check that they add up to a basis for M. In particular, one must have 
dimM =

∑
i,j dimM

j
i =

∑
i,j dim M̆

j
i .

We can then construct a graph on gr(M) as follows: we let the nilpotent part g1 of p act on each M̆j
i , and 

draw an arrow Mj
i → Mk

i−1 for some i, j, k, whenever M̆j
i ⊂ g1 · M̆k

i−1. This graph allows us to identify the 
p-submodules of M obtained by letting p act on each M̆j

i . Such p-submodules can be expressed in terms of 
kernels of maps Mξ Πj

i analogous to (2.24). From the irreducibility of Mj
i , each Mξ Πj

i must be ‘saturated’ with 
symmetries in the sense of [36]. The main application of this procedure will be found in section 4, where we 
shall take M to be the space of some irreducible (algebraic) curvature tensors.
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If M is a tensor, as opposed to spinor, representation, then we can view it as a g-submodule of 
⊗p

V. 
The filtration (2.6) induces a filtration of p-modules on 

⊗p
V, and thus on M in the obvious way: each Mi

in (2.25) is a p-submodule of ∑
i1+...+ip=j

Vi1 ⊗ . . .⊗Vip .

When M is one of the spinor modules S±, the description of the filtration of p-modules can be carried out 
as follows. Define the maps

ξAa1...a2k−1
:= ξB

′
γa1...a2k−1B′A : ∧2k−1V → S− , ξA

′

a1...a2k
:= ξB

′
γa1...a2kB′A

′
: ∧2kV → S+ ,

for k = 1, . . . , m. Then, using the Clifford property (2.1), one can see that S± admit p-invariant filtrations

S
m
4 ⊂ S

m−4
4 ⊂ . . . ⊂ S−m−4

4 ⊂ S−m
4 = S+

S
m−2

4 ⊂ S
m−6

4 ⊂ . . . ⊂ S−m−6
4 ⊂ S−m−2

4 = S−

⎫⎬
⎭ when m is even,

S
m
4 ⊂ S

m−4
4 ⊂ . . . ⊂ S−m−6

4 ⊂ S−m−2
4 = S+

S
m−2

4 ⊂ S
m−6

4 ⊂ . . . ⊂ S−m−4
4 ⊂ S−m

4 = S−

⎫⎬
⎭ when m is odd,

where we have defined S
m
4 := 〈ξA′〉 and

S
m−4k+2

4 := im ξAa1...a2k−1
: ∧2k−1V → S− , S

m−4k
4 := im ξA

′

a1...a2k
: ∧2kV → S+ ,

for k = 1, . . . , m. Using the isomorphisms (2.3), the above filtrations are also filtrations on the dual spinor 
spaces (S±)∗, where each of the p-modules can be identified with the kernels

S−m−4k−2
4 = ker ξBa1...a2k−1

: ∧2k−1V∗ ← (S−)∗ , S−m−4k−4
4 = ker ξB

′

a1...a2k
: ∧2kV∗ ← (S+)∗ ,

for k = 1, . . . , m, and S−m−4
4 = ker ξA′ : C ← (S+)∗.

A choice of splitting (2.15) fixes g0-modules Si ⊂ Si such that Si = Si⊕Si+1 and thus induces gradings

Sm
4
⊕Sm−4

4
⊕ . . .⊕S−m−4

4
⊕S−m

4
= S+

Sm−2
4

⊕Sm−6
4

⊕ . . .⊕S−m−6
4

⊕S−m−2
4

= S−

⎫⎬
⎭ when m is even,

Sm
4
⊕Sm−4

4
⊕ . . .⊕S−m−6

4
⊕S−m−2

4
= S+

Sm−2
4

⊕Sm−6
4

⊕ . . .⊕S−m−4
4

⊕S−m
4

= S−

⎫⎬
⎭ when m is odd.

The grading element E of g defined by (2.21) has eigenvalues 2i−m
4 on S 2i−m

4
.

Finally generalising (2.8), one has isomorphisms

∧kV
1
2 ∼= S

m
4 ⊗

(
S−m−2k

4 /S−m−2k−4
4

)
, k = 0 , . . . ,m− 1 ,

∧mV
1
2 ∼= S

m
4 ⊗S

m
4 ,

the latter being the purity condition of Proposition 2.7. In particular, when k = 2, we have

g1 ∼= S
m
4 ⊗

(
S−m−4

4 /S−m−8
4

)
,

(
g−1/g0)⊗S

m
4 ∼= S

m−4
4 /S

m
4 .

We note that this description of S± is consistent with the identification of S with ∧•V
1
2 .
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2.5. Null Grassmannians

The space of all null structures in (V, g) splits into two connected components Gr+m(V, g) and Gr−m(V, g), 
which we identify with the spaces of self-dual null structures (α-planes) and anti-self-dual null structures 
(β-planes) in (V, g) respectively. These spaces are conventionally referred to as null (or isotropic) Grassman-
nians. Proposition 2.4 tells us that Gr+m(V, g) can be identified with the space of all projective pure positive 
spinors, and must therefore be isomorphic to the homogeneous space G/P where as before G = Spin(2m, C)
and P is the stabiliser of a projective pure positive spinor. The description of Gr−m(V, g) is similar. In 
particular, when m = 1, 2, 3, the absence of purity conditions means that each of Gr±m(V, g) is isomorphic 
to the complex projective space CP

1
2m(m−1), and when m > 3, each can be realised as compact complex 

subvarieties of PS± of dimension 1
2m(m − 1) being the dimension of g−1 ∼= g/p.

2.6. Real pure spinors

One can also consider a 2m-dimensional real vector space V equipped with a definite or indefinite non-
degenerate symmetric bilinear form g. In general, the spinor representations of (V, g) are complex vector 
spaces equipped with a real or quaternionic structure. We then have a notion of pure spinor of real index
r, where r is the real dimension of the intersection of the associated totally null complex m-plane Nξ of 
the complexification of (V, g) with its complex conjugate. The real index depends on the signature of g. 
For instance, if g is positive definite, r is always zero: Nξ and its conjugate define a Hermitian signature on 
(V, g). In Lorentzian signature, r is always 1, and the analogous structure is known as a Robinson structure
[32,47,45]. We refer to [27] for details.

More relevant to the present article, however, is the case when g has signature (m, m). Then, m ≥ r ≡ m

(mod 2), and the spinor representations are spanned by real pure spinors (when r = m) associated to real
totally null m-planes in V. The algebraic setup of the previous sections carries over to this real setting with 
no major change. The complex Lie algebra so(2m, C) is replaced by the real form so(m, m). The parabolic 
Lie subalgebra stabilising a real pure spinor is a real form of the complex parabolic p, and is also described 
in terms of a |1|-grading on so(m, m). The story is similar at the Lie group level, where Spin(2m, C) is 
replaced by the connected identity component of the real Lie group Spin(m, m). The next two sections 3
and 4 can also be translated into this real case with no important issue.

3. Decomposition of the intrinsic torsion

As before, we assume m > 2. Let us consider the p-module

W := V⊗ (g/p) , (3.1)

where, as usual, g := so(2m, C), with standard representation V, and p the parabolic Lie subalgebra 
of g stabilising a projective pure spinor [ξA′ ]. In section 5, we shall give the module W the geometrical 
interpretation of the space of intrinsic torsions of a G-structure with structure group P .

Notation 3.1. In the table of the following proposition, ‘p-module’ and ‘g0-module’ are abbreviated ‘p-mod’ 
and ‘g0-mod’ respectively. We also use the notation M �M′ for the Cartan product of two representations M
and M′ — see [12]. This is the unique irreducible representation of highest dimension in the tensor product 
M ⊗M′. For gl(m, C)-modules, this is either the symmetric product �, the tracefree tensor product ⊗◦, or 
a combination of both depending on M and M′. Finally, the algebraic action of g on any g-module will be 
denoted by a dot ·.
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Proposition 3.2. The p-module W admits a filtration

W− 1
2 ⊂ W− 3

2 , (3.2)

of p-modules on W, where W− 3
2 := V− 1

2 ⊗
(
g−1/g0) and W− 1

2 := V
1
2 ⊗

(
g−1/g0).

The associated graded p-module

gr(W) = gr− 1
2
(W) ⊕ gr− 3

2
(W) = W− 1

2 ⊕
(
W− 3

2 /W− 1
2

)
(3.3)

decomposes into a direct sum

gr− 1
2
(W) = W0

− 1
2
⊕W1

− 1
2
, gr− 3

2
(W) = W0

−3
2
⊕W1

− 3
2
,

of irreducible p-modules as described below:

p-mod g0-mod Dimension
W0

− 3
2

∧3V− 1
2

1
3!m(m−1)(m−2)

W1
− 3

2
V− 1

2
�
(
∧2V− 1

2

) 1
3m(m2 − 1)

p-mod g0-mod Dimension
W0

− 1
2

V− 1
2

m

W1
− 1

2
V 1

2
�

(
∧2V− 1

2

)
1
2m(m+1)(m−2)

Further,

W
j
i = {Γabcξ

bBξcC ∈ Wi : W
ξ Πk

i (Γ) = 0 , for all k �= j}/Wi+1 , i = −3
2 ,−

1
2 , (3.4)

where

W
ξ Π0

− 3
2
(Γ) := Γabcξ

a[AξbBξcC] ,

W
ξ Π1

− 3
2
(Γ) := Γabcξ

a(AξbB)ξcC ,

W
ξ Π0

− 1
2
(Γ) := ξA

′
Γbcdξ

cdD′
γb

D′B + ξbBΓbcdξ
cdA′

,

W
ξ Π1

− 1
2
(Γ) :=

⎧⎪⎨
⎪⎩

Γabcξ
bBξcC − 1

2(m−1)

(
ξ
[B
a Γbcdξ

cdD′
γb

D′ C] + ξb[B Γbcdξ
cdD′

γaD′ C]
)
, m > 3 ,

Γabcξ
bBξcC − 1

4

(
ξ
[B |
a Γbcdξ

cd
D γbD|C] + ξb[B |Γbcdξ

cd
D γa

D|C]
)

+ 1
6ξ

bAΓbcdξ
cd
A γa

BC , m = 3 ,

where Γabc ∈ V ⊗ g. For m = 3, we have made use of the isomorphism S+ ∼= (S−)∗. Notationally, the 
primed indices are eliminated, and the γ-matrices take the form γaAB and γa

AB, and are skew-symmetric 
in their spinor indices.

Finally, the p-module gr(W) can be expressed by means of the directed graph

W1
− 1

2
W1

− 3
2

W0
− 1

2
W0

− 3
2

where the dotted arrow occurs only when m > 3. Here, an arrow from Wj
i to Wk

i−1 for some i, j, k implies 
that W̆j

i ⊂ g1 · W̆k
i−1 for any choice of irreducible g0-modules W̆j

i and W̆k
i−1 isomorphic to Wj

i and Wk
i−1

respectively, or equivalently that kerW
ξ Πj

i ⊂ kerW
ξ Πk

i−1.
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Proof. Since W is not a g-module, one cannot strictly follow the argument of section 2.4. The idea is never-
theless very similar. We first note that the filtration (2.6) on V induces the filtration (3.2) of p-submodules 
of W. Now consider the associated graded p-module (3.3). To make the analysis more tractable, we can 
work with the grading (2.15) so that we have linear isomorphisms

gr− 3
2
(W) ∼= V− 1

2
⊗
(
∧2V− 1

2

)
, gr− 1

2
(W) ∼= V 1

2
⊗

(
∧2V− 1

2

)
,

between p-modules and g0-modules. That each of these g0-modules splits into irreducibles, i.e. W̆0
− 3

2
⊕

W̆1
−3

2

∼= ∧3V− 1
2
⊕
(
V− 1

2
�

(
∧2V− 1

2

))
and W̆0

−1
2
⊕W̆1

− 1
2

∼= V− 1
2
⊕
(
V 1

2
�
(
∧2V− 1

2

))
respectively, is clear.

Let us be a bit more explicit by viewing an element of W− 3
2 as an element of V− 1

2 ⊗
(
∧2S

m−2
4

)
, i.e. of 

the form Γabcξ
bBξcC or Γabcξ

bcB′ (mod αaξ
B′) where Γabc = Γa[bc] lies in the g-module V ⊗ g. This means 

that W− 1
2 = {Γabcξ

bBξcC ∈ W− 3
2 : Γabcξ

aAξbBξcC = 0}. To describe elements of the g0-modules W̆j
i we 

write

Γabcξ
bBξcC = ηaAΓABC + ξAa ΓA

BC ,

Γabcξ
bcD′

=
(
ηaAΓABC + ξAa ΓA

BC
)
ηcCγ

c
B
D′

+ 2
(
ξAa ΓAC

C + ηaAΓA
C
C
)
ξD

′
,

γa
D′AΓabcξ

bcD′
= ΓEBCηbBηcCγ

bc
E
A + 4ΓC

CA + 2 ΓA
C
C , (3.5)

where ΓA
BC = ΓA

[BC], ΓABC = ΓA[BC], ΓAB
C and ΓA

B
C are all elements of tensor products of Sm−2

4
and 

S−m−2
4

— see Appendix A.1. As before, ξA′ and ηA′ satisfy ξA
′
ηA′ = −1

2 , and we recall that IBA := ξaBηaA
is the identity on Sm−2

4
. In particular, the irreducible g0-components of an element of W are determined by

Γ[ABC] ∈ W̆0
− 3

2
, Γ(AB)C ∈ W̆1

− 3
2
,

ΓA
AC ∈ W̆0

− 1
2
, ΓA

BC − 2
m− 1I

[B |
A ΓD

D|C] ∈ W̆1
− 1

2
. (3.6)

Using (3.5) and (3.6), it is then straightforward to check that the p-modules defined by the kernels of the 
maps Wξ Πk

i are related to Wj
i as shown by (3.4).

To obtain the diagram encoding the full p-invariance, we must also examine the action of the nilpotent 
part g1 of p on each of these irreducible g0-modules. This can be checked by a direct computation or by 
noting that kerW

ξ Πj
i ⊂ kerW

ξ Πk
i−1 for suitable i, j and k.

Finally, extra care must be taken when m = 3 where ∧3V± 1
2

are one-dimensional. We can realise g1 as 
the pairing of V− 1

2 /V
1
2 and ∧3V 1

2
: any element of g1 can be written in the form φab = 1

2εabcφ
c for some 

vector φc ∈ V− 1
2
, where εabc ∈ ∧3V 1

2
. It then follows that g1 · ∧3V− 1

2
⊂ V− 1

2
. This also explains why we 

have distinguished the cases m = 3 and m > 3 in the definition of the map Wξ Π1
− 1

2
. One may also use the 

identity

ξa[AΓabcξ
bBξcC] = −2

3ξ
aEΓabcξ

bc
E εABC = −1

6γ
a
EFΓabcξ

bcEξFb ε
ABC ,

where εABC := 1
2γ

aABγa
CDξD is completely skew-symmetric. �

4. Decomposition of the curvature

As before, we assume m > 2. Consider the following g-modules:
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g-mod Dimension Description
F (2m− 1)(m + 1) {Φab ∈ ⊗2V∗ : Φab = Φ(ab) ,Φc

c = 0}
A 8

3m(m + 1)(m− 1) {Aabc ∈ ⊗3V : Aabc = Aa[bc] , A[abc] = 0 , Aa
ac = 0}

C 1
3m(m + 1)(2m + 1)(2m− 3) {Cabcd ∈ ⊗4V : Cabcd = C[ab][cd] , C[abc]d = 0 , Ca

bad = 0}

These modules are to be interpreted as the spaces of irreducible curvature tensors of the Levi-Civita con-
nection at a point, more precisely, of the tracefree Ricci tensors, Cotton–York tensors and Weyl tensors.

We shall give p-invariant decompositions of these modules, where p is the stabiliser of a projective 
pure spinor [ξA′ ] in g. We state the results without proofs, which essentially follow from the discussion of 
section 2.4, and arguments similar to the proof of Proposition 3.2. Details can be worked out using the 
material contained in Appendix A, in particular, the bases for the g0-modules and the multilinear maps 
referred to in the following propositions. Notation 3.1 applies.

4.1. Decomposition of the space of tracefree Ricci tensors

Proposition 4.1. The space F of tracefree symmetric 2-tensors admits a filtration

{0} =: F2 ⊂ F1 ⊂ F0 ⊂ F−1 := F ,

of p-modules

Fi = {Φab ∈ F : F

ξ Π0
i−1(Φ) = 0} , i = 0, 1,

where the maps Fξ Π0
i are defined in Appendix A.2.

Further, each p-module Fi/Fi+1 is an irreducible p-module as described below:

p-mod g0-mod Dimension
F0

0 V 1
2

� V− 1
2

m2 − 1
p-mod g0-mod Dimension
F0
±1 V± 1

2
� V± 1

2

1
2m(m + 1)

4.2. Decomposition of the space of Cotton–York tensors

Proposition 4.2. The space A of tensors with Cotton–York symmetries admits a filtration

{0} =: A 5
2 ⊂ A

3
2 ⊂ A

1
2 ⊂ A− 1

2 ⊂ A− 3
2 = A ,

of p-modules

Ai = {Aabc ∈ A : A
ξ Πk

i−1(A) = 0 , for all k} , i = −1
2 ,

1
2 ,

3
2 ,

where the maps Aξ Πk
i are defined in Appendix A.2.

The associated graded p-module gr(A) =
⊕ 3

2
i=− 3

2
gri(A), where gri(A) := Ai/Ai−1, splits into a direct 

sum

gr± 3
2
(A) ∼= A0

± 3
2
, gr± 1

2
(A) ∼= A0

± 1
2
⊕ A1

± 1
2
⊕ A2

± 1
2
,

of irreducible p-modules as described below:
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p-mod g0-mod Dimension
A0

± 3
2

V± 1
2

� g±1
1
3m(m2 − 1)

A0
± 1

2
V± 1

2
� z0 m

A1
± 1

2
V∓ 1

2
� g±1

1
2m(m− 2)(m + 1)

A2
± 1

2
V± 1

2
� sl0

1
2m(m + 2)(m− 1)

Further,

A
j
i = {Aabc ∈ Ai : A

ξ Πk
i (A) = 0 , for all k �= j}/Ai+1 , for |i| = 1

2 .

Finally, the p-module gr(A) can be expressed by means of the directed graph

A2
1
2

A2
− 1

2

A0
3
2

A1
1
2

A1
− 1

2
A0

− 3
2

A0
1
2

A0
− 1

2

where an arrow from Aj
i to Ak

i−1 for some i, j, k implies that Ăj
i ⊂ g1 · Ăk

i−1 for any choice of irreducible 
g0-modules Ăj

i and Ăk
i−1 isomorphic to Aj

i and Ak
i−1 respectively, or equivalently that kerA

ξ Πj
i ⊂ kerA

ξ Πk
i−1.

4.3. Decomposition of the space of Weyl tensors

Proposition 4.3. The space C of tensors with Weyl symmetries admits of a filtration

{0} =: C3 ⊂ C2 ⊂ C1 ⊂ C0 ⊂ C−1 ⊂ C−2 := C , (4.1)

of p-modules

Ci = {Cabcd ∈ C : C
ξ Πk

i−1(C) = 0 , for all k} , i = −1, 0, 1, 2,

where the maps Cξ Πk
i are defined in Appendix A.2.

The associated graded p-module gr(C) =
⊕2

i=−2 gri(C), where gri(C) := Ci/Ci−1, splits into a direct sum

gr±2(C) ∼= C0
±2 , gr±1(C) ∼= C0

±1 ⊕ C1
±1 , gr0(C) ∼= C0

0 ⊕ C1
0 ⊕ C2

0 ⊕ C3
0 ,

of irreducible p-modules as described below:

p-mod g0-mod Dimension
C0
±2 g±1 � g±1

1
12m

2(m2 − 1)

C0
±1 g±1 � z0

1
2m(m− 1)

C1
±1 g±1 � sl0

1
3m

2(m2 − 4)

p-mod g0-mod Dimension
C0

0 z0 � z0 1

C1
0 sl0 � z0 m2 − 1

C2
0 g1 � g−1

1
4m

2(m + 1)(m− 3)

C3
0 sl0 � sl0

1
4m

2(m− 1)(m + 3)
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with the proviso that C2
0 does not occur when m = 3. Further

C
j
i = {Cabcd ∈ Ci : C

ξ Πk
i (C) = 0 , for all k �= j}/Ci+1 , for |i| ≤ 1.

Finally, the p-module gr(C) can be expressed by means of the directed graph

C3
0

C1
1 C2

0 C1
−1

C0
2 C0

−2

C0
1 C1

0 C0
−1

C0
0

where an arrow from Cj
i to Ck

i−1 for some i, j, k implies that C̆j
i ⊂ g1 · C̆k

i−1 for any choice of irreducible 
g0-modules C̆j

i and C̆k
i−1 isomorphic to Cj

i and Ck
i−1 respectively, or equivalently that ker C

ξ Πj
i ⊂ ker C

ξ Πk
i−1.

5. Differential geometry of pure spinor fields

Throughout this section, (M, g) will denote an n-dimensional complex Riemannian manifold, where 
n = 2m, i.e. a complex manifold M equipped with a global non-degenerate holomorphic section gab of 
�2T∗M, where T∗M is the holomorphic cotangent bundle of M. We also assume that (M, g) is equipped 
with a global holomorphic volume element and a spin structure. These data are equivalent to a holomorphic 
reduction of the structure group of the frame bundle FM of M to G := Spin(2m, C), with Lie algebra g. 
Holomorphic vector bundles over M can be constructed in terms of finite representations of G or g in 
the standard way [40,11]. For instance, if V is the standard representation of G, then the holomorphic 
tangent bundle is simply TM := FM ×GV, and holomorphic sections of TM can be viewed as equivariant 
holomorphic functions on FM taking values in V. Similarly, the spinor bundle, the chiral positive and 
negative spinor bundles, S, S+ and S− arise from the spinor representations S, S+ and S− respectively.

The unique torsion-free metric-compatible holomorphic Levi-Civita connection and its associated covari-
ant derivative on M will both be denoted by ∇a. Recall that for any other metric-compatible holomorphic 
connection ∂a, the difference between ∇a and ∂a is given by

∇aV
b = ∂aV

b + Γac
bV c , (5.1)

for any holomorphic vector field V a, for some holomorphic tensor field Γabc = Γa[bc]. For instance, if 
∂a preserves an orthonormal frame, then Γabc can be identified with the components of the Levi-Civita 
connection 1-form in that frame. The torsion of ∂a equals 2 Γ[ab]

c. The Riemann tensor of ∇a is given by

2∇[a∇ b]V
d = Rabc

dV c ,

for any holomorphic vector field V a, and satisfies the Bianchi identity

∇[aRb c]de = 0 . (5.2)
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The Riemann tensor splits into O(2m, C)-irreducible components as

Rabcd = Cabcd + 4
n− 2Φ[c |[a g b]|d] + 2

n(n− 1)Rgc[a g b]d , (5.3)

where Cabcd is the Weyl tensor, Φab the tracefree part of the Ricci tensor Rab := Racb
c, and R := Ra

a the 
Ricci scalar. For m > 2, this decomposition is also SO(2m, C)- and G-irreducible. When m = 2, the Weyl 
tensor splits into a self-dual part and an anti-self-dual part, each SL(2, C)-irreducible.

Sections of S+ and S− will be denoted in the obvious way by means of the abstract index notation 
of section 2, e.g. by ξA

′ and ζA and similarly for their dual. The spin connection on S, S+ and S− can 
be constructed canonically as a lift of the Levi-Civita connection, and will also be denoted ∇a. It has the 
property of preserving the Clifford module structure of S in the sense that

∇a(V bγbA′BξA
′
) = (∇aV

b)γbAB′
+ V bγbA′B∇aξ

A′
,

for any holomorphic vector field V a and positive spinor field ξA
′ , and similarly for the other spinor bundles. 

Lifting any other metric-compatible holomorphic connection ∂a to S, we have, with reference to (5.1),

∇aξ
A′

= ∂aξ
A′ − 1

4Γabcγ
bc

B′A
′
ξB

′
, (5.4)

for any holomorphic spinor field ξA
′ . Finally, the curvature of the spin connection is given by

2∇[a∇ b]ξ
A′

= −1
4Rabcdγ

cd
B′A

′
ξB

′
,

for any holomorphic spinor field ξA
′ , and similarly for spinors of other types.

Notation 5.1. As in sections 2, 4 and 3, we shall use the short-hand notation

ξAa := ξB
′
γaB′A , ξA

′

ab := ξB
′
γabB′A

′
, ηaA := γaA

B′
ηB′ , ηabA′ := γabA′B

′
ηB′ ,

ζA
′

a := ζBγaB
A′

, ζAab := ζBγabB
A , . . .

and so on, for spinors ξA′ , ηA′ , ζA.

Assumptions 5.2. Throughout this section, we shall assume that our tensor and spinor fields depend holo-
morphically on M, and Γ(·) will denote the space of holomorphic sections of a holomorphic fibre bundle. 
The reader will sometimes be reminded of this assumption for clarity. The application of this work to real 
pseudo-Riemannian manifolds is given in section 5.3.

Further, unless otherwise stated, we shall assume m > 2 for definiteness, although many of the results 
here specialise to the case m = 2 too. Appendix B.1 contains a brief review of this case.

Finally, let us emphasize that our results will be essentially local.

5.1. Projective pure spinor fields

We first make the following definition.

Definition 5.3. An almost null structure N on (M, g) is a rank-m distribution that is totally null, i.e.
g(v, w) = 0 for all sections v, w of N . An almost null structure is (anti-)self-dual if it is annihilated by an 
(anti-)self-dual m-form.
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A self-dual, respectively, anti-self-dual, almost null structure will also be referred to as an α-plane, respec-
tively, β-plane, distribution. We shall denote the bundle of all self-dual, respectively, anti-self-dual, almost 
null structures on (M, g) by Gr+m(TM, g), respectively Gr−m(TM, g). These bundles have fibres isomorphic 
to the 1

2m(m − 1)-dimensional family Gr+m(TpM, g) of α-planes, respectively Gr−m(TpM, g) of β-planes, in 
TpM at any point p.

The existence of an almost null structure does not require a spin structure. But the latter allows us to 
identify almost null structures with pure spinor fields up to scale, i.e. spinor fields satisfying condition (2.9)
or (2.10) at every point. For, by Proposition 2.4, a totally null m-dimensional vector subspace of the tangent 
space at a point can be identified with a pure spinor up to scale. Thus, we shall also identify the bundles 
Gr±m(TM, g) with the bundles of projective pure spinors of either chirality.

Now, let [ξA′ ] be a holomorphic projective pure spinor field, i.e. a holomorphic section of Gr+m(TM, g), 
and denote by Nξ its associated almost null structure, which can also be assumed to be holomorphic. Then 
the structure group of FM is reduced to the stabiliser P of [ξA′ ] as described in section 2, and we obtain 
filtrations of vector bundles, together with their associated graded vector bundles, constructed from finite 
representations of P or its Lie algebra p. For instance, the filtration p-modules {Ci} on the space C of tensors 
with Weyl symmetries gives rise to a filtration of vector subbundles Ci over M, where Ci := FM ×P Ci, 
and so does the story go for the associated graded p-modules gri(C), its irreducible modules Cj

i and the 
graded g0-modules Ci in the obvious way and notation [11]. We shall then recycle the notation of sections 3
and 4, and Appendix A in this curved setting as the need arises. We shall characterise the (local) algebraic 
degeneracy of curvature tensors with respect to [ξA′ ] by means of the maps Fξ Πj

i , Aξ Πj
i and Cξ Πj

i .

5.1.1. Intrinsic torsion
Having singled out a holomorphic projective pure spinor field [ξA′ ] on M, it remains to characterise 

the various degrees of ‘integrability’ of the P -structure it defines. Following [40], the P -structure being 
integrable to first order, i.e. there exists a torsion-free connection compatible with the P -structure, is 
essentially equivalent to [ξA′ ] being parallel with respect to the Levi-Civita connection ∇a, i.e.

∇a[ξA
′
] = 0 , i.e. ∇aξ

B′
= αaξ

B′
, (5.5)

for some 1-form αa. Equation (5.5) can be more conveniently expressed as

(∇aξ
bB)ξCb = 0 , or equivalently, (∇aξ

[B′
)ξC

′] = 0 , (5.6)

which is also equivalent to the Levi-Civita connection being p-valued.
The obstruction to (5.6) is known as the intrinsic torsion or structure function of the P -structure defined 

by [ξA′ ] [9,3,40]. Measuring the extent to which (5.6) fails can be achieved by characterising

(∇aξ
bB)ξCb ∈ V− 1

2 ⊗ ∧2S
m−2

4 , (5.7)

as an element of a p-submodule of W = V ⊗ (g/p). Here, we have made use of the fact that the connection 
1-form is g-valued, and the pair of skew-symmetric spinor indices of (5.7) projects out the part of g not in p. 
This can be made more explicit by choosing a connection ∂a that preserves [ξA′ ] so that (5.4) becomes

∇aξ
A′

= −1
4Γabcγ

bc
B′A

′
ξB

′
(mod αaξ

A′
) . (5.8)

In fact, with no loss of generality, we could choose ∂a to preserve a chosen ξA
′ . This makes contact with 

the description of elements of W given in section 3. The expression (5.8) allows us to express the algebraic 
characterisation of the intrinsic torsion of the P -structure of Proposition 3.2 in terms of (5.7). This yields 
the next proposition, and we leave the details of the proof the reader.
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Proposition 5.4. Let [ξA′ ] be a holomorphic projective pure spinor field on (M, g), and let Γabcξ
bBξcC ∈ W

be its associated intrinsic torsion. Then, pointwise,

• W
ξ Π0

− 3
2
(Γ) = 0 if and only if

(ξa[A∇aξ
bB)ξC]

b = 0 ; (5.9)

• W
ξ Π1

− 3
2
(Γ) = 0 if and only if

(ξa(A∇aξ
bB))ξCb = 0 ; (5.10)

• W
ξ Π0

− 1
2
(Γ) = 0 if and only if

ξA
′∇bξ

bB − ξbB∇bξ
A′

= 0 ; (5.11)

• W
ξ Π1

− 1
2
(Γ) = 0 if and only if

(∇aξ
bB)ξCb + 2

m− 1

(
ξ[B
a ∇bξ

bC] + ξb[B∇bξ
C]
a

)
= 0 , m > 3 ; (5.12)

(∇aξ
bB)ξCb +

(
ξ[B
a ∇bξ

bC] + ξb[B∇bξ
C]
a

)
− 2

3ξ
bA(∇bξA)γaBC = 0 , m = 3 ; (5.13)

where we have made use of the isomorphism S+ ∼= (S−)∗ when m = 3.

These statements are independent of the scaling of ξA′.

Remark 5.5. For the case m = 3, we refer to Appendix B.2 where conditions (5.9), (5.10), (5.11) and (5.13)
are given as conditions (B.10), (B.11), (B.12) and (B.13).

5.1.2. Geometric properties
Definition 5.6. An almost null structure N is said to be totally geodetic if ∇XY ∈ Γ(N ) for all X, Y ∈ Γ(N ).

Clearly, if N is totally geodetic, it is integrable as a distribution, i.e. [Γ(N ), Γ(N )] ⊂ Γ(N ). By the 
Frobenius theorem, N is locally tangent to a foliation by m-dimensional complex submanifolds of M, each 
of which is a totally geodetic and totally null. In fact, the converse is also true [43].

Lemma 5.7. An almost null structure is integrable as a distribution if and only if it is totally geodetic.

We shall henceforth also refer to an integrable almost null structure as a totally geodetic null structure.

Proposition 5.8. (See [20].) Let Nξ be an almost null structure with associated projective pure spinor field 
[ξA′ ] on (M, g). Then Nξ is totally geodetic if and only if [ξA′ ] satisfies

(ξaA∇aξ
bB)ξCb = 0 , or equivalently, (ξaA∇aξ

[B′
)ξC

′] = 0 . (5.14)

Proof. Using the decomposition (3.5) together with (5.8), we find (ξaA∇aξ
bB)ξCb = ΓABC for some functions 

ΓABC that we can identify with the components of the Levi-Civita connection with respect to a basis for 
Nξ. But Nξ being totally geodetic is equivalent to gabXaY c∇cZ

b = 0, for all Xa, Y a, Za as shown in [43]. 
Hence the result. �

Equation (5.14) also appears (in a slightly different form) in [29] in the Hermitian setting.
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Definition 5.9. We shall refer to a projective pure spinor field [ξA′ ] satisfying (5.14) as geodetic.

Conformal invariance With reference to Appendix C, one can prove

Proposition 5.10. Conditions (5.9), (5.10) and (5.12) are conformally invariant.
Suppose further that [ξA′ ] satisfies (5.12) and

ξA
′∇bξ

bB − ξbB∇bξ
A′

= −(m− 1)ξA
′
ξbB∇bf , (5.15)

for some holomorphic function f . Then there exists a holomorphic conformal rescaling of the metric such 
that [ξA′ ] is parallel, i.e. it satisfies (5.6).

Curvature conditions

Proposition 5.11. (See [20,42,43].) Let ξA′ be a geodetic pure spinor on (M, g), i.e. ξA′ satisfies (5.14), i.e.
its associated almost null structure Nξ is totally geodetic (or equivalently, integrable). Then

ξaAξbBξcCξdDCabcd = 0 , i.e. C
ξ Π0

−2(C) = 0 . (5.16)

Proof. We first note that (5.14) can be rewritten as ξaA∇aξ
B′ = αAξB

′ for some αA. Differentiating it 
along Nξ yields

αAαBξC
′
+ ξaAξbB∇a∇bξ

C′
= (ξaA∇aα

B)ξC
′
+ αAαBξC

′
.

Commuting the derivatives leads to

−1
4Rabcdξ

aAξbBγcd
D′C

′
ξD

′
= 2 (ξa[A∇aα

B])ξA
′
, (5.17)

which is equivalent to ξaAξbBξcCξdDRabcd = 0. The decomposition of the Riemann tensor together with the 
purity condition concludes the proof. �

Closing this section, we give the integrability condition for the existence of a parallel projective pure 
spinor.

Proposition 5.12. Let [ξA′ ] be a parallel projective pure spinor on (M, g), i.e. ξA′ satisfies (5.6). Then

ξaAξbBRabcd = 0 , (5.18)

ξaAξbBΦab = 0 , i.e. F

ξ Π0
−1(Φ) = 0 (5.19)

ξaAξbBξcCCabcd = 0 , i.e. C
ξ Π0

−1(C) = C
ξ Π1

−1(C) = 0 (5.20)

and in addition, when m > 3,

C
ξ Π2

0(C) = 0 . (5.21)

Further,

R = 0 ⇐⇒ C
ξ Π0

0(C) = 0
(
i.e. ξabA

′
Cabcdξ

cdD′
= 0 ,

)
and in addition, when m > 2,

F

ξ Π0
0(Φ) = 0

(
i.e. ξaAΦab = 0

)
⇐⇒ C

ξ Π1
0(C) = 0 .
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Proof. Taking a covariant derivative of equation (5.5) and commuting the derivatives yield

−1
4Rabcdγ

cd
B′A

′
ξB

′
= 2 (∇[aα b])ξA

′
,

which is equivalent to equation (5.18). Contracting equation (5.18) with γab
B
C yields the condition (5.19)

on the Ricci tensor. Conditions (5.20) and (5.21) are obtained from the decomposition (5.3). We find

ξaACa[bc]dξ
dD = 2

n− 2 ξ
[A
[b Φc]dξ

dD] + 1
n(n− 1) RξA[bξ

D
c] ,

ξaeC
′
Caedbξ

dD = 2 n− 4
n− 2 ξC

′
Φbdξ

dD + 2 n− 2
n(n− 1) RξDb ξC

′
,

ξaeC
′
Caedfξ

dfF ′
= −2 n− 2

n− 1 RξC
′
ξF

′
,

and the remaining statements follow immediately from the formulae for CξΠ2
0, Cξ Π1

0, Cξ Π0
0 of Appendix A.2. �

Remark 5.13. The purity condition is crucial in deducing conditions (5.20) and (5.21) on the Weyl tensor. 
A study of pseudo-Riemannian manifolds admitting more general recurrent spinors was carried out in [16].

5.2. Spinorial differential equations

So far we have only considered spinorial differential equations on projective pure spinor fields, i.e. dif-
ferential equations that are invariant under rescalings of ξA′ . In this section, we study spinorial differential 
equations on pure spinors of fixed scales emphasising their relations to the intrinsic torsion of their associated 
P -structures.

5.2.1. Scale-dependent geodetic spinors
A scale-dependent variation of the geodetic spinor equation (5.14) is given by

ξaA∇aξ
B′

= 0 , (5.22)

on a holomorphic pure spinor field ξA
′ . Since ξ̂aB∇̂a

(
Ω−1ξA

′
)

= Ω−2
(
ξaB∇aξ

A′
)
, equation (5.22) is 

clearly conformally invariant if and only if the spinor field ξA
′ has conformal weight −1. Accordingly, the 

integrability condition for (5.22) is expected to be conformally invariant. Indeed, a variation of the proof of 
Proposition 5.11 with αa = 0 leads to

Proposition 5.14. Let ξA′ be a holomorphic pure spinor field satisfying (5.22). Then Cξ Π0
−1(C) = 0, i.e.

Cabcdξ
aAξbBξcdC

′ = 0.

5.2.2. Parallel pure spinors
The integrability condition for the existence of a parallel spinor ξA′ is clearly that it annihilates the 

Riemann tensor, i.e. Rabcdγ
cd

B′A
′
ξB

′ = 0. The assumption that ξA′ is pure allows us to derive more 
information. To prove the next proposition, set αa = 0 in the proof of Proposition 5.12.

Proposition 5.15. Let ξA′ be a parallel pure spinor on (M, g), i.e. ξA′ satisfies

∇aξ
B′

= 0 . (5.23)

Then
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Rabcdξ
cdD′

= 0 ,
F

ξ Π0
0(Φ) = 0 , i.e. Φabξ

bB = 0 ,

R = 0 ,
C
ξ Π0

1(C) = 0 , i.e. Cabcdξ
cdD′

= 0 .

5.2.3. Null zero-rest-mass fields
Conditions weaker than (5.23) can be obtained by decomposing the covariant derivative of a spinor field 

into two irreducible parts under Spin(2m, C). The smaller of these is known as the (Weyl–)Dirac equation

γa
A′B∇aξ

A′
= 0 , (5.24)

on a holomorphic spinor field ξA
′ . It admits a generalisation to irreducible symmetric spinor fields of higher 

valence, i.e. spinor fields2 φA′
1A

′
2...A

′
k = φ(A′

1A
′
2...A

′
k) satisfying γa

A′
1
BγaA′

2
CφA′

1A
′
2...A

′
k = 0, which is known 

as the zero-rest-mass (zrm) field equation [20],

γa
A′

1
B∇aφ

A′
1A

′
2...A

′
k = 0 . (5.25)

The case k = 2 corresponds to a closed, and thus coclosed, self-dual m-form. Equation (5.25) is conformally 
invariant provided that its solutions φA′

1A
′
2...A

′
k are of conformal weight −m − k + 1. For k > 2, there is a 

strong integrability condition on φA′
1A

′
2...A

′
k given by the following lemma.

Lemma 5.16. For k > 2, let φA′
1A

′
2...A

′
k be a solution of the zrm field equation (5.25) on (M, g). Then

γa
C′

1
Aγb

C′
2
BCabcdγ

cd
D′ (C

′
3φC′

4...C
′
k)C′

1C
′
2D

′
= 0 .

Proof. We compute

0 = 2 γa
C′

1
[A γb

C′
2
B]∇a∇bφ

C′
1C

′
2...C

′
k

= −1
2γ

a
C′

1
Aγb

C′
2
BRabcdγ

cd
D′C

′
1φC′

2...C
′
kD

′ − k − 2
4 γa

C′
1
Aγb

C′
2
BRabcdγ

cd
D′ (C

′
3φC′

4...C
′
k)C′

1C
′
2D

′

= Φbcγ
b
C′

2
[A γc

D′ B]φC′
2...C

′
kD

′ − k − 2
4 γa

C′
1
Aγb

C′
2
BCabcdγ

cd
D′ (C

′
3φC′

4...C
′
k)C′

1C
′
2D

′
.

The first term must vanish by symmetry consideration, which concludes the proof. �
A holomorphic irreducible symmetric spinor as above is said to be null if it takes the form

φA′
1A

′
2...A

′
k = eψξA

′
1ξA

′
2 . . . ξA

′
k ,

for some holomorphic function ψ and holomorphic pure spinor field ξA
′ . In this case, the integrability 

condition for the existence of a solution of equation (5.25) is given by the following

Corollary 5.17. For k > 2, suppose that φA′
1A

′
2...A

′
k := eψξA′

1ξA
′
2 . . . ξA

′
k is a solution of the zrm field equation 

(5.25) on (M, g). Then

C
ξ Π0

−1(C) = 0 , i.e. ξaAξbBCabcdξ
cdD′

= 0 . (5.26)

2 From a representational theoretic viewpoint, φA′
1A

′
2...A

′
k lies in the k-fold Cartan product of S+.
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The relation between pure solutions to the zrm field equation and geodetic spinors was first established by 
Robinson [38] in four dimensions in his study of Maxwell’s equations. It was later generalised by Hughston 
and Mason [20] to even dimensions.

Theorem 5.18. (See [38] and [20].) Let ξA′ be a holomorphic pure spinor field on (M, g) with almost null 
structure Nξ.

Let ψ be a holomorphic function and suppose that φA′
1...A

′
k := eψξA′

1ξA
′
2 . . . ξA

′
k satisfies the zrm field 

equation (5.25). Then ξA
′ locally satisfies (5.14), i.e. ξA′ is geodetic, i.e. Nξ is totally geodetic.

Conversely, suppose that ξA′ is geodetic, i.e. Nξ is totally geodetic. Then locally there exists a holomorphic 
function ψ such that φA′B′ := eψξA′

ξB
′ satisfies the zrm field equation (5.25). Suppose further that ξA′

satisfies (5.26). Then locally, for every k > 2, there exists a holomorphic function ψ such that φA′
1...A

′
k :=

eψξA′
1ξA

′
2 . . . ξA

′
k satisfies the zrm field equation (5.25). In both cases, there is the freedom of adding to ψ a 

holomorphic function constant along the leaves of Nξ.

5.2.4. Conformal Killing spinors
The larger irreducible part of the covariant derivative of a spinor field leads to the twistor equation

∇aξ
A′

+ 1√
2
γaB

A′
ζB = 0 , (5.27)

on a holomorphic spinor field ξA
′ — here, (5.27) determines ζB =

√
2

n γa
A′B∇aξ

A′ . We shall refer to a 
solution of (5.27) as a conformal Killing spinor or twistor spinor. It is well-known that the twistor equation 
is overdetermined, and for this reason, it is often more convenient to consider its prolongation [37,4]

∇aζ
B + 1√

2
Pabγ

b
A′BξA

′
= 0 , (5.28)

where Pab := 1
2−nΦab − R 1

2n(n−1)gab is the Rho or Schouten tensor (see Appendix C). We immediately 
deduce

∇bζ
bA′

= − 1
2
√

2(n− 1)
RξA

′
. (5.29)

Equations (5.27) and (5.28) are conformally invariant, provided that under a conformal change of metric 
ĝab = Ω2gab for some non-vanishing holomorphic function Ω, ξA′ and ζA transform as

ξA
′ �→ ξ̂A

′
= ξA

′
, ζA �→ ζ̂A = Ω−1

(
ζA + 1√

2
Υaξ

aA

)
. (5.30)

The equivalence class of pairs of spinors (ξA′
, ζA) ∼ (ξ̂A′

, ζ̂A) is a section of what is known as the local 
twistor bundle [37] or spin tractor bundle [21]. Such a pair of spinors will be referred to as a tractor spinor. 
This bundle arises from a chiral spinor representation for Spin(2m + 2, C).

We shall mostly be concerned with the case where the conformal Killing spinor ξA′ is pure. We note 
that the purity of ξA′ does not in general entail the purity of ζA in dimensions greater than six. For future 
reference, we record the integrability condition for a pure conformal Killing spinor.

Proposition 5.19. Let ξA′ be a pure conformal Killing spinor on (M, g) with ζB =
√

2
n γa

A′B∇aξ
A′ . Then

Cabcdξ
cdB′

= 0 , i.e. C
ξ Π0

1(C) = 0 , (5.31)

Cabcdζ
cdC − 2

√
2Acabξ

cC = 0 , (5.32)

Aabcξ
aAξbcB

′
= 0 , i.e. A

ξ Π0
− 1

2
(A) = 0 . (5.33)
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Here Aabc := 2 ∇[bPc]a is the Cotton–York tensor (see Appendix C).

Proof. The LHS of (5.31) and (5.32) are the usual integrability conditions for a (not necessarily pure) 
conformal Killing spinor (see e.g. [4]), and the RHS of (5.31) is simply the interpretation in the case when 
ξA

′ is pure. Condition (5.33) follows from (5.31) and (5.32). �
In four dimensions, a conformal Killing spinor is always geodetic [34,37], but it is not so in general in 

higher dimensions. We can nevertheless give necessary and sufficient conditions for this to happen.

Proposition 5.20. Let ξA′ be a pure conformal Killing spinor on (M, g) with almost null structure Nξ. Set 
ζB =

√
2

n γa
A′B∇aξ

A′ . Then ξA
′ satisfies (5.10), i.e.

(ξa(A∇aξ
bB))ξCb = 0 .

Further, ξA′ is geodetic, i.e. Nξ is totally geodetic, if and only if

ζaA
′
ζB

′

a = 0 , ξaBζA
′

a = −2 ζBξA
′
, (5.34)

i.e. ζA, if non-zero, is pure, and its almost null structure Nζ intersects Nξ in a totally null (m − 1)-plane 
at any point.

Suppose that ξA′ is geodetic so that ζA satisfies conditions (5.34). Then ζA satisfies
(
ζa[A′∇aζ

bB′
)
ζ
C′]
b = 0 . (5.35)

Proof. From the twistor equation (5.27) and assuming ξA
′ to be pure, we compute

(
ξaA∇aξ

bB
)
ξCb = − 1√

2
ξaAζD

′

a γb
D′BξCb = − 1√

2
ξaAζBabξ

bC .

This expression is skew in BC and AB, which proves the first claim.
To prove the second statement, we consider the contraction of equation (5.27) with ξaB, i.e.

ξaB∇aξ
A′

= − 1√
2
ξaBζA

′

a . (5.36)

Let us work at a point, and in line with the notation of section 2, set Sm
4 := 〈ξA′〉, Sm−2

4 := im ξAa , 
S

m−4
4 := im ξA

′

ab and S
m−6

4 := im ξA
′

abc. Generically, both sides of (5.36) lie in S
m−2

4 ⊗S
m−4

4 , which contains 
S

m−2
4 ⊗S

m
4 . In fact, both sides of (5.36) will lie in S

m−2
4 ⊗S

m
4 if and only if ξaA∇aξ

B′ = βAξB
′ for some 

βA in S
m−2

4 if and only if ξA′ is geodetic. In sum, the conformal Killing spinor ξA′ is geodetic if and only if

βAξB
′
= − 1√

2
ξaBζA

′

a . (5.37)

The ‘if’ part of the statement is immediate already from (5.36), so we focus on the ‘only if’ part.
We know that generically, ζA lies in S

m−6
4 , which contains Sm−2

4 . One way to see this is to use (5.4)
where ∂a is so chosen as to preserve ξA

′ . Then

ζA = − 1
2
√

2n
(
Γabcξ

abcA + 2 Γa
abξ

bA
)
∈ S

m−6
4 .
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Since the LHS of (5.37) is in S
m−2

4 ⊗S
m
4 , so must be the RHS. This tells us that ζA must be proportional to 

βA and lie in S
m−2

4 too.3 By Corollary 2.10, we conclude that ζA satisfies (5.34) as claimed. The geometric 
interpretation is given by Proposition 2.9.

Finally, if ξA′ is geodetic, then ζA satisfies (5.34) by the above argument, and a computation leads to (
∇aζ

bB′
)
ζC

′

b = −2 · 1√
2 Pabζ

b[B′
ξC

′] from which (5.35) can be deduced. �
Remark 5.21. The statements of Proposition 5.20 are conformally invariant. In fact, it is straightforward to 
check that conditions (5.34) are invariant under the transformation (5.30).

Further, the conditions that ξA′ be pure and ζA satisfy (5.34) is equivalent to the corresponding tractor 
spinor (ξA′

, ζA) being a pure section of the local twistor bundle, i.e. it is a pure spinor for Spin(2m + 2, C)
as stated in [20] — for a proof, see [46].

Remark 5.22. Clearly, if ζ = 0 in Proposition 5.20, then ξ is parallel and Nξ is thus integrable. One can 
show [23] that if ξ is a geodetic pure conformal Killing spinor then there exists a conformal rescaling such 
that ξ is parallel.

The next result is a refinement of Proposition 5.20 in the case m = 3. A proof is given in Appendix B.2.

Proposition 5.23. Let ξA be a conformal Killing spinor on (M, g) where M has dimension six. Then ξA
satisfies condition (5.13) (or (B.13)), and thus condition (5.10) (or (B.11)).

Example 5.24. It is shown in [5] how one can associate to a generic 3-plane distribution N on a six-
dimensional manifold M a conformal structure [g]. By generic, we mean that N is maximally non-integrable, 
i.e. Γ(N ) + [Γ(N ), Γ(N )] = Γ(TM). The authors of [21] later characterised (M, [g]) in terms of a tractor 
spinor (ξA, ζA) which is generic in the sense that (ξA, ζA) satisfy the non-degeneracy condition ξAζA �= 0, 
i.e. (ξA, ζA) is an ‘impure’ tractor spinor for the group Spin(4, 4). In this case, the conformal holonomy of 
(M, [g]) being reduced to (a subgroup of) Spin(3, 4). This example clearly works in the category of complex 
Riemannian manifold — see section 5.3. Note that in this case, the intrinsic torsion of the P -structure 
defined by [ξA′ ] is not generic since (5.10) is satisfied.

5.2.5. Relation to the Goldberg–Sachs theorem in higher dimensions
The Goldberg–Sachs theorem [19] is a classical theorem of general relativity, which, in the context of the 

present paper, can be interpreted in the following terms [18,43].

Theorem 5.25. Let (M, g) be a four-dimensional non-conformally flat spin complex Riemannian manifold 
satisfying the Einstein equations Rab = λgab for some constant λ. Let [ξA′ ] is a holomorphic projective pure 
spinor, then locally

Cabcdξ
aAξbBξcC = 0 ⇐⇒ [ξA′ ] is geodetic. (5.38)

One can show that the condition on the Weyl tensor really restricts to its self-dual part — see Appendix B.1. 
There are other versions of the theorem, all of which are reviewed in [18]. A conformally invariant version 
[26,39,37] motivated the author’s partial generalisation, which we present in truncated form in the language 
of pure spinors.

3 This can also be computed by applying Cartan’s criterion (2.11) of Proposition 2.8 to (5.37) with k = m − 1 and αA′
= ξA

′
.
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Theorem 5.26. (See [43].) Assume m ≥ 2. Let [ξA′ ] be a holomorphic projective pure spinor field on a 
2m-dimensional spin complex Riemannian manifold (M, g) with associated almost null structure Nξ. Sup-
pose that the Weyl tensor and the Cotton–York tensor satisfy the algebraic degeneracy conditions

C
ξ Π0

−1(C) = C
ξ Π1

−1(C) = 0 , i.e. Cabcdξ
aAξbBξcC = 0 ,

A
ξ Π0

− 3
2
(A) = 0 , i.e. Aabcξ

aAξbBξcC = 0 .
(5.39)

Suppose further that the Weyl tensor is otherwise generic. Then locally, [ξA′] is geodetic, i.e. Nξ is totally 
geodetic (or equivalently, integrable).

When m = 2, Theorem 5.26 agrees with parts of the generalisation [26,39,37]. If (M, g) is assumed to be 
Einstein, one can dispense of the genericity assumption and recover the (⇒) part of (5.38).

However, when m > 2, even if we assume that (M, g) is Einstein, the proof of Theorem 5.26 does not 
account for all the possible degeneracies of Cabcd and must depend on the genericity of Cabcd. In fact, 
Proposition 5.20 invalidates the (⇒) part of (5.38): generically, a pure conformal Killing spinor ξA′ is not 
geodetic, but satisfies (5.10). On the other hand, by Proposition 5.19, conditions (5.39) are satisfied except
for the genericity assumption, since Cξ Π0

1(C) = 0. This is independent of whether (M, g) is Einstein or not, 
and in fact, with reference to Example 5.24, Einstein solutions where ξA

′ is non-geodetic exist in dimension 
six [21]. This suggests the following conjecture improving Theorem 5.26.

Conjecture 5.27. Suppose that [ξA′ ] is a projective pure spinor field on a 2m-dimensional non-conformally 
flat Einstein spin complex Riemannian manifold such that the Weyl tensor satisfies Cabcdξ

aAξbBξcC = 0. 
Then ξA

′ satisfies (5.10), i.e. (
ξa(A∇aξ

bB)
)
ξCb = 0 .

When m = 2, this conjecture does agree with the (⇒) part of (5.38). Variants involving the Cotton–York 
tensor and weaker conditions on the Weyl tensor such as Cabcdξ

aAξbBξcdC
′ = 0 may also be possible.

5.3. Application to real pseudo-Riemannian manifolds

Let (M′, g′) be a spin oriented 2m-dimensional real pseudo-Riemannian manifold where g′ has signature 
(p, q) with p + q = 2m — we assume that (M′, g′) is also time-oriented when pq �= 0. We then have a 
reduction of the structure group of the frame bundle FM′ of M′ to Spin0(p, q), the two-fold covering of the 
connected identity component SO0(p, q) of SO(p, q).

With reference to section 2.6, we define an almost null structure on (M′, g′) to be a totally null complex 
m-plane distribution N ⊂ TCM′. Here TC

pM′ := C ⊗ TpM′, and Np is totally null with respect to the 
complexification of g′p at any point p. A pure spinor field ξ up to scale determines an almost null structure 
Nξ, and any almost null structure arises in this way. The complex conjugation on TCM′ that fixes g′ sends 
Nξ to its complex conjugate N ξ̄, which we can associate to the conjugate spinor ξ̄ of ξ. We shall assume 
that the real index r : M′ → Z≥0 : p �→ rp := dim(Nξ)p ∩ (N ξ̄)p of ξ is constant on M′. The structure 
group of FM′ is reduced to the stabiliser of both [ξ] and [ξ̄] in Spin0(p, q) at any point. One can then study 
the geometric properties of the resulting G-structure on the basis of the algebraic properties of its intrinsic
torsion. A notable example is when r = 0 and g is positive definite signature, so that (Nξ, N ξ̄) define an 
almost Hermitian structure [17,48,14].

Alternatively, if (M′, g′) is real-analytic, then we can complexify M′ to a complex manifold M, and extend 
g′ analytically to a holomorphic metric g on M. Similar extensions apply to any real-analytic structure on 
(M′, g′) such as spin structures and almost null structures [49,51,13]. We then have a complex Riemannian 
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manifold (M, g) just as before except that it is endowed with an additional complex conjugation that fixes 
the real slice M′. In particular, TM|M′ = TCM′, and any real-analytic conjugate pair of complex almost 
null structures (Nξ, N ξ̄) extends to two independent holomorphic almost null structures (Nξ, Ñξ̃), say, on 
(M, g). In practice, it is enough to consider only one of these, and apply the machinery of the present paper 
to it. The real geometry can then be recovered by applying reality conditions on tensor and spinor fields on 
restriction to the real slice M′.

Finally, if (M′, g′) is smooth, then we cannot in general complexify (M′, g′) to a complex Riemannian 
manifold (M, g). This is particularly problematic for almost null structures with r �= 0, m, notably in relation 
with the existence of local ‘complex’ foliations on (M′, g′), the difficulty being in applying the Frobenius 
theorem to a formally integrable, i.e. involutive, smooth complex distribution. For instance, Theorem 5.18
will not work in general — see [41] when m = 2, r = 1. Some of these issues are explained in [32,47] for the 
case r = 1. The reader should be warned of any pitfalls regarding the use of the results of the present paper 
in the smooth category.

We can however distinguish the two special cases:

1. When r = 0, g′ must have signature (2k, 2�), and Nξ and N ξ̄ can be identify with the ±i-eigenbundles of 
an almost complex structure J compatible with g′, i.e. an endomorphism J of TM′ such that J2 = −Id
and g ◦J = −J ◦ g. The Newlander–Niremberg theorem [31] tells us that even if (M′, g′) is smooth, the 
formal integrability of Nξ (i.e. the vanishing of the Nijenhuis tensor of J) is equivalent to its integrability.

2. When r = m, g′ must have signature (m, m), and there is a real span of Nξ where ξ can be taken 
to be a real pure spinor. The stabiliser P ′ of [ξ] in Spin0(m, m) is parabolic, and Nξ thus defines a 
smooth P ′-structure on (M′, g′). The representation theory of P ′ works in the same way as its complex 
counterpart. In fact, the spinor representations are the real spans of pure spinors, and all the vector 
bundles considered are real and smooth. In this case, we can reformulate all the results of section 5
in the smooth real category: M is a spin oriented and time-oriented 2m-dimensional smooth manifold 
equipped with a smooth metric g of signature (m, m) with Levi-Civita connection ∇, and we can safely 
substitute the word ‘smooth’ for ‘holomorphic’. In particular, the Frobenius theorem applies to prove 
Theorem 5.18.
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Appendix A. Spinorial description of curvature tensors

Throughout the appendix, V will denote a 2m-dimensional complex vector space equipped with a non-
degenerate symmetric bilinear form gab and a pure spinor ξA′ as in section 2, to which the reader should 
refer for the notation.
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A.1. Elements of the g0-submodules of F, A and C

Let us fix a pure spinor ηA′ such that ξA′
ηA′ = −1

2 . Then we have a splitting (2.15) of V where 
V 1

2
= ker ξaA and V− 1

2
= ker ηaA and Sm−2

4
= im ξaA and S−m−2

4
= im ηaA are g0-modules. This splitting 

induces a splitting of any g-submodule M of ⊗kV into g0-submodules. We can then use ξaA and ηaA to 
project from M to any of its g0-submodules, and dually, to inject any of its g0-submodules into M. In effect, 
we convert spinorial quantities to tensorial ones, and vice versa. In fact, we can think of {ξaA, ηaA} as a basis 
for V 1

2
⊕V− 1

2
, and these induce bases of g0-modules. The components of an element of M in this basis can 

then be interpreted as a spinor. For instance, a spinor

σD...F
A...C ∈ S−m−2

4
⊗ . . .⊗S−m−2

4
⊗Sm−2

4
⊗ . . .⊗Sm−2

4
,

will be sent to the tensor

σa...cd...f := ξaA . . . ξcC ηdD . . . ηfF σD...F
A...C ∈ V⊗ . . .⊗V⊗V⊗ . . .⊗V .

If the g0-module is irreducible, then its elements (i.e. their indices) will be saturated with symmetries. This 
clearly applies to g-modules too. In the following any spinor will be referred to as (totally) tracefree if the 
contraction of any pair of indices with the identity element IBA := ηaAξ

B
a (see definition (2.17)) vanishes, e.g.

σA
BIAB = 0. On the other hand, the image of IBA in ∧2V will be denoted by the 2-form ωab := 2 ξA[aηb]A.
We apply this procedure to the irreducible g0-modules Fi Ă

j
i , C̆

j
i with reference to Propositions 4.1, 4.2

and 4.3 of section 4.

The tracefree Ricci tensor Let Φab ∈ F. Then

• Φab ∈ F0 if and only if Φab = 2 ξA(a η b)BΦA
B for some tracefree ΦA

B ;
• Φab ∈ F1 if and only if Φab = ξAa ξ

B
b ΦAB for some ΦAB = Φ(AB), and similarly for F−1 ∼= (F1)∗ by 

substituting ηA′ for ξA′ , and changing the index structure appropriately.

The Cotton–York tensor Let Aabc ∈ A. Then

• Aabc ∈ Ă0
1
2

if and only if Aabc = Aaωbc −A[bω c]a + 3
n−1 ga[bω c]dA

d for some Ac = ξCc AC ;
• Aabc ∈ Ă1

1
2

if and only if Aabc = ξAb ξ
B
c ηaCAAB

C − ξAa ξ
B
[b η c]CAAB

C for some tracefree AAB
C = A[AB]

C ;
• Aabc ∈ Ă2

1
2

if and only if Aabc = 2 ξAa ξ
B
[b η c]CAAB

C for some tracefree AAB
C = A(AB)

C ;
• Aabc ∈ Ă0

3
2

if and only if Aabc = ξAa ξ
B
b ξCc AABC for some AABC = AA[BC] satisfying A[ABC] = 0.

Since (Ăj
i )∗ ∼= Ă

j
−i, spinorial formulae for elements of Ăj

−i for i > 0 can be obtained from those of Ăj
i by 

simply interchanging ξA
′ and ηA′ and making appropriate changes of index structures.

The Weyl tensor Let Cabcd ∈ C. Then

• Cabcd ∈ C̆0
0 if and only if Cabcd = c 

(
2ωabωcd − 2ωa[cωd]b + 6

n−1ga[c gd]b

)
for some complex c;

• Cabcd ∈ C̆1
0 if and only if

Cabcd = ωabCcd + Cabωcd − 2ω[a |[cCd]| b] −
6

n− 2
(
g[a |[cωd]

eC| b]e + g[c |[aω b]
eC|d]e

)
,

where Ccd := 2 ξCηd]DCC
D for some tracefree CC

D;
[c
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• when m > 3, Cabcd ∈ C̆2
0 if and only if

Cabcd = ξAa ξ
B
b ηcCηdDCAB

CD + ξAc ξ
B
d ηaCηbDCAB

CD − 2 ξA[a |ξ
C
[c ηd]|Dη b]BCAC

DB ,

for some tracefree CAC
DB = C[AC]

[DB];
• Cabcd ∈ C̆3

0 if and only if Cabcd = 4 ξA[a |ξ
C
[c ηd]|Dη b]BCAC

DB for some tracefree CAC
DB = C(AC)

(DB);
• Cabcd ∈ C̆0

1 if and only if Cabcd = ωabCcd + Cabωcd − 2 ω[a |[cCd]| b] where Cab := ξAa ξ
B
b CAB for some 

CCD = C[CD];
• Cabcd ∈ C̆1

1 if and only if Cabcd = 2 ξAa ξ
B
b ξC[c ηd]DCABC

D + 2 ξAc ξ
B
d ξC[a η b]DCABC

D for some tracefree 
CABC

D = C[AB]C
D satisfying C[ABC]

D = 0;
• Cabcd ∈ C̆0

2 if and only if Cabcd = ξAa ξ
B
b ξCc ξDd CABCD for some CABCD = C[AB][CD] satisfying 

C[ABC]D = 0.

Since (C̆j
i )∗ ∼= C̆

j
−i, spinorial formulae for elements of C̆j

−i for i > 0 can be obtained from those of C̆j
i by 

simply interchanging ξA
′ and ηA′ and making appropriate changes of index structures.

A.2. Maps describing elements of p-submodules of F, A and C

The kernels of the following maps Fξ Πj
i , Aξ Πj

i and Cξ Πj
i are p-submodules of F, A and C. Their relations 

to the irreducible p-modules Fj
i , A

j
i and Cj

i as stated in Propositions 4.1, 4.2 and 4.3 of section 4 can be 
verified using arbitrary elements F̆j

i , Ă
j
i and C̆j

i as given in section A.1. This can also be seen from the fact 
they are saturated with symmetries.

The tracefree Ricci tensor For Φab ∈ F, we define

F

ξ Π0
−1(Φ) := ξaAξbBΦab ,

F

ξ Π0
0(Φ) := ξaAΦab .

The Cotton–York tensor For Aabc ∈ A, define

A
ξ Π0

− 3
2
(A) := ξaAξbBξcCAabc ,

A
ξ Π0

− 1
2
(A) := ξaAAabcξ

bcC′
,

A
ξ Π1

− 1
2
(A) := ξbBξcCAabc + 1

n− 2γaD
′ [B ξdC]ξbcD

′
Adbc ,

A
ξ Π2

− 1
2
(A) := ξa(A ξbB)Aabc + 3

2(n + 2)γcD
′ (A ξdB)ξbaD

′
Adba ,

A
ξ Π0

1
2
(A) := Aabcξ

bcA′
,

A
ξ Π1

1
2
(A) := ξcAAcab −

1
n− 2γ[aD′

AA b]cdξ
cdD′

,

A
ξ Π2

1
2
(A) := A(ab)cξ

cA − 3
2(n + 2)γ(aD′

AA b)cdξ
cdD′

.

The Weyl tensor For Cabcd ∈ C, define

C
ξ Π0

−2(C) := ξaAξbBξcCξdDCabcd ,

C
ξ Π0

−1(C) := ξaAξbBξcdC
′
Cabcd ,

C
ξ Π1

−1(C) := ξaAξbBξcCCabce + 1 (
ξaAξbBξcdD

′
CabcdγeD′C − ξaCξb[A ξcdD

′
CabcdγeD′ B]

)
,

n + 2
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C
ξ Π0

0(C) := ξabB
′
ξcdD

′
Cabcd ,

C
ξ Π1

0(C) := ξabB
′
ξcDCabcd + 1

n
ξabB

′
ξceD

′
CabceγdD′D ,

C
ξ Π2

0(C) := ξaACa[bc]dξ
dD + 1

n− 4ξ
aeC′

Caed[b γ c]C′
[A ξdD] − 1

2(n− 2)(n− 4)ξ
aeC′

Caedfξ
dfF ′

γ[bC′
Aγ c]F ′

D ,

C
ξ Π3

0(C) := ξaACa(bc)dξ
dD − 3

n + 4ξ
aeC′

Caed(b γ c)C′
(A ξdD)

− 3
2(n + 2)(n + 4)ξ

aeC′
Caedfξ

dfF ′
γ(bC′

Aγ c)F ′
D ,

C
ξ Π0

1(C) := ξabB
′
Cabcd ,

C
ξ Π1

1(C) := ξaBCabcd + 1
n + 2

(
ξaeC

′
γB
bC′Caecd − ξaeC

′
Caeb[c γd]C′

B
)
,

with the proviso that Cξ Π2
0 does not occur when m = 3.

Appendix B. Spinor calculus in four and six dimensions

We briefly sketch the spinor calculus in dimensions four and six. Details for the former can be found in 
[36,37] and references therein, and for the latter in [24,30]. Our notation will be consistent with the one 
introduced in section 2. For definiteness, we work over C, but the real case is completely analogous.

B.1. Four dimensions

Let (M, g) be a four-dimensional complex Riemannian manifold equipped with a holomorphic volume 
form and a holomorphic spin structure. We first work at a point. The spin group G := Spin(4, C) is isomor-
phic to +G ×−G, where ±G := SL(2, C)± are two distinct copies of SL(2, C), acting on the two-dimensional 
chiral spinor representations S±. All spinors in S± are pure. The spaces S± are equipped with volume 
forms εA′B′ and εAB, with inverses εA′B′ and εAB, i.e. εA′C′εB

′C′ = δB
′

A′ and so on. These identify S±

with their dual (S±)∗. Any irreducible representation of ±G is isomorphic to a k-symmetric power �kS±

of S± for some k ≥ 0 — here �0S± ∼= C. By extension, any irreducible representation of G is isomorphic 
to 

(
�kS+)⊗ (

��S−) for some k, � ≥ 0. In particular, if V is the standard representation of SO(4, C), then 
V ∼= S+ ⊗S−, and we shall convert tensorial indices into spinorial ones by means of the γ-matrices γa

AA′ , 
which satisfy

gabγ
a
AA′γb

BB′ = 2 εA′B′εAB . (B.1)

Thus, for any vector V a, we have V AB′ = 1√
2γa

AB′
V a.

The Lie algebra g of G splits into two irreducible parts ±g ∼= sl(2, C)±, the Lie algebras of ±G. These are 
isomorphic to the spaces of self-dual and anti-self-dual 2-forms ∧2

±V. Correspondingly, a 2-form Fab splits 
into self-dual and anti-self-dual parts represented by symmetric spinors φA′B′ and φAB respectively, i.e.

Fab = φA′B′εAB + φABεA′B′ ∈ �2S+ ⊕�2S− ∼= ∧2
+V⊕ ∧2

−V
∼= +g⊕ −g .

Accordingly, the space A of tensors with Cotton–York symmetries and the space C of tensors with Weyl 
symmetries split into self-dual and anti-self-dual parts A± ∼= S∓ ⊗

(
�3S±) and C± ∼= �4S± respectively. 

Further, we have F ∼=
(
�2S+)⊗ (

�2S−). Thus, the tracefree Ricci tensor, the Cotton–York tensor and the 
Weyl tensor can be expressed as
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Φab = ΦABA′B′ , Aabc = AAA′B′C′εBC + AA′ABCεB′C′ ,

Cabcd = ΨA′B′C′D′εABεCD + ΨABCDεA′B′εC′D′ ,

respectively, where ΨA′B′C′D′ and ΨABCD are the self-dual and anti-self-dual parts of Cabcd respectively, 
and AAA′B′C′ and AA′ABC are the self-dual and anti-self-dual parts of Aabc respectively.

B.1.1. Projective spinor fields
Let [ξA′ ] be a holomorphic projective spinor field on (M, g), so that the structure group of the frame 

bundle is reduced to P , the stabiliser of [ξA′ ] in G at a point, with Lie algebra p. As in the higher-dimensional 
case, P is also a parabolic Lie subgroup of G, and p induces a |1|-grading g = g1 ⊕ g0 ⊕ g−1. The only 
difference now comes from the semi-simplicity of g: if z0 and sl0 denote the centre and simple part of g0, 
we have that +p := p ∩ +g ∼= z0 ⊕ g1 and p ∩ −g = −g ∼= sl0. Then −G ∩ P = −G and +P := +G ∩ P is a 
parabolic Lie subgroup of +G. In effect, we can write P = +P × −G. This means that for any irreducible 
G-module M := �kS+ ⊗ ��S− for k, � ≥ 0, we have a filtration of P -submodules of M induced from a 
filtration of +P -submodules of the +G-module �kS+. Following section 2, set

S
1
2 := 〈ξA′〉 , S− 1

2 := S+ , S0 := S− .

As a consequence of the two-dimensionality of S+, we can characterise S
1
2 as

S
1
2 = {αA′ ∈ S+ : ξA

′
αA′ = 0} . (B.2)

More generally, any irreducible +G-module S− k
2 := �kS− 1

2 admits a filtration

S
k
2 ⊂ S

k
2−1 ⊂ S

k
2−2 ⊂ . . . ⊂ S− k

2 +1 ⊂ S− k
2 (B.3)

of +P -modules

S
k−2�+2

2 := {φA′
1A

′
2...A

′
k
∈ S− k

2 : φA′
1A

′
2...A

′
�A

′
�+1...A

′
k
ξA

′
1ξA

′
2 . . . ξA

′
� = 0} , for � = 1, . . . , k.

For any integer k, each summand S
k−2�+2

2 /S
k−2�+4

2 in the associated graded module of (B.3) is a one-
dimensional +P -module isomorphic to a C-module S k−2�+2

2
, on which the grading element ξ(A′ηB′) has 

eigenvalue k−2�+2
2 — here ξA

′
ηA′ = 1.

Intrinsic torsion The intrinsic torsion of the P -structure can be identified as an element of the P -module 
W := V ⊗ g/p at a point. In fact, since −g acts trivially on [ξA′ ], it is enough to consider the P -module 
+W := V ⊗+g/+p. This is in fact consistent with the fact that the spin connection on S+ takes value in +g. 
We obtain a filtration of P -modules +W− 1

2 ⊂ +W− 3
2 = +W, where both +W− 1

2 and +W− 3
2 /+W− 1

2 are 
one-dimensional. Details are left to the reader. The intrinsic torsion generically lies in +W− 3

2 and whether 
it degenerates to an element of +W− 1

2 or vanishes can be expressed by

ξA
′
ξB

′∇AA′ξB′ = 0 , ξB
′∇AA′ξB′ = 0 ,

respectively. Here ∇AB′ stands for the Levi-Civita connection ∇a. These are precisely the geodetic spinor 
equation (5.14) and the recurrent spinor equation (5.6) respectively.

Many of the results of section 5 can easily be adapted to the four-dimensional setting. For instance, 
equation (5.10) can be rewritten as

ξB
′∇AA′ξB′ = ξA′ξB

′∇AB′f .

We refer to the literature, notably [36,37] for a detailed study of these spinorial equations and others.
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Curvature tensors To describe irreducible P -submodules of 
(
�kS+)⊗ (

��S−) for non-negative k and �, 
it suffices to tensor the +P -invariant filtration on �kS+ with ��S−. Thus, for the space F, we have a 
filtration {0} =: F2 ⊂ F1 ⊂ F0 ⊂ F−1 := F of indecomposable P -modules. For the spaces A±, we obtain 
two distinct filtrations

+A
3
2 ⊂ +A

1
2 ⊂ +A− 1

2 ⊂ +A− 3
2 = +A , −A

1
2 ⊂ −A− 1

2 = −A .

Finally, since P induces no non-trivial filtration on −C, we are left with a filtration

+C2 ⊂ +C1 ⊂ +C0 ⊂ +C−1 ⊂ +C−2 = +C , (B.4)

of +P -submodules of the space +C of self-dual Weyl tensors. Defining
+
C
ξΠ0

−2(Ψ′) = ξA
′
ξB

′
ξC

′
ξD

′
ΨA′B′C′D′ ,

+
C
ξΠ0

−1(Ψ′) = ξA
′
ξB

′
ξC

′
ΨA′B′C′D′ ,

+
C
ξΠ0

0(Ψ′) = ξA
′
ξB

′
ΨA′B′C′D′ ,

+
C
ξΠ0

1(Ψ′) = ξA
′
ΨA′B′C′D′ , (B.5)

we see that +Ci := ker +
C
ξΠ0

i−1 for all i = −1, 0, 1, 2.
It is instructive to compare these maps with the maps Cξ Πj

i defined in Appendix A.2, which can also be 
used in dimension four. It is relatively straightforward to show that, in four dimensions,

C
ξ Π1

±1(C) = C
ξ Π1

0(C) = 0 ,
C
ξ Π0

i (C) =
+
C
ξΠ0

i (Ψ′) , for i = −1, 0, 1, 2,
C
ξ Π3

0(C) = ξA′ξB′ΨABCD ,

while Cξ Π2
0 is not defined. Since ξA

′ is always assumed to be non-zero, one can interpret Cξ Π3
0 as the projection 

from C to −C, and expect it to replace the self-duality condition in higher dimensions.

B.1.2. Principal spinors and the Petrov–Penrose classification
For comparison, we recall some of the related notions given in [36,37]. We say that ξA′ is a (k−� +1)-fold 

principal spinor of an irreducible spinor φA′
1...A

′
k

if

φA′
1A

′
2...A

′
�A

′
�+1...A

′
k
ξA

′
1ξA

′
2 . . . ξA

′
� = 0 . (B.6)

In the case k = 4, we have a notion of (5 − �)-fold principal spinor of the self-dual Weyl tensor, which is 
itself intimately connected to the Petrov–Penrose classification of the self-dual Weyl tensor [35,50,33]: at a 
point p, ΨA′B′C′D′ defines a homogeneous quartic polynomial Ψ′(π) := ΨA′B′C′D′πA′

πB′
πC′

πD′ = 0, where 
[πA′ ] are homogeneous coordinates on CP1, the fibre of the projective spinor bundle over p. This polynomial 
has four roots, and the multiplicities of these roots define the various Petrov types {1111}, {211}, {31}, 
{22}, {4} and {−} of ΨA′B′C′D′ . In the generic case {1111}, Ψ′(π) has four distinct roots, and thus four 
distinct principal spinors at p. Type {211} consists of a double root and two distinct simple roots, and 
thus a 2-fold principal spinors and two distinct 1-fold principal spinors, and so on. Type {−} simply means 
ΨA′B′C′D′ = 0.

It must be emphasised that in sharp contract with the main ideas of the present paper, the Petrov–Penrose 
classification makes no assumption on the existence of a preferred (projective) spinor field on (M, g). In 
fact, one could single out any spinor field ξA

′ on (M, g). One would have a filtration (B.4) of +P -modules 
on +C. Then ξA

′ would be a principal spinor for ΨA′B′C′D′ if and only if +C
ξΠ0

−2(Ψ′) = 0, which is already a 
non-trivial condition from the viewpoint of the P -structure. More generally, comparison of the maps (B.5)
and the definition (B.6) of principal spinors, one has



A. Taghavi-Chabert / Differential Geometry and its Applications 46 (2016) 164–203 199
• ΨA′B′C′D′ is of type {1111} with 1-fold principal spinor ξA′ if and only if +C
ξΠ0

−2(Ψ′) = 0,
• ΨA′B′C′D′ is of types {211} or {22} with 2-fold principal spinor ξA′ if and only if +C

ξΠ0
−1(Ψ′) = 0,

• ΨA′B′C′D′ is of type {31} with 3-fold principal spinor ξA′ if and only if +C
ξΠ0

0(Ψ′) = 0,
• ΨA′B′C′D′ is of type {4} with 4-fold principal spinor ξA′ if and only if +C

ξΠ0
1(Ψ′) = 0.

On the other hand, any principal spinor field ξA
′ of ΨA′B′C′D′ on (M, g) defines a holomorphic reduction 

to the structure group P , the stabiliser of [ξA′ ] at a point in G, and one can relate the Petrov types with 
(B.4) as we have just done.

B.2. Six dimensions

Let (M, g) be a six-dimensional complex Riemannian manifold equipped with a holomorphic volume 
form and a holomorphic spin structure. We first work at a point. The chiral spinor spaces are dual to each 
other, i.e. (S±)∗ ∼= S∓, and can be identified with the four-dimensional standard and dual representations 
of the spin group G = Spin(6, C) ∼= SL(4, C). All spinors in S± are pure. One can then eliminate the use 
of primed indices in favour of the unprimed ones, so we shall write S for S− and S∗ for S+. We can also 
convert tensor indices into a skew-symmetrised pair of indices by means of the skew-symmetric γ-matrices 
1
2γ

a
AB and 1

2γ
aAB , which satisfy the identity

gabγ
a
ABγ

b
CD = 2 εABCD , gabγ

aABγbCD = 2 εABCD , gabγ
a
ABγ

bCD = 4 δC[A δDB] , (B.7)

where εABCD = ε[ABCD] and εABCD = ε[ABCD] are volume forms on S and S∗ respectively satisfying the 
normalisation

εABCDεEFGH = 24 δE[A δFBδ
G
C δ

H
D] .

Skew-symmetrised pairs of spinor indices can be raised and lowered by means of 1
2εABCD and 1

2ε
ABCD, e.g.

VAB = 1
2εABCDV CD. The isomorphism ∧2S ∼= ∧2S∗ is the spinorial counterpart of the metric isomorphism 

between the standard representation V of SO(4, C) and its dual V∗. More generally, we identify

V ∼= ∧2S , ∧2V ∼= S⊗◦ S
∗ , ∧3

+V
∼= �2S∗ , ∧3

−V
∼= �2S .

In addition, the tracefree Ricci tensor, the Weyl tensor, and the Cotton–York take the spinorial forms

Φab = ΦABCD , Ca
b
c
d = 8 δ[C

[A C
D][G
B][E δ

H]
F ] , Aab

c = 4AAB[C
[E δD]

F ] ,

where ΦABCD = Φ[AB][CD] satisfies Φ[ABC]D = 0, CCD
AB = C

(CD)
(AB) is tracefree, and AABC

D = A[AB]C
D

satisfies A[ABC]
D = 0 and AABC

A = 0.

B.2.1. Projective spinor fields
Let [ξA] be a holomorphic projective spinor field on (M, g) so that the structure group of the frame 

bundle is reduced to P , the stabiliser of [ξA] at a point in G. As in section 2, P induces filtrations

〈ξA〉 = S
3
4 ⊂ S− 1

4 = S∗ , {βA ∈ S : βAξA = 0} = S
1
4 ⊂ S− 3

4 = S ,

of P -submodules. We can also re-express S 3
4 = {αA ∈ S∗ : ξ[AαB] = 0}. We can extend this argument to 

spinors of any valence, and play the same game with V and g. In particular, the maps (2.24) defining the 
irreducible p-modules gji of gr(g) can then simply be expressed as

g

ξΠ
0
−1(φ) := ξ[AφB]

CξC , g

ξΠ
0
0(φ) := φA

BξB , g

ξΠ
1
0(φ) := ξ[AφB]

C − 1
3δ

C
[AφB]

DξD .
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Intrinsic torsion The intrinsic torsion of the P -structure at a point viewed as an element of the module 
W := V ⊗ g/p was already described in section 3, and its description in terms of the Levi-Civita connection 
in section 5.1.1. We have already noted the slight differences between six dimensions and higher dimen-
sions. These can be more clearly expressed in the present calculus. Thus, denoting by ∇AB the Levi-Civita 
connection, the geodetic spinor equation (5.14) and the recurrent spinor equation (5.6) read as

(
ξD∇DAξ[B

)
ξC] = 0 , (B.8)(

∇ABξ[C
)
ξD] = 0 , (B.9)

Taking the irreducible parts of these equations yield

ξA∇ABξB = 0 , (B.10)(
ξD∇DAξ[B

)
ξC] −

1
3
(
ξD∇DEξE

)
δA[B ξC] = 0 , (B.11)

ξA∇BCξC + ξC∇CBξA = 0 , (B.12)(
∇ABξ[C

)
ξD] −

(
∇[A |EξE

)
δ
|B]
[C ξD] −

(
ξE∇[A |Eξ[C

)
δ
|B]
D] − 1

3
(
ξE∇EF ξF

)
δC[A δDB] = 0 , (B.13)

which are equivalent to (5.9), (5.10) (5.11) and (5.13) respectively.

Proof of Proposition 5.23. Consider a conformal Killing spinor ξA on (M, g), i.e. a solution of

∇ABξC + 2
3δ

[A
C ∇B]EξE = 0 .

A little algebra yields

(
∇ABξ[C

)
ξD] −

2
3ξ[Cδ

[A
D]∇

B]EξE = 0 ,

ξE

(
∇E[Aξ[C

)
δ
B]
D] −

1
3ξ[Cδ

[A
D]

(
∇B]EξE

)
− 1

3δ
A
[Cδ

B
D]

(
ξE∇EF ξF

)
= 0 ,

from which we deduce that ξA satisfies equations (B.13) and (B.11). This proves Proposition 5.23. �
Curvature tensors Finally, we record the maps given in Appendix A.2 characterising the P -submodules of 
the spaces of curvature tensors in this spinor calculus:

• for F ∼= (∧2S) � (∧2S),

F

ξ Π0
−1(Φ) := ξ[AΦBC][DEξF ] ,

F

ξ Π0
0(Φ) := ξ[AΦBC]DE ,

• for A ∼= (∧2S) �S ⊗◦ S
∗,

A
ξ Π0

− 3
2
(A) := ξ[AABC][D

F ξE]ξF

A
ξ Π0

− 1
2
(A) := ξ[AABC]D

EξE ,

A
ξ Π1

− 1
2
(A) := AAB[C

EξD]ξE + ACD[A
EξB]ξE ,

A
ξ Π2

− 1
2
(A) := ξ[AABC][D

F ξE] −
1
4δ

F
[AABC][D

GξE]ξG − 1
4ξ[AABC][D

GδFE]ξG ,

A
ξ Π0

1 (A) := AABC
DξD ,
2
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A
ξ Π1

1
2
(A) := ξ[AABC]D

E − 1
2δ

E
[AABC]D

F ξF ,

A
ξ Π2

1
2
(A) := AAB[C

EξD] + ACD[A
EξB] −

2
5

(
AAB[C

F δED]ξF + ACD[A
F δEB]ξF

)
,

• for C ∼= (�2S) ⊗◦ (�2S∗),

C
ξ Π0

−2(C) := ξ[ACEF
B][C ξD]ξEξF ,

C
ξ Π0

−1(C) := ξ[ACDE
B]CξDξE ,

C
ξ Π1

−1(C) := ξ[ACEF
B][C ξD]ξF − 1

4δ
E
[ACFG

B][C ξD]ξF ξG − 1
4δ

E
[C CFG

D][A ξB]ξF ξG ,

C
ξ Π0

0(C) := CCD
AB ξCξD ,

C
ξ Π1

0(C) := ξ[ACDE
B]CξE − 1

3δ
D
[ACEF

B]CξEξF ,

C
ξ Π3

0(C) := ξ[ACEF
B][C ξD] −

2
5δ

(E
[A C

F )G
B][C ξD]ξG − 2

5δ
(E
[C C

F )G
D][A ξB]ξG + 1

10δ
(E |
[A CGH

B][C δ
|F )
D] ξGξH ,

C
ξ Π0

1(C) := CCD
AB ξD ,

C
ξ Π1

1(C) := ξ[ACDE
B]C − 1

2δ
(D
[A C

E)F
B]C ξF .

Remark B.1. ‘Coarser’ versions of some of the maps Cξ Πj
i were already given by Jeffryes [25,30] in his 

investigation of the ‘principal spinors’ of the Weyl tensor in dimension six. Our maps Cξ Πj
i are saturated 

with symmetries, and are thus more tightly connected to the representation theory of P on C.

Appendix C. Conformal structures

We collect a few facts and conventions pertaining to conformal geometry. We roughly follow [2], although 
our staggering of indices differs from theirs. For specificity, we work in the holomorphic category.

A holomorphic conformal structure on a complex manifold M is an equivalence class of holomorphic 
metrics [gab] on M, whereby two metrics ĝab and gab belong to the same class if and only if

ĝab = Ω2gab , (C.1)

for some non-vanishing holomorphic function Ω on M. The respective Levi-Civita connections ∇a and ∇̂a

of gab and ĝab are then related by

∇̂aV
b = ∇aV

b + Qac
bV c , Qabc := Qab

dgdc = 2Υ(a g b)c − Υcgab ,

for any holomorphic vector field V a, where Υa := Ω−1∇aΩ.

Spinor bundles We first note that under a rescaling (C.1), the γ-matrices can be chosen to transform as

γaA
B′ �→ γ̂aA

B′
= ΩγaA

B′
, γaB′A �→ γ̂aB′A = ΩγaB′A ,

where γ̂aAB′ and γ̂aB′A denote the γ-matrices for the metric ĝab. In addition, we can choose the 
Spin(2m, C)-invariant bilinear forms on S to rescale with a conformal weight of 1, and their dual with 
a conformal weight of −1. For instance, γA′B′ �→ γ̂A′B′ = ΩγA′B′ when m is even, γA′B �→ γ̂A′B = Ω−1γA′B

when m is odd, and so on. This means in particular that the quantities γaAB′ and γa
AB′ when m is even, 
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and γaA
′B′ and γa

A′B′ , and their unprimed counterparts, when m is odd, have conformal weight 0. Then 
the spin connection ∇̂a is related to ∇a by

∇̂aξ
B′

= ∇aξ
B′ − 1

2Υbγ
b
C′DγaD

B′
ξC

′
, (C.2)

for any holomorphic spinor field ξA
′ , and similarly for unprimed and dual spinors. This connection can be 

seen to preserve the hatted γ-matrices and the hatted bilinear forms on S. This agrees with the convention 
of [36] but differs from the more standard convention, used in [29] for instance.

Now assuming that ξA′ is pure, and setting ξ̂Aa := ξB
′
γ̂aB′A, we derive further(

∇̂aξ̂
bB

)
ξ̂Cb =

(
∇aξ

bB
)
ξCb − 2Υbξ

b[B ξC]
a ,

ξA
′∇̂bξ̂

bB − ξ̂bB∇̂bξ
A′

= Ω−1
(
ξA

′∇bξ
bB − ξbB∇bξ

A′
+ (m− 1)Υaξ

aBξA
′
)
,(

ξ̂bA∇̂aξ̂
bB

)
ξ̂Cb = Ω−1 (ξaA∇aξ

bB
)
ξCb .

The first two equations can be combined to yield

(∇̂aξ̂
bB)ξ̂Cb + 2

m− 1

(
ξ̂[B
a ∇̂bξ̂

bC] + ξ̂b[B ∇̂bξ̂
C]
a

)
= (∇aξ

bB)ξCb + 2
m− 1

(
ξ[B
a ∇bξ

bC] + ξb[B∇bξ
C]
a

)
.

Curvature In conformal geometry, it is more convenient to use the alternative decomposition to (5.3)

Rabcd = Cabcd − 4g[c |[aP b]|d] , Pab := 1
2 − n

Φab −R
1

2n(n− 1)gab , (C.3)

where the Weyl tensor Cabc
d is conformally invariant, and the Schouten or Rho tensor Pab transforms as

P̂ab = Pab −∇aΥb + ΥaΥb −
1
2ΥcΥcgab , P̂ = Ω−2

(
P −∇cΥc −

n− 2
2 ΥcΥc

)
, (C.4)

where P := Pa
a. Finally, the Cotton–York tensor Aabc := 2∇[bP c]a = −(n −3)∇dCdabc, where the expression 

on the RHS follows from the contracted Bianchi identity, transforms as Âabc = Aabc − ΥdCdabc.
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