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a b s t r a c t

We study the geometric properties of holomorphic distributions of totally null m-planes
on a (2m + ϵ)-dimensional complex Riemannian manifold (M, g), where ϵ ∈ {0, 1} and
m ≥ 2. In particular, given such a distribution N , say, we obtain algebraic conditions
on the Weyl tensor and the Cotton–York tensor which guarantee the integrability of N ,
and in odd dimensions, of its orthogonal complement. These results generalise the Petrov
classification of the (anti-)self-dual part of the complex Weyl tensor, and the complex
Goldberg–Sachs theorem from four to higher dimensions.

Higher-dimensional analogues of the Petrov typeD condition are defined, andwe show
that these lead to the integrability of up to 2m holomorphic distributions of totally null m-
planes. Finally, we adapt these findings to the category of real smooth pseudo-Riemannian
manifolds, commenting notably on the applications to Hermitian geometry and Robinson
(or optical) geometry.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction and motivation

One of the milestones in the development of general relativity, the Goldberg–Sachs theorem, first formulated in 1962,
states [1] that a four-dimensional Einstein Lorentzian manifold admits a shearfree congruence of null geodesics if and only
if its Weyl tensor is algebraically special. It has proved invaluable in the discovery of solutions to Einstein’s field equations,
and the Kerr metric is a prime example of its application [2].

A number of versions of the Goldberg–Sachs theorem subsequently appeared, and revealed a far deeper insight into
the geometry of pseudo-Riemannian manifolds. To start with, the Einstein condition can be weakened to a condition on
the Cotton–York tensor [3,4], whereby the conformal invariance of the theorem is made manifest. Further, the theorem
turns out to admit a complex holomorphic counterpart [5,6], and other variants on real pseudo-Riemannian manifolds
of arbitrary metric signatures [7–11]. In all these versions, real or complex, the underlying geometric structure is a null
structure, i.e. an integrable distribution of totally null complex 2-planes. In the real category, the metric signature induces
an additional reality structure on the complexified tangent bundle, which adds a particular ‘flavour’ to this null geometry.
Thus, in Lorentzian signature, a null structure is equivalent to a Robinson structure (also known as an optical structure), i.e. a
congruence of null geodesics along each of which a complex structure on its screenspace is preserved [12,13]. In particular,
such a congruence is shearfree. Similarly, a Hermitian structure on a proper Riemannian manifold can be identified with a
null structure.

That distributions of totally null complex 2-planes on pseudo-Riemannian manifolds represent fundamental geometric
objects forms the backbone of twistor theory, or more generally spinor geometry, and a number of geometric properties of
spacetimes can be nicely formulated in this setting [14,6]. These ideas generalise to higher dimensions: in even dimensions,
a null structure is now an integrable distribution of maximal totally null planes; in odd dimensions, the definition is
identical except that the orthogonal complement to the null distribution is also required to be integrable. Applications of
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higher-dimensional twistor geometry can be seen in the work of Hughston and Mason [15], who give an even-dimensional
generalisation of theKerr theoremas ameans to generating null structures on open subsets of the conformal complex sphere.
More recently, it was noted by Mason and the present author [16] that the higher-dimensional Kerr-NUT-AdS metric [17] is
characterised by a discrete set of Hermitian structures, and its Weyl tensor satisfies an algebraic condition generalising the
four-dimensional Petrov type D condition. As in four dimensions [18], these results were shown to arise from the existence
of a conformal Killing-Yano 2-form.

Such findings suggest that a higher-dimensional Goldberg–Sachs theorem should be formulated in the context of null
structures, and to this end, an invariant classification of the curvature tensors with respect to an almost null structure
appears to be the most natural framework. Such a classification already exists in almost Hermitian geometry [19,20], but
curvature prescriptions that are sufficient for the integrability of an almost Hermitian structure do not appear to have been
investigated. In Lorentzian geometry, the Weyl tensor has also been subject to a classification [21–26] which has mostly
focused on the properties of null geodesics. In fact, according to this approach, the geodesic part of the Goldberg–Sachs
theorem admits a generalisation to higher dimensions [27], but its shearfree part does not. In fact, shearfree congruences of
null geodesics in more than four dimensions, which, as remarked in [28], are no longer equivalent to Robinson structures,
have not featured so prominently in the solutions to Einstein’s field equations [29,24].

On the other hand, the present author [30] put forward a higher-dimensional generalisation of the Petrov type II
condition, which, together with a genericity assumption on theWeyl tensor and a degeneracy condition on the Cotton–York
tensor, guarantees the existence of a Robinson structure on a five-dimensional Lorentzian manifold. A counterexample to
the converse is given: the black ring solution [31] admits pairs of null structures, but theWeyl tensor fails to be ‘algebraically
special relative to it’ in the sense of Theorem 1.1. In the same reference, it is also conjectured that these results are also true
in arbitrary dimensions, and in the holomorphic category. It is the aim of the paper to turn this conjecture into a theorem.
To be precise, we shall prove

Theorem 1.1. Let N be a holomorphic distribution of totally null m-planes on a (2m + ϵ)-dimensional complex Riemannian
manifold (M, g), where ϵ ∈ {0, 1} and 2m + ϵ ≥ 5, and let N ⊥ denote its orthogonal complement with respect to g . Suppose
the Weyl tensor and the Cotton–York tensor (locally) satisfy

C(X, Y , Z, ·) = 0, A(Z,X, Y ) = 0,

respectively, for all vector fields X, Y ∈ Γ (N ⊥), and Z ∈ Γ (N ). Suppose further that the Weyl tensor is otherwise generic. Then,
the distributions N and N ⊥ are (locally) integrable.

In fact, we shall demonstrate more than this. We shall define further degeneracy classes of the Weyl tensor and the
Cotton–York tensor with respect to N , and show that these also imply the integrability of N and N ⊥. We shall also be able
to weaken the genericity assumption on the Weyl tensor in Theorem 1.1 to such an extent as to guarantee the integrability
of up to 2m canonical null distributions and their orthogonal complements. Consequently, Theorem 1.1 will be generalised
to the category of smooth pseudo-Riemannian manifolds of arbitrary metric signature.

The structure of the paper is as follows. In Section 2, we lay bare the algebraic properties of null structures by means of
their stabiliser p, say, which is well-known to be a parabolic Lie subalgebra of the complex special orthogonal group. Their
properties are already well-documented in [32,33], and we use these sources to set up the algebraic background and the
notation used throughout the paper.

These algebraic considerations are then translated into the language of vector bundles in Section 3. In particular, algebraic
classes ofWeyl tensors and Cotton–York tensors are defined in terms of p-invariant filtered vector bundles.We also examine
the geometric characteristics of almost null structures such as integrability conditions and geodetic property.

In Section 4, we present the main results of this paper. It begins with a restatement of the complex four-dimensional
Goldberg–Sachs theorem in the notation introduced in Section 3.We discuss towhich extent it may be generalised to higher
dimensions. Building on [30], we argue that the existence of a null structure together with a degenerate Cotton–York tensor
does not necessarily lead to further, i.e. ‘special’, degeneracy of the Weyl tensor, in the sense of Theorem 1.1. On the other
hand, we show that certain algebraic classes of the Weyl tensor, which generalise the Petrov type II and more degenerate,
guarantee the integrability of an almost null structure, provided that the Weyl tensor satisfies a genericity assumption, and
the Cotton–York tensor is sufficiently degenerate. We then prove the conformal invariance of these results.

In Section 5, after a heuristic discussion on the genericity assumption on the Weyl tensor, we extend Theorem 1.1 to the
case of multiple null structures, which may be viewed as a generalisation of the Petrov type D condition. This allows us to
showhow it also applies to real pseudo-Riemannian smoothmanifolds of arbitrarymetric signature, giving special attention
to proper Riemannian, split signature and Lorentzian manifolds.

We end the paper with some remarks on the relation between the Goldberg–Sachs theorem and parabolic geometry.
We have collected the complex Bianchi identity in component form in an Appendix.

2. Algebraic preliminaries

This section is largely a down-to-earth application of the theory of parabolic Lie algebras given in [33]. Other useful
references on parabolic geometry and representation theory are [32,34].
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Let (V , g) be a (2m+ϵ)-dimensional complex vector space,where ϵ ∈ {0, 1}, equippedwith a non-degenerate symmetric
bilinear form g : V × V → C. If U is a vector subspace of V , we shall denote its orthogonal complement with respect to g
by U⊥, and its dual by U∗. Fix an orientation for (V , g), and denote by ∗ the Hodge duality operator on the exterior algebras

• V and


• V ∗. The group of automorphisms of V preserving g of determinant 1 is the complex special orthogonal group
SO(2m + ϵ, C). It will be denoted G for short, and its Lie algebra so(2m + ϵ, C) by g.

Definition 2.1. A null structure on (V , g) is a maximal totally null subspace N of V , i.e.

{0} ⊂ N ⊂ N⊥
⊂ V , (2.1)

where dimN = m.

There are notable differences between the even- and odd-dimensional cases, which we state as a lemma.

Lemma 2.2. Let N be a null structure. Then

(1) when ϵ = 0,N = N⊥, and N is either self-dual or anti-self-dual, i.e. for any ω ∈
m N, either ∗ω = ω or ∗ω = −ω;

(2) when ϵ = 1,N is a proper subspace of N⊥, and N⊥/N is one-dimensional.

In what follows, we describe the Lie algebra of the stabiliser of the null structure.

2.1. Graded Lie algebras and parabolic subalgebras

Even dimensions greater than four (ϵ = 0,m > 2). By Lemma 2.2, we can rewrite filtration (2.1) in the form

V
3
2 ⊂ V

1
2 ⊂ V−

1
2 . (2.2)

By convention, one take V
k
2 = {0} for all k ≥ 3, and V

k
2 = V for all k ≤ −1. The meaning of this notation will become

apparent in a moment. For definiteness, we also assume, with no loss of generality, that N is self-dual. Choose a subspace
V

−
1
2

⊂ V−
1
2 complementary to V

1
2 , so that setting V 1

2
:= V

1
2 , the vector space V can be expressed as the direct sum

V = V 1
2

⊕ V
−

1
2
. (2.3)

We can then adopt the following arrangement of basis for V and of symmetric bilinear form g

V 1
2

=


u
0


: u ∈ Cm


, V

−
1
2

=


0
w


: w ∈ Cm


, g =


0 1
1 0


.

Assumingm > 2, the Lie algebra g = so(2m, C) can now be expressed as the graded Lie algebra

g = g−1 ⊕ g0 ⊕ g1, (2.4)

where

g−1 =


0 0
Z 0


: Z ∈ Mat(m, C), Z = −Zt


, g1 =


0 Y
0 0


: Y ∈ Mat(m, C), Y = −Yt


,

g0 =


X 0
0 −Xt


: X ∈ gl(m, C)


.

Here, gl(m, C)denotes the Lie algebra of the complex general linear groupGL(m, C),Mat(m, C) the ring of allm×mmatrices
over C, and ·

t matrix transposition. The Lie bracket is compatible with the grading of g, i.e. [gi, gj] ⊂ gi+j for all i, j, with the
convention that gi = {0} for all i > |1|. Further, being a reductive Lie algebra, g0 decomposes as g0 = gss0 ⊕ z(g0), where gss0
is semi-simple and isomorphic to sl(m, C), and z(g0) is the centre of g0 and is one-dimensional. In particular, z(g0) contains
the element

E :=
1
2


1m 0
0 −1m


,

and we see that the adjoint action of E on g is given by Ad(E)(X) = iX for all X ∈ gi, and any i ∈ {−1, 0, 1}. For this
reason, E is referred to as the grading element of g. The grading on g induces a filtration g1 ⊂ g0 ⊂ g−1

= g on g, where
gi := gi ⊕· · ·⊕g1. Setting p := g0, we see that p preserves the filtered Lie algebra (g, {gi}). The Lie algebra p is an example of
a parabolic Lie subalgebra of so(2m, C). The above description is also referred to as a standard parabolic Lie subalgebra, and
any parabolic Lie subalgebra preserving a self-dual null structure must be SO(2m, C)-conjugate to it.1

1 These definitions are usually given in terms of the root system of a semi-simple Lie algebra. This is not needed for the purpose of the present article,
and we refer the reader to [32,33] for a more thorough treatment.
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It is now apparent that our choice of notation for the filtration (2.1) is justified by the fact that E also induces the grading
(2.3) on V , since for any element v ∈ Vi, one has E · v = iv. In particular, the filtration (2.1) is p-invariant.

On the other hand the grading (2.3) is only invariant under g0, not p. We can nonetheless define the associated graded
vector space gr(V ) to (V , {V i

}) by gr(V ) :=


i(gri(V ))where gri(V ) := V i/V i+1, which is clearly p-invariant. Restricting the
natural projectionsπi : V i

→ gri(V ) to Vi, one then obtains isomorphisms Vi ∼= gri(V ), and thus an isomorphism gr(V ) ∼= V .

Remark 2.3. The stabiliser of an anti-self-dual null structure can also be described in terms of a standard parabolic Lie
subalgebra of so(2m, C). It is however not SO(2m, C)-conjugate to the parabolic Lie subalgebra preserving a self-dual null
structure as given above. Nonetheless, they enjoy the same properties, and the distinction between these two Lie algebras
will not be crucial to the applications covered in this paper—the notation in the anti-self-dual case mirrors that introduced
above for the self-dual case. The situation in four dimensions is slightly different as we shall see presently.

Four dimensions (ϵ = 0,m = 2). The Lie algebra so(4, C) can also be described in terms of the grading (2.4). However, unlike
so(2m, C) form > 2, so(4, C) is not simple, but splits into a self-dual part and an anti-dual part, each isomorphic to sl(2, C),
andwhichwe shall denote by +g and −g respectively.2 The stabiliser of a self-dual, respectively, anti-self-dual null structure
will then be a parabolic subalgebra of +g, respectively, −g. Assuming that N is self-dual as above, and using the setting of
the previous section, the Lie algebras +g and −g are given by +g =

+g−1 ⊕
+g0 ⊕

+g1 and −g = gss0 respectively. Here, we
have set +g1 := g1,

+g−1 := g−1 and +g0 := z(g0). Setting +gi :=
+gi ⊕· · ·⊕

+g1 for each i, we obtain the induced filtration
+g1 ⊂

+g0 ⊂
+g−1. Then, we see that both (+g, {+gi}) and the filtration (2.1) are preserved by the parabolic Lie subalgebra

p :=
+g0. A similar filtration can be derived on −g with respect to the parabolic Lie algebra preserving an anti-self-dual null

structure.
Odd dimensions (ϵ = 1). By Lemma 2.2, the filtration (2.1) can be rewritten in the form

V 2
⊂ V 1

⊂ V 0
⊂ V−1, (2.5)

and we set V k
= {0} for all k ≥ 2, and V k

= V for all k ≤ −1 for convenience. This notation will be justified in the same
way as in the even-dimensional case. As before, to describe the Lie algebra preserving this filtration, we introduce subspaces
Vi ⊂ V i complementary to Vi+1, for i = −1, 0, with V1 = V 1, so that

V = V1 ⊕ V0 ⊕ V−1. (2.6)

If one adopts the following arrangement of basis for V and of symmetric bilinear form g , adapted to this direct sum

V1 =

u
0
0


: u ∈ Cm


, V0 =

0
0
v


: v ∈ C


, V−1 =

0
w
0


: w ∈ Cm


, g =

0 1 0
1 0 0
0 0 1


,

the Lie algebra g = so(2m + 1, C) can be expressed as the graded Lie algebra

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2,

where

g2 =

0 Y 0
0 0 0
0 0 0


: Y ∈ Mat(m, C), Y = −Yt


, g1 =

0 0 U
0 0 0
0 −Ut 0


: U ∈ Cm


,

g0 =

X 0 0
0 −Xt 0
0 0 0


: X ∈ gl(m, C)


,

g−2 =

0 0 0
Z 0 0
0 0 0


: Z ∈ Mat(m, C), Z = −Zt


, g−1 =

 0 0 0
0 0 V

−Vt 0 0


: V ∈ Cm


.

The Lie bracket is compatible with the grading of g, with the convention that gi = {0} for all i > |2|. Again, g0 decomposes as
g0 = gss0 ⊕ z(g0), where gss0 is semi-simple and isomorphic to sl(m, C), and z(g0) is the centre of g0 and is one-dimensional.
In particular, z(g0) contains the grading element

E :=

1m 0 0
0 −1m 0
0 0 0


of g since Ad(E)(X) = iX for all X ∈ gi, and any i. The grading on g induces a filtration of Lie algebra g2 ⊂ g1 ⊂ g0 ⊂ g−1

⊂

g−2
= g, where gi := gi ⊕ · · · ⊕ g1. Again, setting p := g0, we see that p preserves the filtered Lie algebra (g, {gi}). It is a

2 Here, self-duality is defined via the standard identification so(2m, C) ∼=
2 V .



Author's personal copy

A. Taghavi-Chabert / Journal of Geometry and Physics 62 (2012) 981–1012 985

standard parabolic Lie subalgebra of so(2m+ 1, C), and the stabiliser of any null structure is SO(2m+ 1, C)-conjugate to it.
We also note that our choice of notation for the filtration (2.5) reflects the grading (2.6) of E on V . It is then straightforward
to show that the filtration (2.5) is invariant under p.

As in the even-dimensional case, one can define associated graded vector space gr(V ) to (V , {V i
}) by gr(V ) :=


i(gri(V ))

where gri(V ) := V i/V i+1. A choice of grading on V then allows one to establish an isomorphism gr(V ) ∼= V .

2.2. Induced filtered vector spaces

Any filtration {V i
} on a vector space V induces a filtration {(V ∗)i} on its dual V ∗, whereby each vector subspace (V ∗)i is

the annihilator of V 1−i. Further, the associated graded vector space gr(V ∗) is then such that gri(V ∗) = (gr−i(V ))∗. Thus, the
filtrations dual to filtrations (2.2) and (2.5) are

(V ∗)
3
2 ⊂ (V ∗)

1
2 ⊂ (V ∗)−

1
2 = V ∗, (V ∗)2 ⊂ (V ∗)1 ⊂ (V ∗)0 ⊂ (V ∗)−1

= V ∗,

in even and odd dimensions respectively, and V i ∼= (V ∗)i for each i, by means of g .
Similarly, given two filtered vector spaces (V , {V i

}) and (W , {W i
}), one can naturally define a filtration {(V ⊗ W )k} on

their tensor product V ⊗ W by setting

(V ⊗ W )k :=


i+j=k

V i
⊗ W j,

and the associated graded vector space gr(V ⊗ W ) is such that grk(V ⊗ W ) =


i+j=k gri(V ) ⊗ grj(W ).
Another useful property of filtered vector spaces is that if U is a vector subspace of a filtered vector space (V , {V i

}), then
U inherits the filtration {V i

} of V by setting U i
:= U ∩ V i.

In all of these constructions, the filtrations and the associated graded vector spaces induced from a given p-invariant
filtered vector space (V , {V i

}) are also p-invariant. Further, the choice of a grading on V compatible with its filtration will
also induce gradings on the dual vector space and tensor products.

Remark 2.4. It is often more convenient to view the filtrations (2.2) and (2.5) as representations of p in even and odd
dimensions respectively. Typically, one starts with a representation V of g, which for simplicity we may assume to be
irreducible. In the case at hand, V is simply the standard representation of g. Then, one can obtain a filtration {V i

} on V
where each subspace V i is a p-invariant subspace of V . It turns out that the associated graded vector space gr(V ) can be
viewed as a refinement of the filtration {V i

} in the sense that each gri(V ) := V i/V i+1 is a completely reducible p-module,
and each irreducible component can be described in terms of an irreducible gss0 -module. This analysis clearly extends to dual
and tensor representations.

2.3. Parabolic subgroups

The passage from the Lie algebra g and its parabolic Lie algebra p to their respective Lie groups G and P is explained
in details in [33]. In general, having fixed a complex Lie algebra g and a parabolic Lie subalgebra p, there will be some
choice of possible Lie groups with Lie algebras g and p. For our purpose, it suffices to choose G to be the connected Lie
group SO(2m + ϵ, C), in which case there is only one possible choice for P obtained by exponentiating p. It can also be
described as follows. We first conveniently define a group G0 with Lie algebra g0, which will be GL(m, C) in the case at
hand. Then, writing p+ := g1, respectively, p+ := g1 ⊕ g2, when ϵ = 0, respectively, ϵ = 1, one has a diffeomorphism
G0 × p+ → P : (g0, Z) → g0 exp(Z). The Lie subgroup P is appropriately called a parabolic subgroup of G, and the Lie
subgroup G0 is referred to as the Levy subgroup of P .

Finally, in our case, the p-invariant filtrations and associated graded vector spaces will all give rise to P-modules,
i.e. irreducible representations of p will exponentiate3 to irreducible representations of P .

3. The geometry of almost null structures

Throughout M will denote a (2m + ϵ)-dimensional complex manifold M, where ϵ ∈ {0, 1} and m ≥ 2. We shall
essentially beworking in the holomorphic category. Thus, TM and T∗M will denote the holomorphic tangent bundle and the
holomorphic cotangent bundle of M respectively. If E → M is a vector bundle over M, the sheaf of holomorphic sections
of E will be denoted Γ (E). If E and F are vector bundles, E ⊗ F will denote the tensor product of E and F ,

k E, the k-th
exterior power of E,

k E, the k-th symmetric power of E. The Lie bracket of (holomorphic) vector fields will be denoted by
[·, ·]. We shall also assume that M is orientable, and the Hodge operator on differential forms will be denoted by ∗. When

3 This is not true in general: there is a condition on the coefficients of the highest weight vector of an irreducible representation of a parabolic subalgebra
to be satisfied [32].
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ϵ = 0, its restriction to Γ (
m T∗M) is an involution, i.e. ∗2

= 1, and the +1- and −1-eigenforms of ∗ will be referred to as
self-dual and anti-self-dual respectively.4

We shall equip M with a holomorphic metric g , i.e. a non-degenerate global holomorphic section of
2 T∗M, and the

pair (M, g) will be referred to as a complex Riemannian manifold. Equivalently, the structure group of the frame bundle F
over M is reduced to G := SO(2m + ϵ, C), and the tangent bundle can be constructed as the standard representation of G,
i.e. TM := F ×G V where V is the standard representation of G. The k-th tracefree symmetric power of the tangent bundle
and the cotangent bundle will be denoted by

k
◦
TM and

k
◦
T∗M respectively.

The holomorphic tangent bundle admits a unique torsion-free connection, the (holomorphic) Levi-Civita connection,
which preserves the holomorphic metric; it will be identified with its associated covariant derivative ∇ : Γ (TM) ⊗

Γ (TM) → Γ (TM), and it extends to a connection on sheaves of holomorphic sections of tensor products of TM and T∗M.
The (holomorphic) Riemann curvature tensor R : Γ (

2 TM) ⊗ Γ (TM) → Γ (TM) associated to ∇ is given by

RX∧Y · Z := ∇X∇YZ − ∇Y∇XZ − ∇[X,Y ]Z,

for all X, Y , Z ∈ Γ (TM), and extends to sheaves of holomorphic sections of tensor products of TM and T∗M. This induces
a section of Γ (

2
(
2 T∗M)), also denoted R, via

R(X, Y , Z,W ) = g(RX∧Y · Z,W ),

for all X, Y , Z,W ∈ Γ (TM), which satisfies the Riemann symmetry

R(X, Y , Z,W ) + R(Y , Z,X,W ) + R(Z,X, Y ,W ) = 0.

The Riemann tensor naturally splits as

R(X, Y , Z,W ) = C(X, Y , Z,W ) − g(X, Z)P(Y ,W ) + g(X,W )P(Y , Z) + g(Y , Z)P(X,W ) − g(Y ,W )P(X, Z),(3.1)

where the Weyl tensor C is the tracefree part of R, and the Rho tensor P is a trace-adjusted Ricci tensor. The Cotton–York
tensor is the 2-form valued 1-form A defined by

A(X, Y , Z) := ∇YP(Z,X) − ∇ZP(Y ,X) (3.2)

for all X, Y , Z ∈ Γ (TM). Since P is symmetric, A is in the kernel of ∧ : T∗M ⊗
2 T∗M →

3 T∗M.
Finally, we shall express the Bianchi identity in terms of the covariant derivative of theWeyl tensor and the Cotton–York

tensor as

(∇XC)(Y , Z, S, T ) + (∇YC)(Z,X, S, T ) + (∇ZC)(X, Y , S, T ) = −g(X, S)A(T , Y , Z) − g(Y , S)A(T , Z,X)

− g(Z, S)A(T ,X, Y ) + g(X, T )A(S, Y , Z)

+ g(Y , T )A(S, Z,X) + g(Z, T )A(S,X, Y ), (3.3)

for allX, Y , Z, S, T ∈ Γ (TM). Taking the trace of Eq. (3.3) yields the contracted Bianchi identity, fromwhich one can deduce
that the Cotton–York is the divergence of the Weyl tensor, and thus must be tracefree.

It will be convenient to view the Weyl tensor and the Cotton–York tensor as sections of the bundles

C :=

2

◦

2
T∗M


, A := T∗M ⊙◦

2
T∗M, (3.4)

where ⊙◦ should be understood as reflecting the symmetry properties of the Weyl tensor and the Cotton–York tensor.
For this reason we may refer to C and A as the bundles of tensors with Weyl symmetries and Cotton–York symmetries
respectively. When 2m + ϵ ≥ 5, these bundles are irreducible G-modules, i.e. C = F ×G C and A = F ×G A, where C
and A are irreducible G-modules. When m = 2, ϵ = 0, under so(4, C) ∼= sl(2, C) × sl(2, C), the bundle of 2-forms splits
into a self-dual part and an anti-self-dual part, and accordingly the bundles C and A split into self-dual parts +C and +A,
respectively, and anti-self-dual parts −C and −A, respectively.

3.1. Almost null structures and classifications of the Weyl tensor and the Cotton–York tensor

This section is a translation of the algebraic setup of Section 2 into the language of vector bundles. More detailed
background information can be found in [33] although their approach focuses essentially on Cartan geometries.

Definition 3.1. An almost null structure on (M, g) is a holomorphic distributionN ofmaximal totally null planes onM, i.e. a
holomorphic subbundle of TM such that at every point p of M, the fibre Np is a maximal totally null subspace of the tangent
space TpM of M at p, and Np is spanned by holomorphic vector fields in a neighbourhood of p.

We say that the almost null structure N is integrable in an open subset U of M if the distribution N , and in odd
dimensions, its orthogonal complement N ⊥ are integrable in U, i.e. at every point p ∈ U, the fibres Np, and in odd
dimensions, N ⊥

p are tangent to leaves of foliations of dimensions m and m + 1 respectively. An integrable almost null
structure will be referred to as a null structure.

4 This choice of eigenvalues is always possible in the complex category.
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From the above definition, we shall essentially regard an almost null structure as a filtration of holomorphic vector
subbundles

M ⊂ N ⊂ N ⊥
⊂ TM, (3.5)

where M should be regarded as the zero vector bundle. The structure group of the frame bundle F → M is then reduced to
P , the parabolic subgroup preserving the filtration (3.5), as described in Section 2.2. One can in fact think of the almost
null structure as being modelled on the filtration of vector spaces (2.1). For this reason, we can apply the notation of
Section 2 to vector bundles. In particular, using the constructions of Section 2.2, this time in terms of vector bundles, we will
give P-invariant classifications of the Weyl tensor and the Cotton–York tensor, generalising the four-dimensional Petrov
classification.

Before delving into this, we restate Lemma 2.2 in the vector bundle format.

Lemma 3.2. Let N be an almost null structure on (M, g). Then
(1) when ϵ = 0, N = N ⊥, and N is either self-dual or anti-self-dual;
(2) when ϵ = 1, N is a proper subbundle of N ⊥, and N ⊥/N is a rank-one vector bundle.

Remark 3.3. As already noted in Remark 2.3, whether an almost null structure is self-dual or anti-self-dual will not be of
major significance except in four dimensions, and for the remainder of the article, we shall in general make no assumption
regarding the self- or anti-self-duality of the almost null structure.

Even dimensions greater than four (ϵ = 0,m > 2). By Lemma 3.2, N = N ⊥, and one can rewrite the filtration (3.5) as

V
3
2 ⊂ V

1
2 ⊂ V−

1
2 , (3.6)

and we set V
k
2 = M for k ≥ 3, and V

k
2 = TM for k ≤ −1 for convenience. The associated graded vector bundle is

gr(TM) = gr 1
2
(TM) ⊕ gr

−
1
2
(TM) where gri(TM) := V i/V i+1. One can assign a grading on TM adapted to N ,

TM = V 1
2

⊕ V
−

1
2
, (3.7)

by choosing a vector subbundle V
−

1
2

⊂ V−
1
2 complementary to V 1

2
:= V

1
2 . This can be viewed as making a choice of frame

adapted to the almost null structure. The natural projection V i
→ gri(TM) establishes isomorphisms Vi ∼= gri(TM), and

thus TM ∼= gr(TM).
It is now a simple matter to apply the discussion of Section 2.2 in the context of the filtration (3.6), based on the remark

that the bundles C and A defined in (3.4) are subbundles of
4 T∗M and

3 T∗M respectively. Thus, when m > 2, they
admit the respective filtrations,

M = C3
⊂ C2

⊂ C1
⊂ C0

⊂ C−1
⊂ C−2

= C, (3.8)

M = A
5
2 ⊂ A

3
2 ⊂ A

1
2 ⊂ A−

1
2 ⊂ A−

3
2 = A, (3.9)

with respective associated graded vector bundles

gr(C) = gr2(C) ⊕ gr1(C) ⊕ gr0(C) ⊕ gr−1(C) ⊕ gr−2(C), (3.10)

gr(A) := gr 3
2
(A) ⊕ gr 1

2
(A) ⊕ gr

−
1
2
(A) ⊕ gr

−
3
2
(A), (3.11)

where gri(C) := C i/C i+1, grj(A) := Aj/Aj+1 for each i, j. A choice of frame adapted to N induces gradings on C and A,

C = C2 ⊕ C1 ⊕ C0 ⊕ C−1 ⊕ C−2, (3.12)
A = A 3

2
⊕ A 1

2
⊕ A

−
1
2

⊕ A
−

3
2
, (3.13)

respectively. With this choice, the natural projections C i
→ C i/C i+1 and Ai

→ Ai/Ai+1 establish isomorphisms Ci ∼=

gri(C) and Ai ∼= gri(A) for each i, and thus C ∼= gr(C) and A ∼= gr(A).
Four dimensions (ϵ = 0,m = 2). In four dimensions, and assuming the almost null structure to be self-dual, one obtains
filtrations on +C and +A

M =
+C3

⊂
+C2

⊂
+C1

⊂
+C0

⊂
+C−1

⊂
+C−2

=
+C, (3.14)

M =
+A

5
2 ⊂

+A
3
2 ⊂

+A
1
2 ⊂

+A−
1
2 ⊂

+A−
3
2 =

+A, (3.15)

respectively.5 As in the higher dimensions, one also defines associated graded vector bundles gr(+C) and gr(+A), which, on
choosing a particular grading (3.7), become isomorphic to +C and +A respectively. Similar results can be obtained on C−

and A−, when the almost null structure is taken to be anti-self-dual.

5 One also gets a filtration M =
−A

3
2 ⊂

−A
1
2 ⊂

−A−
1
2 =

−A on −A, which we shall not need however.
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Remark 3.4. In four dimensions, it is well-known that at every point p of M, one can always find a maximal totally null
subspace Np of TpM such that the self-dual part of the Weyl tensor at that point degenerates to +C−1, and this maximal
totally null subspace can be extended to an almost null structure in a neighbourhood of p. For this reason, if the self-dual
part of the Weyl tensor degenerates further to a section of +C0, it is referred6 to as algebraically special with respect to N . In
fact, the (complex self-dual) Petrov types I, II, III and N can easily be defined in terms of the bundles +C−1, +C0, +C1 and
+C2 respectively, and similarly for the anti-self-dual case.

Odd dimensions (ϵ = 1). This is very similar to the previous case except that now, N is a proper holomorphic subbundle of
N ⊥. Thus the filtration (3.5) can be rewritten as

V2
⊂ V1

⊂ V0
⊂ V−1, (3.16)

and we set Vk
= M for k ≥ 2, and Vk

= TM for k ≤ −1 for convenience. The associated graded vector bundle is
gr(TM) = gr1(TM) ⊕ gr0(TM) ⊕ gr−1(TM) where gri(TM) := V i/V i+1. One can assign a grading on TM adapted to N ,

TM = V1 ⊕ V0 ⊕ V−1, (3.17)

by choosing vector subbundles Vi ⊂ V i complementary to Vi+1 with V1 := V1. This can be viewed as making a choice of
frame adapted to the almost null structure. The natural projection V i

→ gri(TM) establishes isomorphisms Vi ∼= gri(TM),
and thus TM ∼= gr(TM).

Again, from Section 2.2, the filtration (3.6) induces filtrations on the vector bundles C and A,

M = C5
⊂ C4

⊂ C3
⊂ · · · ⊂ C−3

⊂ C−4
= C, (3.18)

M = A4
⊂ A3

⊂ A2
⊂ · · · ⊂ A−2

⊂ A−3
= A, (3.19)

respectively, with associated graded vector bundles

gr(C) = gr4(C) ⊕ gr3(C) · · · ⊕ gr−3(C) ⊕ gr−4(C), (3.20)

gr(A) = gr3(A) ⊕ gr2(A) ⊕ · · · ⊕ gr−2(A) ⊕ gr−3(A), (3.21)

respectively, where gri(C) := C i/C i+1, grj(A) := Aj/Aj+1 for each i, j. A choice of frame adapted to N induces gradings on
C and A,

C = C4 ⊕ C3 ⊕ · · · ⊕ C−3 ⊕ C−4, (3.22)
A = A3 ⊕ A2 ⊕ · · · ⊕ A−2 ⊕ A−3, (3.23)

respectively, which allow one to establish isomorphisms Ci ∼= gri(C) and Ai ∼= gri(A) for each i, and thus C ∼= gr(C) and
A ∼= gr(A).

Remark 3.5. In even and odd dimensions greater than four, the (pointwise) existence of an almost null structure with
respect to which the Weyl tensor degenerates to a section of C−1 and C−3 respectively, is not guaranteed in general. While
the use of the terms ‘algebraically special’ to describe aWeyl tensor degenerating to a section ofC0 may then not be entirely
appropriate, such a Weyl tensor nonetheless enjoys some ‘special’ status regarding the geometric property of the almost
null structure N as will be seen in Section 4.

Remark 3.6. Referring back to Remark 2.4, we can view each of the vector bundles C i and Ai as p-modules (or P-modules
at the Lie group level), and one way to refine the classification is by considering the irreducible p-modules in each of the
quotient bundles gri(C) and gri(A). This will not be needed in this paper, but will be covered in a future publication.

Tensorial characterisation of sections of C and A. When it comes to explicit computations, it is somewhat more convenient
to describe sections of the bundles C i and Ai by means of the following lemma.

Lemma 3.7. Fix k ∈ Z, k > −
4

2−ϵ
, ℓ ∈ Z +

1−ϵ
2 , ℓ > −

3
2−ϵ

. When m = 2, ϵ = 0, assume that N is self-dual, and write C and
A for +C and +A respectively. Let C ∈ Γ (C) and A ∈ Γ (A). Then,

C ∈ Γ (Ck) ⇔ C(Xi1 ,Xi2 ,Xi3 ,Xi4) = 0, for all Xij ∈ Γ (V ij) such that


j

ij = 1 − k,

A ∈ Γ (Aℓ) ⇔ A(Xi1 ,Xi2 ,Xi3) = 0, for all Xij ∈ Γ (V ij) such that


j

ij = 1 − ℓ,

where ij ∈ Z, |ij| ≤
1+ϵ
2 for all j = 1, . . . , 4.

The above characterisation can be proved immediately from the fact that the bundles C and A are subbundles of
4 T∗M

and
3 T∗M respectively, and (V∗)i is the annihilator of V1−i for each i.

6 This is usually formulated in terms of a spinor field ξ, say, which defines N , and the terminology ‘with respect to N ’ is then replaced by ‘along ξ’.
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3.2. Geometric properties

Let (M, g) be a (2m + ϵ)-dimensional complex Riemannian manifold, where ϵ ∈ {0, 1} and m ≥ 2, endowed with an
almost null structure N . In the following discussion, we shall generally treat both the even- and odd-dimensional cases at
once, bearing in mind that in the former case N ⊥

= N , so that there will be some redundancy in the properties presented.
When some distinction needs to be made, the notation of Section 3 together with ϵ will be used.

Theorem 3.8 (Frobenius). A necessary and sufficient condition for an almost null structure N to be integrable is that it is
involutive, i.e.

[X, Y ] ∈ Γ (N ), [S, T ] ∈ Γ (N ⊥),

or equivalently,

g(S, [X, Y ]) = 0, g(X, [S, T ]) = 0, (3.24)

for all X, Y ∈ Γ (N ) and S, T ∈ Γ (N ⊥).

The integrability of N in some open subset U gives rise to a foliation of U by maximal totally null leaves. In odd
dimensions, U is also foliated by leaves of dimension m + 1. In both cases, these leaves are totally geodetic, in the sense
given by the next lemma.

Lemma 3.9. The almost null structure N is integrable if and only if

g(X, ∇YZ) = 0, g(Y , ∇XZ) = 0, (3.25)

for all X ∈ Γ (N ⊥), Y , Z ∈ Γ (N ).

Proof. LetX ∈ Γ (N ⊥), Y , Z ∈ Γ (N ), and suppose that the distributionsN andN ⊥ are integrable. Then, using the defining
properties of the Levi-Civita connection,

g(X, ∇YZ) =
1
2

(g(X, ∇YZ) − g(X, ∇ZY ) − g(Z, ∇YX) + g(Z, ∇XY ) − g(Y , ∇XZ) + g(Z, ∇ZX))

=
1
2

(g(X, [Y , Z]) + g(Z, [X, Y ]) + g(Y , [Z,X])) = 0,

by Eqs. (3.24), and similarly for g(Y , ∇XZ). The converse is obvious. �

Remark 3.10. There is an alternative way of characterising the integrability of the almost null structure, which mirrors
a procedure introduced in [35,19] in almost Hermitian geometry. We note that the almost null structure N can be
represented7 by a single, up to scale, tensorial object ω ∈ Γ (

m
N ∗). It thus makes sense to measure the failure of the

Levi-Civita connection to preserve ω, or equivalently, to be a p-valued 1-form on M. In even dimensions, the geometric
properties of N can then be encoded by the P-invariant differential equations

∇Xω = α(X)ω, (3.26)

for some 1-form α, and for all X ∈ Γ (V i) for some i ∈ {−
1
2 ,

1
2 }. In particular, taking i =

1
2 gives the integrability of N . In

odd dimensions, the geometric properties of N can be encoded by the P-invariant differential equations

∇Xω = α(X)ω, ∇Y (∗ω) = β(Y )ω ∧ γ, (3.27)

for some 1-forms α, β and γ , and for all X ∈ Γ (V i), Y ∈ Γ (V j) for some i, j ∈ {−1, 0, 1}. In this case, the integrability of
N (and N ⊥) is given by taking i = 1 and j = 0.

Integrability condition. The existence of a null structure N on M is subject to an integrability condition on the Weyl tensor
as given by the next proposition.

Proposition 3.11. Suppose N is a null structure. Then, in dimensions greater than four, the Weyl tensor is a section of C−1−ϵ . In
four dimensions, assuming N is self-dual, the self-dual part of the Weyl tensor is a section of +C−1.

7 This can also be formulated spinorially.
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Proof. Let X ∈ Γ (N ⊥), Y , Z,W ∈ Γ (N ). We shall show that

C(W ,X, Y , Z) = 0, (3.28)

which, by Lemma 3.7, is equivalent to the claim of the proposition. We start by differentiating either of relations (3.25), so
for definiteness, we have

0 = ∇W (g(Y , ∇XZ)) = g(∇WY , ∇XZ) + g(Y , ∇W∇XZ) = g(Y , ∇W∇XZ), (3.29)

by Eq. (3.25) again. Now, from the definition of the Riemann tensor, we have

R(W ,X, Y , Z) = g(Y , ∇W∇XZ − ∇X∇WZ − ∇[W ,X]Y ) = 0,

by Eqs. (3.29) and (3.25) together with Lemma 3.9. The splitting of the Riemann tensor (3.1) now establishes Eq. (3.28).
Further, when 2m + ϵ = 4 and N is assumed to be self-dual, Eq. (3.28) is always trivially satisfied on restriction to the
anti-self-dual part of the Weyl tensor, and so must be a condition on the self-dual part of the Weyl tensor. �

3.3. Null basis and its associated canonical almost null structures

So far the discussion has been expressed invariantly, with no reference to any particular frame, but at this stage, it is
convenient to introduce some notation tied up to a choice of frame adapted to a null structure. As before (M, g) will denote
a (2m + ϵ)-dimensional complex Riemannian manifold where ϵ ∈ {0, 1}, and m ≥ 2, and N an almost null structure
on M. We first note that choosing a (local) grading (3.7), respectively (3.17) of the tangent bundle, when ϵ = 0, respectively
ϵ = 1, is really tantamount to choosing a frame adapted to N . When ϵ = 0, this (local) frame will be denoted

ξµ, ξ̃ν̃ |µ, ν̃ = 1, . . . ,m


,

where {ξµ} and {ξ̃µ̃} span V 1
2
and V

−
1
2
respectively. When ϵ = 1, it will be denoted

ξµ, ξ̃ν̃, ξ0|µ, ν̃ = 1, . . . ,m


,

where {ξµ}, {ξ0} and {ξ̃µ̃} span V1, V0, and V−1 respectively. In both cases, the frame vector fields will be taken to satisfy
the normalisation conditions

g(ξµ, ξ̃ν̃) = δµν̃, g(ξ0, ξ0) = 1.

The corresponding coframes will be denoted
θµ, θ̃ν̃

|µ, ν̃ = 1, . . . ,m


,

θµ, θ̃ν̃, θ0

|µ, ν̃ = 1, . . . ,m


,

when ϵ = 0 and ϵ = 1 respectively, and where ξµyθν
= δν

µ, ξ̃µ̃yθ̃ν̃
= δν̃

µ̃
, ξ0yθ

0
= 1, and all other pairings vanish. In

particular, the metric takes the canonical form

g = 2
m

µ=1

θµ
⊙ θ̃µ̃

+ ϵθ0
⊗ θ0. (3.30)

With this convention, we shall denote the components of the tensors with respect to these frame and co-frame in the usual
way, i.e. if A is a tensor field, then its components are given by, e.g.

Aµ0ν̃...κ̃
λρ̃...0τ := A(θµ, θ0, θ̃ν̃, . . . , θ̃κ̃ , ξλ, ξ̃ρ̃, . . . , ξ0, ξτ ),

and so on.
For future use, we introduce the following notation for the components of the connection 1-form

Γκµν := g(∇ξκ
ξµ, ξν), Γκµν̃ := g(∇ξκ

ξµ, ξ̃ν̃), Γκµ̃ν̃ := g(∇ξκ
ξ̃µ̃, ξ̃ν̃),

Γ0µν := g(∇ξ0ξµ, ξν), Γ0µν̃ := g(∇ξ0ξµ, ξ̃ν̃), Γ0µ̃ν̃ := g(∇ξ0 ξ̃µ̃, ξ̃ν̃),

and so on, in the obviousway. Since the Levi-Civita connection preserves themetric, these components are skew-symmetric
in their last two indices.
Canonical almost null structures. For convenience, let S := {1, 2, . . . ,m},M ⊂ S, and M := S \M . Then, having chosen a null
frame as above, for every 2m choice ofM , one can canonically define almost null structures

NM := span

ξµ, ξ̃ν̃ : for all µ ∈ M, ν̃ ∈ M .
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That these are maximal totally null is clear from the form of the metric (3.30). In particular, N = N1,...,m. For future use, we
shall denote

BS := {NM : for allM ⊂ S} ,

the set of all canonical almost null structures on (an open subset of) M.

Remark 3.12. In the above notation, the spinor bundle


•
N is locally spanned by the 2m simple m-vectors ξM :=

ξµ1
∧ · · · ∧ ξµp where p is the cardinality of M—when M is empty, we write ξ0 for the unit scalar field spanning

0
N .

In fact, each ξM is a pure spinor field, in the sense that it annihilates the corresponding canonical null distribution NM via
the Clifford action [36,37].

4. The Goldberg–Sachs theorem

We begin by restating the Goldberg–Sachs theorem as generalised by Kundt–Thompson [3] and Robinson–Schild [4]. The
formulation, closely following [6], is adapted to the language of Section 3.

Theorem 4.1 (Generalised Goldberg–Sachs Theorem). Let (M, g) be a four-dimensional complex Riemannian manifold. Let N
be a self-dual almost null structure on (M, g), and U an open subset of M. Consider the following statements

(1) the self-dual part of the Weyl tensor is a section of +Ck over U which does not degenerate to a section of +Ck+1 over U;
(2) the almost null structure N is integrable in U;
(3) the self-dual part of the Cotton–York tensor is a section of +Ak− 1

2 over U.

Then,

(a) for k = 0, 1, 2, (1) & (2) ⇒ (3);
(b) for k = 0, 1, 2, (1) & (3) ⇒ (2);
(c) for k = 0, (2) & (3) ⇒ 1′

:= (1) with k = 0 or 1 or 2.

Remark 4.2. An anti-self-dual version of Theorem 4.1 coexists with it.

The proof of each of the implications (a), (b), (c) of the theorem is essentially based on the (self-dual) contracted Bianchi
identity. It is usually carried out as a local computation using a local null frame adapted to N , e.g. in the Newman–Penrose
formalism, or more invariantly in terms of spinor fields. The assumption on the Cotton–York tensor can also be replaced by
an assumption on the Rho tensor in implication (c). We also note that implication (a) is really an integrability condition on
the Cotton–York tensor given some algebraic condition on the Weyl tensor.

In higher dimensions, a putative Goldberg–Sachs theorem would take the same form as Theorem 4.1 except for the fact
that self-duality has now no place there, and in odd dimensions, one has additional degeneracy classes. Let us examine each
implication in turn.

• Implication (a) presents no difficulty, and follows directly from the definition of the Cotton–York tensor, in terms of the
contracted Bianchi identity, for which we give an invariant expression in terms of an almost null structure below.

• To prove implication (b) in four dimensions, we first note that each summand +Ck/+Ck+1 of the graded vector bundle
associated to the filtration (3.14) is one-dimensional. Thismeans that the property that theWeyl tensor is a (local) section
of Ck, but does not degenerate to a section of Ck+1, depends on a single non-vanishing component of the Weyl tensor in
a frame adapted to N .

In higher dimensions, the bundles Ck/Ck+1 are not one-dimensional in general, and it is no longer enough to assume
that the Weyl tensor, as a section of Ck, does not degenerate to a section of Ck+1. For this reason, we must introduce
a genericity assumption, which must be understood in the sense that there are no additional structures imposed on M
beside the almost null structure. As a result, the components of theWeyl tensor, moduloWeyl symmetries, do not satisfy
algebraic relations among themselves. It is also worth noting that unlike in four dimensions, the full Bianchi identity is
now required in the proof of implication (b): the contracted Bianchi identity alone does not provide enough constraints
on the relevant connection components.

• Finally, one can already assert that implication (c) fails in higher dimensions. Indeed, based on the computations of [30],
one can complexify a small region of the Lorentzian black ring solution [31], and show that it locally admits (holomorphic)
null structures.8 However, the Weyl tensor does not degenerate to a section of C0. The author is aware of at least one
other counterexample to implication (c) in higher dimensions, the complexification of the five-dimensional Euclidean
black hole metric discovered in [38].

8 These are the complexification of the original null structures on a Lorentzian manifold, as explained in Section 5.4.3.
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Remark 4.3. Not covered in Theorem 4.6 is the case when (M, g) is conformally (half-)flat, i.e. the self-dual part of the
Weyl tensor and the self-dual part of the Cotton–York tensor are sections of +C3 and +A

5
3 respectively. If one is concerned

in finding a null structure in this case, the appropriate alternative is to appeal to the Kerr theorem, which states that any
(local) null structure on a conformally (half-)flat complex Riemannian manifold (M, g) can be prescribed by a holomorphic
projective variety in its twistor space [6]. Consequently, (M, g) admits (locally) infinitely many self-dual null structures.
The same remark applies in higher dimensions [15].

We treat the even- and odd-dimensional cases separately. Before we proceed, we give an expression for the Cotton–York
tensor in terms of the contracted Bianchi identity.

Lemma 4.4. Let (M, g) be a (2m + ϵ)-dimensional complex Riemannian manifold where ϵ ∈ {0, 1} and m ≥ 2. Then the
defining equation of the Cotton–York tensor (3.2) is equivalent to

(3 − 2m + ϵ)A(X, Y , Z) =


σ


∇ξ̃σ̃

C(ξσ ,X, Y , Z) − C(ξσ , ∇ξ̃σ̃
X, Y , Z) − C(ξσ ,X, ∇ξ̃σ̃

Y , Z)

− C(ξσ ,X, Y , ∇ξ̃σ̃
Z) + ∇ξσ

C(ξ̃σ̃ ,X, Y , Z) − C(ξ̃σ̃ , ∇ξσ
X, Y , Z)

− C(ξ̃σ̃ ,X, ∇ξσ
Y , Z) − C(ξ̃σ̃ ,X, Y , ∇ξσ

Z)

+ ϵ


∇ξ0C(ξ0,X, Y , Z)

− C(ξ0, ∇ξ0X, Y , Z) − C(ξ0,X, ∇ξ0Y , Z) − C(ξ0,X, Y , ∇ξ0Z)

, (4.1)

for all X, Y , Z ∈ Γ (TM), where {ξµ, ξ̃µ̃, ϵξ0} is a null basis as described in Section 3.3.

4.1. The complex Goldberg–Sachs theorem in even dimensions

We start with the even-dimensional generalisation of implication (b) of Theorem 4.1, which is an application of
Lemma 3.7 to Eq. (4.1) with ϵ = 0, together with the geodesy property (3.9).

Proposition 4.5. Let (M, g) be a 2m-dimensional complex Riemannian manifold, where m ≥ 3. Let N be an almost null
structure on M, and U an open subset of M. Let k ∈ {0, 1, 2}. Suppose that the Weyl tensor is a section of Ck over U. Then
the Cotton–York tensor is a section of Ak− 3

2 over U. Suppose further that N is integrable in U. Then the Cotton–York tensor is a
section of Ak− 1

2 over U.

Next, the even-dimensional generalisation of implication (b) of Theorem 4.1 can be expressed as follows.

Theorem 4.6. Let (M, g) be a 2m-dimensional complex Riemannian manifold, where m ≥ 3. Let N be an almost null structure
onM, andU an open set of M. Let k ∈ {0, 1, 2}. Suppose that theWeyl tensor is a section of Ck over U, and is otherwise generic.
Suppose further that the Cotton–York tensor is a section of Ak− 1

2 over U. Then N is integrable in U.

Proof. This is essentially a local computation. Choose a local frame {ξµ, ξ̃µ̃} overU adapted toN , as described in Section 3.3.
Such a choice induces the local gradings (3.12) and (3.13) on the bundles C and A respectively. The condition that theWeyl
and the Cotton–York tensor be sections of Ck and Ak− 1

2 respectively is equivalent to their components in Ci and Ai− 1
2

vanishing for all −2 ≤ i ≤ k − 1.
To show thatN is integrable, we shall make use of the equivalent geodesy condition (3.25). Locally, this can be expressed

as a condition on the 1
2m

2(m − 1) connection components

Γκµν = 0, (4.2)

for all κ, µ, ν.
The gist of the proof is based on the fact that for each k ∈ {0, 1, 2}, in the local frame, and as a result of the algebraic

degeneracy of the Weyl tensor and the Cotton–York tensor, some of the differential equations defined by the components
of the Bianchi identity (3.3) given in Appendix A become algebraic equations, which can be viewed as a homogeneous
overdetermined system of linear equations on the unknowns Γκµν . It is however not immediately clear whether these
algebraic equations are all linearly independent. Hence, the proof will consist in singling out a subsystem of 1

2m
2(m − 1)

linearly independent equations on Γκµν . In this case, the only possible solution will be the trivial solution (4.2).
More specifically, for each k ∈ {0, 1, 2}, we shall be able to choose a subsystem of 1

2m
2(m − 1) linear equations which

takes the matrix form
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K12 ∗ · · · · · · ∗

∗ K13
...

...
. . .

Kµν

. . .

Km,m−1
K123

K124
. . .

Kµνλ

...
...

. . . ∗

∗ · · · · · · ∗ Km−2,m−1,m



×



Γ112
Γ113

...
Γµµν

...
Γm,m,m−1

u123
u124

...
uµνλ

...
um−2,m−1,m



=



0
0
...
0
...
0
03
03
...
03
...
03



, (4.3)

or Ku = 0 for short. Here, each entry of the 1
2m

2(m − 1) × 1 vector u corresponds to a connection component Γκµν . Some
of these have been arranged in triples in the column vectors

uµνλ :=


Γµνλ

Γνλµ

Γλµν


,

for all κ < µ < ν.
On the other hand, each entry of the 1

2m
2(m−1)× 1

2m
2(m−1)matrixKwill consist of a (constant) linear combination of

components of theWeyl tensor. Corresponding to the arrangement of the entries of u, we have also singled out thematrices
Kµν and Kµνκ of dimensions 1× 1 and 3× 3 respectively, each acting on Γµµν and uκµν respectively. The remaining entries
of K have been marked with an asterisk ∗, the meaning of which will be clarified in a moment. In fact, from the structure of
the matrix K, we will be able to show that K is non-singular. This is made clear by the following lemma.

Lemma 4.7. Let A, B be two distinct index sets, i.e. A ∩ B = {∅}, and let {f α
}α∈A, {gβ

}β∈B be two collections of functions over
U. Consider the field of square matrices over U of the form

K :=



D1 A12 · · · · · · A1,p

A21 D2
...

...
. . .

...
... Dp−1 Ap−1,p

Ap,1 · · · · · · Ap,p−1 Dp

 , (4.4)

where for each i, the entries of the block square matrix Di are polynomials in f α with constant coefficients, and for each i ≠ j, the
entries of Aij are polynomials in gβ with constant coefficients. Then, the determinant of K is given by

detK = G + D, (4.5)

where G = G(f α, gβ) is a polynomial in f α and gβ such that G(f α, 0) = 0, and D =


i(detDi).
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In particular, assuming that

(1) for each i,Di is non-singular,
(2) the collections {f α

} and {gβ
} are generically unrelated, in the sense that there are no algebraic relations between the functions

f α and gβ for all α ∈ A, β ∈ B,

thenM is non-singular.

Proof. Clearly, by definition, the determinant of K is a polynomial in f α and gβ . Hence, we can always write detK = G+ D,
where G = G(f α, gβ) is a polynomial in f α and gβ such that G(f α, 0) = 0, and D = D(f α) is a polynomial in f α . Setting
gβ

= 0 for all β ∈ B yields detK = D. But K is now the block diagonal matrix diag(D1,D2, . . . ,Dp), which has determinant
i(detDi). Hence, Eq. (4.5) is established.
Next, from part (1), we have


i(detDi) ≠ 0. Further, from the genericity assumption (2), we have G +


i(detDi) ≠ 0,

i.e. K is non-singular. �

Thus, to prove the theorem for each k ∈ {0, 1, 2}, it suffices to check whether the matrix K of the system of Eqs. (4.3)
satisfies the hypotheses of Lemma 4.7. But it turns out that this is precisely the case: it will be seen that the index structure
of the components of the Weyl tensor, modulo the Weyl symmetries, may be split into two distinct sets A and B such that
the hypotheses of Lemma 4.7 hold, with

D =


µ≠ν

Kµν


·

 
κ<λ<ρ

det(Kκλρ)


. (4.6)

Moreover, one can simply invoke the genericity assumption on the Weyl tensor to deduce the additional requirements (1)
and (2) of Lemma 4.7. It will then follow that the system (4.3) is non-singular, and must therefore have trivial solution (4.2).

Remark 4.8. By ‘components of theWeyl tensor, modulo theWeyl symmetries’, wemean that the components of theWeyl
tensor are subject to the Riemann symmetries

C(X, Y , Z,W ) + C(Y , Z, Y ,W ) + C(Z,X, Y ,W ) = 0,

together with the tracefree condition
σ


C(ξσ ,X, ξ̃σ̃ , Y ) + C(ξ̃σ̃ ,X, ξσ , Y )


+ ϵC(ξ0,X, ξ0, Y ) = 0,

for all vector fields X, Y , Z,W ∈ Γ (TM). A component has an index structure in the indexing set A if and only if any
other component related to it by a Weyl symmetry also has an index structure in A. In this case, no ambiguity9 arises in the
application of Lemma 4.7. In particular, one should check that the linear combination of the components involved in Kµν

and det(Kκλρ) do not lead to the vanishing of these scalars. This step can be carried out by inspection, and will be left to the
reader.

Case k = 0: Assume that the Weyl tensor is a section of C0 so that

Cµνκλ = Cµνκλ̃ = 0, (4.7)

for all µ, ν, κ , λ. Then Eqs. (A.3) become

0 = 2gρ̃[κAλ]µν + 2Γ[µν]
σ̃Cρ̃σ̃ κλ + 4Γ[µ|[κ

σ̃Cλ]|σ̃ |ν]ρ̃ =: Bµνρ̃|κλ. (A.3)

Here Bµνρ̃|κλ is merely a short hand for this set of algebraic equations. Now, suppose that the Weyl tensor is otherwise
generic, and the Cotton–York tensor is a section of A−

1
2 . Then the set of Eqs. (A.3) constitutes a homogeneous system of

1
4m

3(m−1)2 equations on 1
2m

2(m−1) unknowns. Pick allm(m−1) equations Bµνµ̃|µν , and all 1
2m(m−1)(m−2) equations

Bµνµ̃|µλ, which, dropping the Einstein summation convention, can be written as

0 = Γµµν(Cνν̃νµ̃ + Cµµ̃νµ̃) + Γννµ(Cµµ̃µµ̃ + Cµ̃ν̃µν + Cνν̃µµ̃)

+


σ ≠µ,ν


Γµνσ (Cµ̃σ̃µν − Cµσ̃νµ̃) + ΓµµσCνσ̃ νµ̃ − Γνµσ (Cµ̃σ̃µν + Cνσ̃µµ̃) + ΓννσCµσ̃µµ̃


,

0 = ΓµµνCλν̃νµ̃ + ΓµµλCµµ̃νµ̃ + Γννµ(Cµ̃ν̃µλ + Cλν̃µµ̃) − ΓννλCµν̃µµ̃

+ Γµνλ(Cµ̃λ̃µλ + Cµν̃νµ̃) + Γνλµ(Cλλ̃µµ̃ + Cµµ̃µµ̃ + Cµ̃λ̃µλ)

+


σ ≠λ,µ,ν


ΓµνσCµ̃σ̃µλ + ΓµµσCλσ̃νµ̃ − ΓµλσCµσ̃νµ̃ − Γνµσ (Cµ̃σ̃µλ + Cλσ̃µµ̃) + ΓνλσCµσ̃µµ̃


,

9 There is one notable exception that will be encountered in the odd-dimensional version of the theorem, but the argument there can be adapted with
no major difficulty.
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respectively. These sets of equations can be put into the matrix form (4.3), by defining, for all κ, ρ distinct, and µ < ν < λ,

Kκρ := Cκκ̃κκ̃ + Cκ̃ ρ̃κρ + Cρρ̃κκ̃ ,

Kµνλ :=

 Cµ̃λ̃µλ + Cµν̃νµ̃ Cλλ̃µµ̃ + Cµµ̃µµ̃ + Cµ̃λ̃µλ 0
0 Cν̃µ̃νµ + Cνλ̃λν̃ Cµµ̃νν̃ + Cνν̃νν̃ + Cν̃µ̃νµ

Cνν̃λλ̃ + Cλλ̃λλ̃ + Cλ̃ν̃λν 0 Cλ̃ν̃λν + Cλµ̃µλ̃

 ,

respectively. The latter has determinant

det(Kµνλ) = (Cµ̃λ̃µλ + Cµν̃νµ̃) · (Cν̃µ̃νµ + Cνλ̃λν̃) · (Cλ̃ν̃λν + Cλµ̃µλ̃)

+ (Cλλ̃µµ̃ + Cµµ̃µµ̃ + Cµ̃λ̃µλ) · (Cµµ̃νν̃ + Cνν̃νν̃ + Cν̃µ̃νµ) · (Cνν̃λλ̃ + Cλλ̃λλ̃ + Cλ̃ν̃λν),

which can be seen to be non-vanishing by the genericity assumption,10 and Kµν and Kµνλ are thus non-singular. Hence, the
term (4.6) is non-vanishing.

Further, one can check that the components of the Weyl tensor in the entries of Kµν and Kκµν have distinct index
structures from those in the remaining entries of K. Hence, we can apply Lemma 4.7 to conclude that K is non-singular,
thus establishing condition (4.2).
Case k = 1: Assume that the Weyl tensor is a section of C1 so that conditions (4.7) hold together with

Cµν̃κλ̃ = 0, (4.8)

for all µ, ν, κ , λ. Then Eqs. (A.7) become

0 = −2g
[µ|λ̃Aκ|ν]ρ̃ + gρ̃κAλ̃µν + 2Γ[µν]

σ̃Cρ̃σ̃ κλ̃ + 2Γ[µ|κ
σ̃Cλ̃|σ̃ |ν]ρ̃ =: Bµνρ̃|κλ̃. (A.7)

Now, suppose that the Weyl tensor is otherwise generic, and the Cotton–York tensor is a section of A
1
2 . Then the set of Eqs.

(A.7) constitutes a homogeneous system of 1
2m

4(m − 1) equations on 1
2m

2(m − 1) unknowns. Pick allm(m − 1) equations
Bµνν̃|νν̃ , and all 1

2m(m − 1)(m − 2) equations Bµνν̃|νκ̃

0 = Γννµ(Cµ̃ν̃µµ̃ + Cµ̃ν̃µµ̃) + ΓµµνCµ̃ν̃νµ̃ +


σ ≠µ,ν


ΓµνσCµ̃σ̃µµ̃ − ΓνµσCµ̃σ̃µµ̃ + ΓµµσCµ̃σ̃ νµ̃ − ΓνµσCµ̃σ̃µµ̃


,

0 = −ΓµµνCν̃µ̃κν̃ − ΓµµκCν̃µ̃νν̃ + Γνκµ(Cν̃µ̃ν̃µ − Cν̃κ̃ ν̃κ) + ΓµνκCν̃κ̃κν̃

+


σ ≠µ,ν,κ


ΓµνσCν̃σ̃ κν̃ − ΓνµσCν̃σ̃ κν̃ + ΓµκσCν̃σ̃ νν̃ − ΓνκσCν̃σ̃µν̃


.

These sets of equations can be put into the matrix form (4.3), where, for all κ, ρ distinct, and µ < ν < λ,

Kκρ := Cκ̃ ρ̃ρκ̃ , Kµνκ :=

 Cν̃κ̃κν̃ Cν̃µ̃ν̃µ − Cν̃κ̃ ν̃κ 0
0 Cκ̃µ̃µκ̃ Cκ̃ ν̃κ̃ν − Cκ̃µ̃κ̃µ

Cµ̃κ̃µ̃κ − Cµ̃ν̃µ̃ν 0 Cµ̃ν̃νµ̃


,

respectively. The latter has determinant

det(Kµνκ) = Cν̃κ̃κν̃ · Cκ̃µ̃µκ̃ · Cµ̃ν̃νµ̃ + (Cν̃µ̃ν̃µ − Cν̃κ̃ ν̃κ) · (Cκ̃ ν̃κ̃ν − Cκ̃µ̃κ̃µ) · (Cµ̃κ̃µ̃κ − Cµ̃ν̃µ̃ν),

which can be seen to be non-vanishing by the genericity assumption,11 and Kµν and Kµνκ are thus non-singular. Hence, the
term (4.6) is non-vanishing.

Further, one can check that the components of the Weyl tensor in the entries of Kµν and Kκµν have distinct index
structures from those in the remaining entries of K. Hence, we can apply Lemma 4.7 to conclude that K is non-singular,
thus establishing conditions (4.2).
Case k = 2: Assume that the Weyl tensor is a section of C2 so that conditions (4.7) and (4.8) hold together with

Cµ̃ν̃κλ̃ = 0, (4.9)

10 It may be of concern that the tracefree property of the Weyl tensor could make det(Kµνλ) vanish in principle. But if one notes that det(Kµνλ) depends
only on three distinct indices µ, ν, λ, we see that the only dimension where this issue could arise is six. To settle the issue, we expand the determinant and
eliminate the dependency of the components of the Weyl tensor by choosing a select few. A judicious choice leads to

det(Kµνλ) =
1
8
(Cµµ̃µµ̃ + Cµµ̃λλ̃ − Cµµ̃νν̃ + 4Cµν̃νµ̃) · (−Cνν̃νν̃ + Cνν̃λλ̃ + 3Cµµ̃νν̃ − 4Cµν̃νµ̃) · (Cνν̃νν̃ − Cµµ̃µµ̃ + Cµµ̃λλ̃ + Cνν̃λλ̃)

+
1
4
(3Cµµ̃µµ̃ + 5Cµµ̃λλ̃ + Cµµ̃νν̃) · (Cνν̃νν̃ + 2Cµµ̃νν̃ − Cµν̃νµ̃) · (Cµµ̃µµ̃ + Cνν̃νν̃ + 7Cµν̃νµ̃ − 5Cµµ̃νν̃ + Cνν̃λλ̃).

By the genericity assumption, this has to be non-vanishing.
11 If anything goes wrong because of the tracefree property of the Weyl tensor, it has to happen in six dimensions. But when m = 3, one can check that
the determinant simplifies to det(Kµνκ ) = 9Cν̃κ̃κν̃ · Cκ̃µ̃µκ̃ · Cµ̃ν̃νµ̃ , which is clearly non-vanishing.
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for all µ, ν, κ , λ. Then Eqs. (A.13) become

0 = −2g[µ̃|λAκ̃|ν̃]ρ + gρκ̃Aλµ̃ν̃ − Γρλ
σ̃Cκ̃ σ̃ µ̃ν̃ =: Bµ̃ν̃ρ|λκ̃ . (A.13)

Now, suppose that the Weyl tensor is otherwise generic, and the Cotton–York tensor is a section of A
3
2 . Then the set of Eqs.

(A.13) constitutes a homogeneous system of 1
2m

4(m− 1) equations on 1
2m

2(m− 1) unknowns. Pick allm(m− 1) equations
Bµ̃ν̃ν|νν̃ , and all 1

2m(m − 1)(m − 2) equations Bµ̃ν̃ν|λν̃

0 = −ΓνµνCµ̃ν̃µ̃ν̃ −


σ ≠µ,ν

ΓννσCν̃σ̃ µ̃ν̃, 0 = −ΓνµλCµ̃ν̃µ̃ν̃ −


σ ≠µ,ν

ΓνλσCν̃σ̃ µ̃ν̃,

respectively. These can be put into the matrix form (4.3), where, for all κ, ρ distinct, and µ < ν < λ,

Kκρ := Cκ̃ ρ̃κ̃ ρ̃, Kνλµ :=

Cµ̃ν̃µ̃ν̃ 0 0
0 Cλ̃µ̃λ̃µ̃ 0
0 0 Cν̃λ̃ν̃λ̃

 ,

respectively. The latter has determinant

det(Kµνλ) = Cµ̃ν̃µ̃ν̃ · Cλ̃µ̃λ̃µ̃ · Cν̃λ̃ν̃λ̃,

which can be seen to be non-vanishing by the genericity assumption, and Kµν and Kµνλ are thus non-singular. Hence, the
term (4.6) is non-vanishing.

Further, one can check that the components of the Weyl tensor in the entries of Kµν and Kκµν have distinct index
structures from those in the remaining entries of K. Hence, we can apply Lemma 4.7 to conclude that K is non-singular,
thus establishing conditions (4.2). �

Remark 4.9. In ‘low’ dimensions it can be checked from the Bianchi identity that the condition of Proposition 3.11 cannot
be sufficient for the integrability of N . It is however not clear whether this remains true in ‘high enough’ dimensions. In this
case the Cotton–York tensor would present no obstruction to the integrability of N .

4.2. The complex Goldberg–Sachs theorem in odd dimensions

We proceed as in even dimensions. The proof of the odd-dimensional generalisation of implication (b) of Theorem 4.1 is
identical to its even-dimensional counterpart.

Proposition 4.10. Let (M, g) be a (2m+1)-dimensional complex Riemannian manifold, where m ≥ 2. Let N be an almost null
structure on M, and U an open subset of M. Let k ∈ {0, 1, 2, 3, 4}. Suppose that the Weyl tensor is a section of Ck over U. Then
the Cotton–York tensor is a section of Ak−2 over U. Suppose further that N is integrable in U. Then the Cotton–York tensor is a
section of Ak−1 over U.

Next, the odd-dimensional generalisation of implication (b) of Theorem 4.1 can be expressed as follows.

Theorem 4.11. Let (M, g) be a (2m + 1)-dimensional complex Riemannian manifold, where m ≥ 2. Let N be an almost null
structure on M, and U an open subset of M. Let k ∈ {0, 1, 2, 3, 4}. Suppose that the Weyl tensor is a section of Ck over U, and
is otherwise generic. Suppose further that the Cotton–York tensor is a section of Ak−1 over U. Then N is integrable in U.

Proof. The odd-dimensional case follows exactly the same procedure as the even-dimensional one. Choose a local frame
{ξµ, ξ̃µ̃, ξ0} over U adapted to N . Then, we have local gradings (3.22) and (3.23) on the bundles C and A respectively.
The condition that the Weyl and the Cotton–York tensor be sections of Ck and Ak−1 respectively is equivalent to their
components in Ci and Ai−1 vanishing for all −4 ≤ i ≤ k − 1.

The integrability of the almost null structure, by Lemma 3.9, is then equivalent to the connection components satisfying

Γκµν = 0, (4.2)

Γκµ0 = 0, (4.10)

Γ0µν = 0, (4.11)

for all κ, µ, ν. These constitute 1
2m

2(m − 1), m2, and 1
2m(m − 1) conditions respectively.

As in the even-dimensional case, for each k ∈ {0, 1, 2, 3, 4}, the assertion of the theorem is proved by means of the
Bianchi identity, which, from the algebraic degeneracy of the Weyl and Cotton–York tensors, gives rise to a homogeneous
overdetermined system of linear equations on the unknowns Γκµν, Γκµ0 and Γ0µν for all κ, µ, ν. In fact, for each k ∈

{0, 1, 2, 3, 4}, we shall be able to split the proof into three steps, as it turns out that the relevant algebraic equations arising
from the Bianchi identity can be arranged into three systems. A first system consists of equations on Γκµν , a second one on
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Γκµν, Γκµ0, and a third one on Γκµν, Γκµ0, Γ0µν , for all κ, µ, ν. Hence, we will be able to conclude (4.2), (4.10) and (4.11)
successively, by considering suitable subsystems of these systems.

Thus, to show conditions (4.2), we can simply recycle the setup of the proof of Theorem 4.6, in particular matrix (4.3).

Remark 4.12. While Theorem 4.6 is stated for m ≥ 3 only, the proof can still be re-used in the case m = 2, i.e. when M is
five-dimensional. In this case, only the ‘upper half’ of the system (4.3) is relevant.

Once conditions (4.2) have been established, we can move on to show condition (4.10), by considering a system of linear
equations of the form

L1 ∗ · · · · · · ∗

∗ L2
...

...
. . .

Lµ

. . .

Lm
L12

L13
. . .

Lµν

...
...

. . . ∗

∗ · · · · · · ∗ Lm−1,m





Γ110
Γ220

...
Γµµ0

...
Γmm0
v12
v13
...

vµν

...
vm−1,m



=



0
0
...
0
...
0
02
02
...
02
...
02



, (4.12)

or Lv = 0 for short. Here, each entry of the m2
× 1 vector v corresponds to a connection component Γµν0. Some have been

arranged in pairs as defined by the 1
2m(m − 1) column vectors

vµν :=


Γµν0

−Γνµ0


,

for allµ < ν. As in the previous step, we have singled out thematrices Lµ and Lµν of dimensions 1×1 and 2×2 respectively.
Following the same argument as presented in the proof Theorem 4.6, these will play a central rôle in demonstrating that L
is non-singular. In particular, with reference to Lemma 4.7 and Eq. (4.4), the term D of the determinant of matrix (4.12) is
given by

D =


κ

Lκ


·


µ<ν

det(Lµν)


. (4.13)

Once conditions (4.10) have been established, we will be able to find a system of linear equations of the form

M12 ∗ · · · · · · ∗

∗ M13
...

...
. . .

Mµν

...
...

. . . ∗

∗ · · · · · · ∗ Mm−1,m





Γ012
Γ013

...
Γ0µν

...
Γ0,m−1,m


=



0
0
...
0
...
0


, (4.14)

orMw = 0 for short. Again, the diagonal entriesMµν for allµ, ν have been singled out for their crucial part in the application
of Lemma 4.7, where the term D of the determinant of matrix (4.14) is now given by

D =


µ<ν

Mµν . (4.15)

Case k = 0: Assume the Weyl tensor is a section of C0 so that conditions (4.7) hold together with

Cµνκ0 = Cµν̃κ0 = 0, (4.16)
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for all µ, ν, κ , λ. Then Eqs. (A.3)–(A.6) become

0 = 2gρ̃[κAλ]µν + 2Γ[µν]
σ̃Cρ̃σ̃ κλ + 4Γ[µ|[κ

σ̃Cλ]|σ̃ |ν]ρ̃ =: Bµνρ̃|κλ, (A.3)

0 = −Aκµν + 2Γ[µν]
σ̃C0σ̃ κ0 + 2Γ[µ|κ

σ̃C0σ̃ |ν]0 =: Bµν0|κ0, (A.4)

0 = gρ̃κA0µν + 2Γ[µν]
σ̃Cρ̃σ̃ κ0 + 2Γ[µν]

0Cρ̃0κ0 + 2Γ[µ|κ
σ̃C0σ̃ |ν]ρ̃ − 2Γ[µ|0

σ̃Cκσ̃ |ν]ρ̃ =: Bµνρ̃|κ0, (A.5)

0 = 2g
[µ|λ̃Aκ|ν]0 + 2Γ[µν]

σ̃C0σ̃ κλ̃ + 2Γ0[µ
σ̃Cν]σ̃ κλ̃ + 2Γ[ν|0|

σ̃Cµ]σ̃ κλ̃

+ 2Γ[µ|κ
σ̃Cλ̃σ̃ |ν]0 + 2Γ[µ|κ

0Cλ̃0|ν]0 + Γ0κ
σ̃Cλ̃σ̃µν =: Bµν0|κλ̃. (A.6)

Now, suppose that the Weyl tensor is otherwise generic and the Cotton–York tensor is a section of A−1. Then, we see that
Eq. (A.3) is identical to the one used in the proof of case k = 0 of Theorem 4.6. Hence, conditions (4.2) are established. We
also note that the same result can be equally derived from Eqs. (A.4).

Consequently, Eqs. (A.5) depend only on the connection components Γµν0 for all µ, ν. Now, pick m equations from the
m(m − 1) equations Bµνν̃|µ0, and allm(m − 1) equations Bµνµ̃|µ0:

0 = Γµµ0Cµµ̃νν̃ − Γνν0Cµν̃µν̃ + Γµν0(Cµν̃νν̃ + Cν̃0µ0) − Γνµ0(Cµµ̃µν̃ + Cν̃0µ0) +


σ ≠µ,ν


Γµσ0Cµσ̃νν̃ − Γνσ0Cµσ̃µν̃


,

0 = Γµµ0Cµµ̃νµ̃ − Γνν0Cµν̃µµ̃ + Γµν0(Cµν̃νµ̃ + Cµ̃0µ0) − Γνµ0(Cµµ̃µµ̃ + Cµ̃0µ0) +


σ ≠µ,ν


Γµσ0Cµσ̃νµ̃ − Γνσ0Cµσ̃µµ̃


,

respectively. These equations can be put into the matrix form (4.12) by defining

Lµ :=


Cµµ̃mm̃, for µ ≠ m,
Cm,m̃,m−1, m−1, for µ = m,

Lµν :=


Cµν̃νµ̃ + Cµ̃0µ0 Cµµ̃µµ̃ + Cµ̃0µ0
Cνµ̃µν̃ + Cν̃0ν0 Cνν̃νν̃ + Cν̃0ν0


, for all µ < ν,

respectively. Now, each matrix Lµν has determinant, for all µ < ν,

det(Lµν) = (Cµν̃νµ̃ + Cµ̃0µ0) · (Cνν̃νν̃ + Cν̃0ν0) − (Cµµ̃µµ̃ + Cµ̃0µ0) · (Cνµ̃µν̃ + Cν̃0ν0),

which can be seen to be non-vanishing by the genericity assumption.12 Hence, the term (4.13) is non-vanishing.
Further, one can check that the components of theWeyl tensor in the entries of Lµ and Lµν have distinct index structures

from those in the remaining entries of L. Hence, we can apply Lemma 4.7 to conclude that L is non-singular, thus establishing
conditions (4.10).

At this stage, Eqs. (A.6) only constrain the connection componentsΓ0µν for allµ, ν. Pick all 1
2m(m−1) equations Bµν0|µµ̃:

0 = Γ0µν(Cνν̃µµ̃ + Cµ̃ν̃µν + Cµµ̃µµ̃) +


σ ≠µ,ν

(Γ0µσ (Cνσ̃µµ̃ + Cµ̃σ̃µν) − Γ0νσCµσ̃µµ̃), (4.17)

which can be put in the matrix form (4.14) by defining, for every µ < ν,

Mµν := Cνν̃µµ̃ + Cµ̃ν̃µν + Cµµ̃µµ̃.

This is non-vanishing by the genericity assumption, and thus, the term (4.15) is non-vanishing.
As in the previous step, the components of theWeyl tensor in the diagonal entriesMµν ofM have distinct index structures

from those in the remaining entries ofK. Hence,we can apply Lemma4.7 to conclude thatM is non-singular, thus establishing
conditions (4.10).
Case k = 1: Assume that theWeyl tensor is a section ofC0, so that conditions (4.7), (4.16) and (4.8) hold. Then Eqs. (A.5)–(A.8)
become

0 = gρ̃κA0µν + 2Γ[µν]
σ̃Cρ̃σ̃ κ0 + 2Γ[µ|κ

σ̃C0σ̃ |ν]ρ̃ =: Bµνρ̃|κ0, (A.5)

0 = 2g
[µ|λ̃Aκ|ν]0 + 2Γ[µν]

σ̃C0σ̃ κλ̃ + 2Γ[µ|κ
σ̃Cλ̃σ̃ |ν]0 =: Bµν0|κλ̃, (A.6)

0 = −2g
[µ|λ̃Aκ|ν]ρ̃ + gρ̃κAλ̃µν + 2Γ[µν]

σ̃Cρ̃σ̃ κλ̃ + 2Γ[µν]
0Cρ̃0κλ̃ + 2Γ[µ|κ

σ̃Cλ̃|σ̃ |ν]ρ̃ + 2Γ[µ|κ
0Cλ̃|0|ν]ρ̃

=: Bµνρ̃|κλ̃, (A.7)

0 = gν̃κA00µ − Aκµν̃ + Γ0µ
σ̃Cν̃σ̃ κ0 − Γµ0

σ̃Cν̃σ̃ κ0 + Γµκ
σ̃C0σ̃ ν̃0 − Γµ0

σ̃Cκσ̃ ν̃0 + Γ0κ
σ̃C0σ̃µν̃ =: Bµν̃0|κ0. (A.8)

12 Again, the tracefree property of the Weyl tensor may seem problematic when m = 2. But in that case, some manipulations show that det(Lµν) =

2Cµ0µ̃0 · (Cµνµ̃ν̃ − Cµν̃µ̃ν), which is clearly non-vanishing.
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Now, suppose that the Weyl tensor is otherwise generic, and the Cotton–York tensor is a section of A0. Then, both sets of
Eqs. (A.5) and (A.6) are equations on Γκµν for all κ, µ, ν. Now, pick allm(m−1) equations Bµν0|µν̃ and all 1

2m(m−1)(m−2)
equations Bµν0|µλ̃

0 = −ΓµµνC0µ̃µν̃ + ΓννµC0ν̃µν̃ +


σ ≠µ,ν


ΓµνσC0σ̃µν̃ − Γνµσ (C0σ̃µν̃ + Cν̃σ̃µ0) + ΓµµσCν̃σ̃ ν0


,

0 = −Γµµν(C0µ̃µλ̃ − Cλ̃ν̃ν0) + Γννµ(C0ν̃µλ̃ + Cλ̃ν̃µ0) + ΓµνλC0λ̃µλ̃ + ΓνλµC0λ̃µλ̃

+


σ ≠µ,ν,λ


ΓµνσC0σ̃µλ̃ − Γνµσ (C0σ̃µλ̃ + Cλ̃σ̃µ0) + ΓµµσCλ̃σ̃ ν0


,

respectively. These can be put in matrix form (4.3) by defining, for all κ, ρ distinct, and µ < ν < λ,

Kκρ := C0κ̃ρκ̃ , Kµνλ :=

C0λ̃µλ̃ C0λ̃µλ̃ 0
0 C0µ̃νµ̃ C0µ̃νµ̃

C0ν̃λν̃ 0 C0ν̃λν̃

 .

The latter has determinant

det(Kµνλ) = 2C0λ̃µλ̃ · C0µ̃νµ̃ · C0ν̃λν̃,

which can be seen to be non-vanishing by the genericity assumption. So, Kµν and Kµνλ are non-singular, and thus, the term
(4.6) is non-vanishing.

Further, one can check that the components of the Weyl tensor in the entries of Kµν and Kκµν have distinct index
structures from those in the remaining entries of K. Hence, we can apply Lemma 4.7 to conclude that K is non-singular,
thus establishing conditions (4.2).

Now, Eqs. (A.7) constrain only Γµν0 for all µ, ν. Pickm equations from them(m− 1) equations Bµνν̃|µν̃ , and allm(m− 1)
equations Bµνµ̃|µµ̃

0 = Γµν0Cν̃0µν̃ − 2Γνµ0Cν̃0µν̃ + Γµµ0Cν̃0νν̃, 0 = Γµν0Cµ̃0µµ̃ − 2Γνµ0Cµ̃0µµ̃ + Γµµ0Cµ̃0νµ̃,

respectively. These can be put into matrix form (4.12) by defining

Lµ :=


Cm̃0mm̃, for all µ ≠ m,
Cm−1,0,m−1, m−1, for µ = m,

Lµν :=


Cµ̃0µµ̃ 2Cµ̃0µµ̃

2Cν̃0νν̃ Cν̃0νν̃


, for all µ < ν,

respectively. At a glance, we see that each of Lµ and Lµν , since det(Lµν) = −3Cµ̃0µµ̃ ·Cν̃0νν̃ , are non-singular by the genericity
assumption, and thus, the term (4.13) is non-vanishing.

Further, one can check that the components of theWeyl tensor in the entries of Lµ and Lµν have distinct index structures
from those in the remaining entries of L. Hence, we can apply Lemma 4.7 to conclude that L is non-singular, thus establishing
conditions (4.10).

Finally, Eqs. (A.8) now constrain only Γ0µν for all µ, ν. Pick all 1
2m(m − 1) equations Bµν̃0|µ0

0 = Γ0µνC0ν̃µν̃ +


σ ≠µ,ν

Γ0µσ


Cν̃σ̃µ0 + C0σ̃µν̃


,

which can be put into the matrix form (4.14) by defining, for every µ < ν,

Mµν := C0ν̃µν̃ .

By the genericity assumption, eachMµν is non-vanishing, and thus, the term (4.15) is non-vanishing.
Further, one can check that the components of the Weyl tensor in the diagonal entries Mµν of M have distinct index

structures from those in the remaining entries of M. Hence, we can apply Lemma 4.7 to conclude that M is non-singular,
thus establishing conditions (4.11).
Case k = 2: Assume the Weyl tensor is a section of C1 so that conditions (4.7), (4.16) and (4.8) hold together with

Cµν̃κ̃0 = 0, (4.18)

for all µ, ν, κ . Then Eqs. (A.7)–(A.12) become

0 = −2g
[µ|λ̃Aκ|ν]ρ̃ + gρ̃κAλ̃µν + 2Γ[µν]

σ̃Cρ̃σ̃ κλ̃ + 2Γ[µ|κ
σ̃Cλ̃|σ̃ |ν]ρ̃ =: Bµνρ̃|κλ̃, (A.7)

0 = gν̃κA00µ − Aκµν̃ + Γµκ
σ̃C0σ̃ ν̃0 =: Bµν̃0|κ0, (A.8)

0 = 2g[µ̃|κA0|ν̃]ρ − Γρ0
σ̃Cκσ̃ µ̃ν̃ − Γρκ

σ̃C0σ̃ µ̃ν̃ =: Bµ̃ν̃ρ|κ0, (A.9)
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0 = 4g[µ̃|[κAλ]|ν̃]0 + 2Γ0[κ
σ̃Cλ]σ̃ µ̃ν̃ =: Bµ̃ν̃0|κλ, (A.10)

0 = 2g[µ|κ̃A0|ν]ρ̃ + 2Γ[µν]
σ̃Cρ̃σ̃ κ̃0 + 2Γ[µν]

0Cρ̃0κ̃0 − 2Γ[µ|0
σ̃Cκ̃|σ̃ |ν]ρ̃ =: Bµνρ̃|κ̃0, (A.11)

0 = 4g[µ|[κ̃Aλ̃]|ν]0 + 2Γ[µν]
σ̃C0σ̃ κ̃ λ̃ + 2Γ0[µ

σ̃Cν]σ̃ κ̃ λ̃ + 2Γ[ν|0|
σ̃Cµ]σ̃ κ̃ λ̃ =: Bµν0|κ̃ λ̃. (A.12)

Now, suppose the Weyl tensor is otherwise generic, and the Cotton–York tensor is a section of A1. Then, referring to the
proof of case k = 1 of Theorem 4.6, Eqs. (A.7) lead immediately to conditions (4.2). Alternatively, one could use Eqs. (A.8).

Next, Eqs. (A.9) are now equations on Γκµ0 for all κ, µ. Pick a subset ofm equations of Bµ̃ν̃µ|ν0 and allm(m−1) equations
Bµ̃ν̃µ|µ0

0 = Γµµ0Cνµ̃µ̃ν̃ + Γµν0Cνν̃µ̃ν̃ +


σ ≠µ,ν

Γµσ0Cνσ̃ µ̃ν̃, 0 = Γµµ0Cµµ̃µ̃ν̃ + Γµν0Cµν̃µ̃ν̃ +


σ ≠µ,ν

Γµσ0Cµσ̃ µ̃ν̃,

respectively, which can be put into matrix form (4.12) by defining

Lµ :=


−Cm,µ̃,m̃,µ̃, for all µ ≠ m,
−Cm−1,m̃, m−1,m̃, for µ = m,

Lµν :=


Cµν̃µ̃ν̃ 0

0 −Cνµ̃ν̃µ̃


, for all µ < ν,

respectively. Each Lµν and each Lµ are obviously non-singular by the genericity assumption. Hence, the term (4.6) is non-
vanishing.

Further, one can check that the components of theWeyl tensor in the entries of Lµ and Lµν have distinct index structures
from those in the remaining entries of L. Hence, we can apply Lemma 4.7 to conclude that L is non-singular, thus establishing
conditions (4.10).

Finally, Eqs. (A.10) now constrain Γ0µν for all µ, ν. Pick all 1
2m(m − 1) equations Bµ̃ν̃0|µν

0 = Γ0µν(Cµµ̃µ̃ν̃ + Cνν̃µ̃ν̃) +


σ ≠µ,ν

(Γ0µσCνσ̃ µ̃ν̃ − Γ0νσCµσ̃ µ̃ν̃)

which can be put into matrix form (4.14) by defining, for all µ < ν,

Mµν := Cµµ̃µ̃ν̃ + Cνν̃µ̃ν̃

which is non-vanishing by the genericity assumption. Hence, the term (4.15) is non-vanishing.
Unlike the two previous steps, an issue regarding the index structures of the components of the Weyl tensor arises.

Indeed, components of the form Cµµ̃µ̃ν̃ for all µ, ν occur in bothMµν and the remaining entries ofM. This can be seen from
the tracefree property of the Weyl tensor,

Cνσ̃ µ̃ν̃ = (Cµµ̃µ̃σ̃ − Cσ σ̃ µ̃σ̃ ) − Cν̃σ̃ µ̃ν −


ρ≠µ,ν,σ

(Cρσ̃ µ̃ρ̃ − Cρ̃σ̃ µ̃ρ) − C0σ̃ µ̃0,

for allµ, ν, σ . This would thus preclude the application of Lemma 4.7 as we have previously used it. However, defining new
index structures by setting Cµ̃ν̃+ := Cµµ̃µ̃ν̃ + Cνν̃µ̃ν̃ and Cµ̃ν̃− := Cµµ̃µ̃ν̃ − Cνν̃µ̃ν̃ for all µ, ν, removes this ambiguity. The
hypotheses of Lemma 4.7 are now fulfilled, and yield the desired result, i.e. conditions (4.11).

Case k = 3: Assume the Weyl tensor is a section of C3, so that conditions (4.7), (4.16), (4.8), (4.18) and (4.9) hold. Then Eqs.
(A.11)–(A.14) become

0 = 4g[µ|[κ̃Aλ̃]|ν]0 + 2Γ[µν]
σ̃C0σ̃ κ̃ λ̃ =: Bµν0|κ̃ λ̃, (A.11)

0 = 2g[µ|κ̃A0|ν]ρ̃ + 2Γ[µν]
σ̃Cρ̃σ̃ κ̃0 =: Bµνρ̃|κ̃0, (A.12)

0 = −2g[µ̃|λAκ̃|ν̃]ρ + gρκ̃Aλµ̃ν̃ − Γρλ
σ̃Cκ̃ σ̃ µ̃ν̃ − Γρλ

0Cκ̃0µ̃ν̃ =: Bµ̃ν̃ρ|κ̃λ, (A.13)

0 = gνκ̃A00µ̃ − Aκ̃µ̃ν + Γν0
σ̃Cµ̃σ̃ κ̃0 − Γ0ν

σ̃Cµ̃σ̃ κ̃0 − Γν0
σ̃Cκ̃ σ̃0µ̃ =: Bµ̃ν0|κ̃0. (A.14)

Now, suppose the Weyl tensor is otherwise generic, and the Cotton–York tensor is a section of A2. Eqs. (A.11) and (A.12)
constrain Γµνκ for all κ, µ, ν. Pick allm(m − 1) equations Bµνµ̃|ν̃0 and all 1

2m(m − 1)(m − 2) equations Bµνµ̃|κ̃0

0 = ΓννµCµ̃ν̃ν̃0 +


σ ≠µ,ν

(ΓµνσCµ̃σ̃ ν̃0 − ΓνµσCµ̃σ̃ ν̃0),

0 = ΓννµCµ̃ν̃κ̃0 + ΓµνκCµ̃κ̃κ̃0 + ΓνκµCµ̃κ̃κ̃0 +


σ ≠µ,ν,κ

(ΓµνσCµ̃σ̃ κ̃0 − ΓνµσCµ̃σ̃ κ̃0),
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which can be put in matrix form (4.3) by defining, for all κ, ρ distinct, and µ < ν < λ,

Kκρ := Cρ̃κ̃ κ̃0, Kµνκ :=

Cµ̃κ̃κ̃0 Cµ̃κ̃κ̃0 0
0 Cν̃µ̃µ̃0 Cν̃µ̃µ̃0

Cκ̃ ν̃ν̃0 0 Cκ̃ ν̃ν̃0


,

respectively. That these matrices are non-singular by the genericity assumption is clear, and so the term (4.6) is non-
vanishing.

Further, one can check that the components of the Weyl tensor in the entries of Kµν and Kκµν have distinct index
structures from those in the remaining entries of K. Hence, we can apply Lemma 4.7 to conclude that K is non-singular.

Next, Eqs. (A.13) now constrain Γµν0 for all µ, ν, and conditions (4.10) follow directly from any subsets ofm2 equations

0 = −Γρλ0Cκ̃0µ̃ν̃ .

Finally, Eqs. (A.14) now only constrain Γ0νκ for all κ, ν. Pick 1
2m(m − 1) equations Bµ̃µ0|κ̃0

0 = −Γ0µκCµ̃κ̃κ̃0 −


σ ≠µ,ν,κ

Γ0µσCµ̃σ̃ κ̃0,

which can be put in matrix form (4.12) by defining, for all µ < κ ,

Mµκ := −Cµ̃κ̃κ̃0.

This is non-vanishing by the genericity assumption, and thus the term (4.13) is non-vanishing too.
Further, one can check that the components of the Weyl tensor in the diagonal entries Mµν of M have distinct index

structures from those in the remaining entries of M. Hence, we can apply Lemma 4.7 to conclude that M is non-singular,
thus establishing conditions (4.10).
Case k = 4: Assume that theWeyl tensor is a section ofC4, so that conditions (4.7), (4.16), (4.8), (4.18) and (4.9) hold together
with

Cκ̃0µ̃ν̃ = 0, (4.19)

for all κ, µ, ν. Then Eqs. (A.13)–(A.16) become

0 = gνκ̃A00µ̃ − Aκ̃µ̃ν =: Bµ̃ν0|κ̃0, (A.13)

0 = −2g[µ̃|λAκ̃|ν̃]ρ + gρκ̃Aλµ̃ν̃ − Γρλ
σ̃Cκ̃ σ̃ µ̃ν̃ =: Bµ̃νρ|κ̃ λ̃, (A.14)

0 = gρκ̃A0µ̃ν̃ − Γρ0
σ̃Cκ̃ σ̃ µ̃ν̃ =: Bµ̃ν̃ρ|κ̃0, (A.15)

0 = 2g[µ̃|λAκ̃|ν̃]0 − Γ0λ
σ̃Cκ̃ σ̃ µ̃ν̃ =: Bµ̃ν̃0|κ̃λ. (A.16)

Now, suppose that theWeyl tensor is otherwise generic, and the Cotton–York tensor is a section ofA3. Referring to the proof
of case k = 2 of Theorem 4.6, Eqs. (A.14) leads immediately to conditions (4.2).

Next, Eqs. (A.15) now constrain only Γκµ0 for all κ, µ. Choosem equations of Bµ̃ν̃ν|µ̃0 and allm(m− 1) equations Bµ̃ν̃µ|µ̃0

0 = Γνν0Cµ̃ν̃µ̃ν̃ +


σ ≠µ,ν,ρ

Γρσ0Cµ̃σ̃ µ̃ν̃, 0 = Γµν0Cµ̃ν̃µ̃ν̃ +


σ ≠µ,ν,ρ

Γρσ0Cµ̃σ̃ µ̃ν̃,

respectively. These can be put into the matrix form (4.12) by defining

Lν :=


Cm̃ν̃m̃ν̃, for all ν ≠ m,
Cm−1m̃m−1m̃, for ν = m,

Lµν :=


Cµ̃ν̃µ̃ν̃ 0

0 −Cν̃µ̃ν̃µ̃


, for all µ < ν,

respectively, and det(Lµν) = −(Cµ̃ν̃µ̃ν̃)
2. These are clearly non-singular by the genericity assumption, and thus, the term

(4.13) is non-vanishing.
Further, one can check that the components of theWeyl tensor in the entries of Lµ and Lµν have distinct index structures

from those in the remaining entries of L. Hence, we can apply Lemma 4.7 to conclude that L is non-singular, thus establishing
conditions (4.10).

Finally, Eqs. (A.16) now constrain Γ0µν only. Pick all 1
2m(m − 1) equations Bµ̃ν̃0|µ̃µ

0 = −Γ0µνCµ̃ν̃µ̃ν̃ −


σ ≠µ,ν

Γ0µσCµ̃σ̃ µ̃ν̃,

which can be put in matrix form (4.14) by defining, for all µ < ν,

Mµν := −Cµ̃ν̃µ̃ν̃ .
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The genericity assumption tells us that this is non-vanishing, and so, the term (4.15) is non-vanishing.
Further, one can check that the components of the Weyl tensor in the entries ofMµν have distinct index structures from

those in the remaining entries ofM. Hence, we can apply Lemma 4.7 to conclude thatM is non-singular, and condition (4.11)
holds true. �

4.3. Conformal invariance

An alternative way to relate the algebraic properties of theWeyl tensor and the Cotton–York tensor, and the integrability
of the almost null structure as given by the propositions and theorems above is to consider a conformal change of metric

ĝ = Ω2g (4.20)

for some non-vanishing holomorphic function Ω : M → C. First, it is clear that under such a change, the defining property
of the null distribution and its orthogonal complement is invariant, i.e. ĝ is degenerate on N if and only if g is. Further, since
the involutivity of these distributions does not depend on the metric, we obtain

Lemma 4.13. The integrability of an almost null structure N is a conformally invariant property.

It then comes as no surprise that the integrability condition of N given in Proposition 3.11 is itself purely conformal since
it only involves the conformally invariant Weyl tensor.

Now define ϒ := g(Ω−1
∇Ω) and denote by ∇̂ the Levi-Civita connection of ĝ . If Â denotes the Cotton–York tensor of

∇̂ , it is well-known (see e.g. [11] and references therein) that under the conformal change (4.20) the Cotton–York tensor
transforms as

Â(X, Y , Z) = A(X, Y , Z) − C(ϒ,X, Y , Z) (4.21)

for all X, Y , Z ∈ Γ (TM). In four dimensions, similar statements can be made with regard to the self-dual and anti-self-dual
parts of the Weyl and Cotton–York tensors. By Lemma 3.7, we can now conclude

Lemma 4.14. Let (M, g) be a (2m + ϵ)-dimensional complex Riemannian manifold endowed with an almost null structure N ,
where ϵ ∈ {0, 1} and m ≥ 2. Assume 2m + ϵ ≥ 5. When ϵ = 0, respectively, ϵ = 1, if the Weyl tensor is a section of Ck for
k ∈ {0, 1, 2}, respectively for k ∈ {0, 1, 2, 3, 4}, then the property that the Cotton–York is a section of Ak− 1

2 , respectively Ak−1,
is conformally invariant.

Assuming 2m + ϵ = 4 and N self-dual, if the self-dual part of the Weyl tensor is a section of +Ck for k ∈ {0, 1, 2}, then the
property that the self-dual part of the Cotton–York is a section of +Ak− 1

2 is conformally invariant.

It then follows immediately that Propositions 4.5 and 4.10, and Theorems 4.1, 4.6 and 4.11 are conformally invariant.

5. Further degeneracy

5.1. On the genericity assumption of the Weyl tensor

In general, imposing additional structures on a complex Riemannianmanifold (M, g) and its almost null structureN will
make the Weyl tensor degenerate further, and it is therefore important to keep track of the emerging algebraic relations
between the components of the Weyl tensor to check whether Theorems 4.6 and 4.11 remain valid. If one realises that
the proofs fail under stronger assumptions, one may still have the option of making a different choice of components, and
succeed in proving the assertion of the theorem, although in some cases [30], no such choice may present itself.

Here, we list a number of reasons leading to further degeneracy to the Weyl tensor:

• The basic framework of the results of Section 4 is the filtered vector bundles (C, {C i
}) and (A, {Ai

}). However, as pointed
out in Remarks 2.4 and 3.6, it is possible to refine the classifications of the Weyl tensor and the Cotton–York tensor by
considering the irreducible p-modules contained in each of the quotient bundles C i/C i+1 and Ai/Ai+1. In particular,
Propositions 4.5 and 4.10 can certainly be made more precise. Extensions of Theorems 4.6 and 4.11 in this setting,
however, are less straightforward. Such a generalisation would remain invariant under P .

• One may consider the algebraic degeneracy of the Weyl tensor with respect to more than one almost null structure, in
particular, any of the canonical almost null structures defined in Section 3.3, in which case the discussion ceases to be
P-invariant. This is a generalisation of the four-dimensional Petrov type D condition.

• The discussion can also be extended in a natural way to real smooth pseudo-Riemannian manifolds, in which case
the almost null structure must satisfy certain reality conditions. In fact, Theorem 4.1 was initially stated in Lorentzian
geometry.
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Of course, any combinations of these further degenerate cases can be used.We shall leave the first of these considerations
for now, although we shall briefly comment on it in Section 5.4.3. Instead, we focus on the last two points.

Before we proceed, some scepticism might be expressed as to whether the rather broad genericity assumption used in
the proofs of Theorems 4.6 and 4.11 is reasonable. In other words, one may ask the question: are there any ‘interesting’
real or complex (pseudo-)Riemannian manifolds, whose conformal curvature does not degenerate so much as to make the
claims invalid? But the present work has precisely been motivated by the existence of such explicit examples as the Kerr-
NUT-AdS metric [17], which is, in fact, endowed with multiple null structures and a reality structure, and a certain class of
higher-dimensional Kerr–Schild metrics [39]. On the other hand, it is worth pointing out that those manifolds that do not
fall into the ‘generic’ class may well exhibit other geometric structures of interest—a five-dimensional Lorentzian class of
such manifolds is considered in [40].

Remark 5.1. It would also be instructive to derive the Jordan normal forms of the Weyl tensor, regarded as a section of the
bundle of endomorphisms of


• T∗M, corresponding to the each of the degeneracy classes Ck. In this way, the genericity

assumption could become more transparent. Further, the eigenvalue structure would provide necessary conditions for the
existence of a null structure by means of curvature invariants [41]. This being said, it was shown in [30], at least in five
dimensions, Lorentzian signature, that the Jordan normal form alone does not determine the algebraic speciality of the
Weyl tensor. In fact, the existence of a certain number of null eigenforms, both simple and non-simple, appears to be a
crucial factor in that matter.13

5.2. Degeneracy of the Cotton–York tensor

The content of Propositions 4.5 and 4.10 is really that the Cotton–York tensor should be regarded as an obstruction to the
integrability of an almost null structurewhen theWeyl tensor is algebraically special with respect to it. In fact, Theorems 4.6
and 4.11 do not depend on any genericity assumption on the Cotton–York tensor. Thus, one may apply stronger conditions
on the Cotton–York tensor without affecting Theorems 4.6 and 4.11, i.e. the almost null structure remains integrable. These
will in general no longer be conformally invariant by Eq. (4.21).

An interesting issue that arises as a result of further degeneracy of the Cotton–York tensor, such as the Einstein condition,
is whether one can deduce that more connection components vanish, i.e. the null structure enjoy further geometric
properties, beside integrability, as determined, e.g. by the differential equations (3.26) or (3.27). In four dimensions, we
know that this is not the case. In higher dimensions, if the Weyl tensor is a generic section of C0, then the integrability
of the almost null structure is also all one can deduce. On the other hand, for the other degeneracy classes Ck for k > 0,
the Einstein condition yields algebraic relations between the Weyl tensor components and the connection components.
Viewed as a homogeneous system of linear equations on the connection components, it is an open question as to whether
these components must also vanish in high enough dimensions—in low dimensions such a system is underdetermined. It
is worth pointing out, however, [30] that additional reality conditions on five-dimensional Einstein manifolds do lead, in
some instances, to further degeneracy of the connection components.

5.3. Multiple null structures

Recall from Section 3.3 that the normal form of the metric (locally) determines 2m canonical almost null structures, the
set ofwhich is denotedBS . It is then pertinent to consider the algebraic properties of theWeyl and Cotton–York tensorswith
respect to any number of almost null structures in BS , and such an approach is clearly no longer P-invariant. Nonetheless,
for a chosen almost null structure N , one may still refer to the Weyl tensor as a section of Ck with respect to N for some k,
and similarly for the Cotton–York tensor. In particular, one could apply Propositions 4.5 and 4.10 repeatedly for any number
of distinct almost null structures.

On the other hand, one has to be a little more cautious if one wishes to generalise Theorems 4.6 and 4.11 in the present
context. Indeed, assuming the algebraic degeneracy of the Weyl tensor with respect to two or more almost null structures
will violate the genericity condition on theWeyl tensor. There is not enough space for a full treatment of this problem here.
Instead, we focus on a generalisation of the four-dimensional Petrov type D condition in the sense that the self-dual part of
the Weyl tensor is algebraically special with respect to two distinct self-dual almost null structures, i.e. it can be viewed as
a section of +C0 with respect to each of these. A similar definition can bemade regarding the anti-self-dual part of theWeyl
tensor.

In higher dimensions, the situation is analogous except for matters of self-duality. For clarity, the algebraic conditions on
the Weyl tensor and the Cotton–York tensor are given explicitly.

13 One can already see that if the Weyl tensor is a section of C0 , then any simple section of
2

(V∗)1 , i.e. scalar multiples of θ̃µ̃
∧ θ̃ν̃ for all µ, ν, is an

eigenform of C .
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Theorem 5.2. Let (M, g) be a (2m + ϵ)-dimensional complex Riemannian manifold, where ϵ ∈ {0, 1} and 2m + ϵ ≥ 5. Let N
be an almost null structure on M, and let B be a subset of BS , the set of all canonical almost null structures on (some open subset
of) M as defined in Section 3.3. Suppose that the Weyl tensor and the Cotton–York tensor (locally) satisfy

C(X, Y , Z, ·) = 0, A(Z,X, Y ) = 0, (5.1)

respectively, for all X, Y ∈ Γ (N ⊥

M ), and Z ∈ Γ (NM), for all NM ∈ B . Suppose further that the Weyl tensor is otherwise generic.
Then the almost null structures in B are (locally) integrable.

Proof. For definiteness, we treat the odd-dimensional case only. With no loss of generality, we can assume that N =

N1,2,...,m ∈ B. Let NM be a canonical almost null structure in B distinct from N . In particular, M = {µ1, . . . , µp} ⊂

S = {1, 2, . . . ,m}, whereµi ≠ µj for all i ≠ j. Let M = S \M . Suppose that theWeyl tensor and Cotton–York tensors satisfy
conditions (5.1) with respect to both N and NM . In particular, in the latter case, we have conditions on the components of
the Weyl tensor given by

Cµiµjµkκ = Cµi0µkκ = Cν̃iµjµkκ = Cµiµjµk κ̃ = Cµi0µk0 = Cν̃i0µkκ = Cµi0µk κ̃ = Cν̃iµjµk0 = 0, (5.2)

Cν̃iµjµk κ̃ = Cµi ν̃j ν̃kκ = Cν̃i0µk0 = 0, (5.3)

Cν̃i0µk κ̃ = Cµi0ν̃kκ = Cµi ν̃j ν̃k0 = Cµi ν̃j ν̃k κ̃ = Cν̃i ν̃j ν̃kκ = Cν̃i0ν̃k0 = Cν̃i0ν̃k κ̃ = Cν̃i ν̃j ν̃k κ̃ = 0, (5.4)

for all µi ∈ M , and µ̃j ∈ M , and all κ . We note that there is some redundancy in the sense that conditions (5.2) are also
satisfied by virtue of the algebraic degeneracy of the Weyl tensor with respect to N . Further, conditions (5.4) are absent in
the proof of Theorem 4.11 (case k = 0). So the only issue that might arise concerns conditions (5.3). Now, recall that the
entries of the matrices Kµν,Kκµν, Lµ, Lµν and Mµν in the proofs of Theorems 4.6 and 4.11 are linear combinations of the
components

Cµνµ̃ν̃, Cµµ̃νν̃, and Cµ0µ̃0, (5.5)

for all µ, ν. By inspection, it is then clear that none of the conditions (5.3) violate the genericity assumption on components
(5.5). Hence, Theorems 4.6 and 4.11 apply to N , i.e. N is integrable.

It now remains to show that NM is also integrable.14 To this end, we note that the two almost null structures N and NM
are interchanged by the symmetry

µi ↔ µ̃i,

for allµi ∈ M . In particular, the components (5.5) remain invariant under this symmetry, and thus, the genericity assumption
on these is not violated. We can therefore apply Theorems 4.6 and 4.11 to conclude that NM is integrable.

At this stage, since NM ∈ B was arbitrary, we can extend the above argument to any number of canonical almost null
structures in B, which proves the claim of the theorem. �

Remark 5.3. It is well-known that in four dimensions, the maximum number of null structures on a non-conformally flat
complex Riemannian manifold is four—both self-dual and anti-self-dual part of the Weyl tensors are then of type D. One
may conjecture whether this upper bound is 2m for a (2m + ϵ)-dimensional manifold, where ϵ ∈ {0, 1}. In [30], however, a
counterexample to the conjecture is presented in five dimensions—theMyers–Perry black hole with one rotation coefficient
has eight null structures. But it is not clear whether this is a feature of odd dimensions only.

Remark 5.4. In [16], it is shown that the integrability condition for the existence of a conformal Killing-Yano 2-form φ in
normal form with distinct eigenvalues on (M, g) is precisely that the Weyl tensor satisfies condition (5.1) where B = BS .
Further, if the exterior derivative of φ satisfies

dφ(X, Y , Z) = 0,

for all X, Y ∈ Γ (N ⊥

M ), and Z ∈ Γ (NM), for all NM ∈ BS , then (M, g) locally admits 2m null structures. We note that
this result makes no assumption on the genericity of the Weyl tensor, and indeed, it is certainly true in the conformally
flat case. On the other hand, this suggests that Theorem 5.2 together with some additional conditions on the non-vanishing
components of theWeyl tensor could provide sufficient conditions for the existence of such a conformal Killing-Yano 2-form,
as in the four-dimensional case [18,6].

14 In general, the fact that N is already integrable will imply that some of connection components obstructing the integrability of NM will vanish, but
this does not affect the argument.
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5.4. Real versions

Let (M, g) be a real (2m + ϵ)-dimensional orientable pseudo-Riemannian smooth manifold, where ϵ ∈ {0, 1} and
2m + ϵ ≥ 5. We now work in the smooth real category. Thus, the tangent bundle TM, the cotangent bundle T∗M, and
tensor products thereof, such as the bundle C ofWeyl tensors, and the bundle A of Cotton–York tensors, are all smooth real
vector bundles.

An almost null structure on (M, g) can then be defined as a complex subbundle N of the complexified tangent bundle
C ⊗ TM, which is totally null with respect to the complexified metric, and of rankm, i.e.

N ⊂ N ⊥
⊂ C ⊗ TM. (5.6)

To clarify the following discussion, we recall that the orthogonal complement of a real subbundle of TM, respectively, a
complex subbundle of C ⊗ TM, is taken with respect to the real metric, respectively, the complexified metric. In both cases,
it is denoted by a ·

⊥.
The complexified tangent bundle is naturally equipped with a reality structure, induced from an involutory complex-

conjugation operation¯ : C ⊗ TM → C ⊗ TM, which preserves the real metric. This motivates the following definition.

Definition 5.5 ([42]). Let N be an almost null structure on (M, g). The real index rp of the fibre Np over a point p ∈ M is
the dimension of the intersection of N and its complex conjugate N , i.e. rp = dimNp ∩ N p. If rp = rq for any points p, q in
some open subset U of M, we say that N has (constant) real index r in U.

The signature of the metric imposes restrictions on the possible values of the real index r as made precise by the next
lemma.

Lemma 5.6 ([42]). Let N be an almost null structure on a pseudo-Riemannian manifold (M, g) where g has signature (k, ℓ),
i.e. (k positive eigenvalues, ℓ negative eigenvalues), with k+ ℓ = 2m+ ϵ. Then at any given point p ∈ M, the real index rp of the
fibre Np must be a non-negative integer such that rp ≤ min{k, ℓ} and
• rp ∈ {min{k, ℓ} mod 2} when ϵ = 0, and
• rp ∈ {min{k, ℓ} mod 1} when ϵ = 1.

Assuming the real index r to be constant in some open subset of M, the intersection N ∩ N gives rise to a complexified
real totally null subbundle R of the tangent bundle of rank r .

In Section 3, we have distinguished the concept of integrability and involutivity (or formal integrability), and the
Frobenius theorem tells us that these are essentially equivalent. While it may seem that this distinction is thus superfluous
in the holomorphic category, in the smooth category, it becomes somewhat ambiguous. If the distributions N , N , N ⊥ and
N

⊥ are involutive, so are the real spans of the intersections N ∩ N and N ⊥
∩ N

⊥. Hence, by the Frobenius theorem, R
is integrable, and, following the same arguments of Lemma 3.9, is tangent to totally null and geodetic real submanifolds of
dimension r . In addition, each fibre of the vector bundleN +N /N ∩N is naturally equippedwith a complex structure, and
the quotient manifoldM/R thus acquires the structure of a CRmanifold of codimension r +ϵ. However, this CRmanifold is
in general not embeddable, i.e. its underlying complex structure is involutive, but not integrable.Whether this CRmanifold is
embeddable or not,we shall nonetheless refer to such anull structure as being integrable. In the real-analytic category, on the
other hand, one can simply complexify M and work in the holomorphic category, in which case the embeddability of the CR
structure will follow. The involutivity of the complex conjugate pair of almost null structures gives rise to two holomorphic
foliations of the complexified manifold, and the intersection of the leaves of these foliations are the complexification of
totally null and geodetic leaves of a real foliation of the original real manifold. These analytical issues for even-dimensional
Lorentzian manifolds are discussed in [13].

An almost null structure of constant real index on (M, g) is equivalent to the reduction of the structure group of the
frame bundle to a real Lie group, RP say, of SO(k, ℓ). Its complexification can be viewed as the intersection of the complex
parabolic subgroups N P and N P , preserving the almost null structures N and N respectively. A description of such real
Lie groups can be found at the infinitesimal level in [42]. In this context, the classification of the curvature tensors should
be carried out in terms of an RP-invariant decomposition of the irreducible SO(k, ℓ)-modules C and A. We can however
bypass these representation-theoretic arguments by noting that the filtration (5.6) and its complex conjugate induce two
filtrations {

N C i
} and {

N C i
} on C ⊗ C, preserved by N P and N P respectively. Then, for each i, we can consider the real span

of the intersection N C i
p ∩

N C i
p at every point p. This gives rise to an RP-invariant subbundle of C, which wemay reasonably

describe as a real analogue of the complex subbundles N C i and N C i, i.e. it defines algebraic classes of the Weyl tensor with
respect to both N and N . However, depending on the real index of N , the fibres of N C i and N C i will intersect trivially for
some values of i, which precludes the existence of certain algebraic classes of Weyl tensors with respect to both N and N .
The same argument applies regarding the Cotton–York tensor.

With these considerations in mind, wemight be able to apply Theorems 4.6 and 4.11 in this real setting. Since the reality
conditions on theWeyl tensor clearly violate the genericity assumption, we need to go back to the proofs of these theorems,
and checkwhether these new assumptions undermine them. To facilitate the analysis, these reality conditions are described
explicitly in the remark below.
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Remark 5.7. Onemay choose a (local) complexified frame {ξµ, ξ̃µ̃, ϵξ0} adapted to the almost null structureN , i.e. such that
ξµ : µ = 1, . . . ,m


span N , as already described in Section 3.3. This null frame will now be subject to reality conditions

depending on the real index r ofN andmetric signature (k, ℓ). For specificity, assume k > ℓ. In 2m dimensions, the spanning
vector fields of N can be chosen in such way that the complex conjugation acts as

¯ : (ξ1, . . . , ξr , ξr+1, . . . , ξs, ξs+1, . . . , ξm) → (ξ1, . . . , ξr , ξ̃r+1, . . . , ξ̃s̃, −ξ̃s+1, . . . ,−ξ̃m̃),

where s =
k+r
2 (this must be an integer by Lemma 5.6). Here, the vector fields


ξµ : µ = 1, . . . , r


span the real part of

N ∩ N .
Similarly, in 2m + 1 dimensions, when r − ℓ is odd, we have

¯ : (ξ1, . . . , ξr , ξr+1, . . . , ξs, ξs+1, . . . , ξm, ξ0) → (ξ1, . . . , ξr , ξ̃r+1, . . . , ξ̃s̃, −ξ̃s+1, . . . ,−ξ̃m̃, −ξ0),

where s =
k+r
2 . When r − ℓ is even, we have

¯ : (ξ1, . . . , ξr , ξr+1, . . . , ξs, ξs+1, . . . , ξm, ξ0) → (ξ1, . . . , ξr , ξ̃r+1, . . . , ξ̃s̃, −ξ̃s+1, . . . ,−ξ̃m̃, ξ0),

where s =
k+r−1

2 .

In all three cases, the remaining vector fields

ξ̃µ̃ : µ = 1, . . . , r


of the framemust evidently be real since the metric is

real.
As in Section 3.3, we can also consider the set BS of all canonical almost null structures on some open set, each of which

inherits the real index of the ‘primary’ almost null structure N . It is then more appropriate to take the quotient of BS by the
equivalence relation

NM ∼ NN ⇔ NM = NN ,

where NM , NN ∈ BS . This quotient will be denoted BS/ ∼.

We are now in the position of extending Theorem 5.2 to the real smooth category. Indeed, the theorem provides the
right setting for the case at hand since if the Weyl tensor is degenerate with respect to an almost null structure N , so must
it be with respect to its complex conjugate N . Also, the complex conjugate pair N and N will just be two of the canonical
almost null structures given in Section 3.3. In fact, we can consider any number of complex conjugate pairs of these, or in
the above notation, any number of almost null structures in BS/ ∼. Further, the reality conditions described in Remark 5.7
on the non-vanishing components of the Weyl tensor is of no serious consequence on the genericity assumption. Finally,
while Theorem 5.2 is formulated in the holomorphic category, real analyticity need not be imposed if one now regards the
components of the connection and curvature, in the proofs of Theorems 4.6, 4.11 and 5.2, as being complex-valued smooth
functions on an open set. From these considerations, we can conclude

Theorem 5.8. Let (M, g) be a (2m + ϵ)-dimensional pseudo-Riemannian smooth manifold of arbitrary signature, where
ϵ ∈ {0, 1} and 2m+ ϵ ≥ 5. Let N be an almost null structure on M of any real index allowable by Lemma 5.6. Let BS/ ∼ be the
set of all canonical almost null structures on (some open subset of) M modulo complex conjugation as defined in Remark 5.7. Let
B ⊂ BS/ ∼. Suppose that the Weyl and Cotton–York tensors (locally) satisfy

C(X, Y , Z, ·) = 0, A(Z,X, Y ) = 0,

respectively, for all X, Y ∈ Γ (N ⊥

M ), and Z ∈ Γ (NM), for all NM ∈ B . Assume further that the Weyl tensor is otherwise generic.
Then the almost null structures in B are (locally) integrable.

Remark 5.9. Incidentally, from its signature-independent formulation, this theorem may, in some instances, be regarded
as a criterion as to whether a pseudo-Riemannian manifold of a given signature can be Wick-transformed to a different
signature. Indeed, the Kerr-NUT-(A)dS metric, which has been presented in Euclidean, Lorentzian, and split signatures [17,
43], is known [16] to satisfy the algebraic degeneracy of Theorem 5.8 where B = BS/ ∼.

The full extensions of Theorems 4.6 and 4.11 to the real category deserve separate treatments specific to each real index,
and as they stand, the proofs must be adapted to the underlying real structure. Nonetheless, it must be emphasised that this
is no tragedy. In fact, the arguments are greatly simplified by the fact that more components of the Weyl tensor vanish.

In the next three sections, we comment briefly on the Euclidean, split signature and Lorentzian cases.

5.4.1. Hermitian structures
We now assume that g is positive definite, i.e. k = 2m + ϵ, ℓ = 0. Then, the real index of an almost null structure must

have constant real index r = 0, and the complexified tangent bundle splits according to the direct sum

C ⊗ TM = N ⊕ N ⊕ ϵ(N ⊥
∩ N

⊥
). (5.7)
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When ϵ = 0, N defines a metric compatible almost complex structure, and when ϵ = 1, a metric compatible almost
CR structure. In both cases, N and N define the distributions of (0, 1)-vectors and (1, 0)-vectors respectively, or in other
words, the +i- and −i-eigensubbundles of an almost complex structure of the complexified tangent bundle C ⊗ TM. For
specificity, we assume ϵ = 0, in which case the structure of the frame bundle reduces from SO(2m) to the unitary group
U(m). In this case, we remark that the question of the integrability of the almost Hermitian structure does not, by the
Newlander–Nirenberg theorem, necessitate real analyticity.

Now, the direct sum (5.7) yields decompositions of the bundles C and A into irreducible U(m)-modules, and we
recover the classification given in Refs. [19,20]. In the present context, it suffices to note that in the complexification
gri(N C) ∼= gr−i(

N C) ∼= gr−i(
N C) for i = 0, 1, 2, and gri(N A) ∼= gr−i(

N A) ∼= gr−i(
N A), for i =

1
2 ,

3
2 . One can then

write C = C0 ⊕ C1 ⊕ C2 and A = A 1
2

⊕ A 3
2
, where each of the (not necessarily irreducible) U(m)-modules Ci and Ai can

be identified with the real span of gri(N C)⊕gr−i(
N C) and gri(N A)⊕gr−i(

N A) respectively. A similar analysis can be done
when ϵ = 1. Thus, Theorem 5.8 covers all possible algebraic special classes of the Weyl tensor with respect to one or more
canonical almost null structures.

5.4.2. Real null structures on pseudo-Riemannian manifolds of split signature
The other extreme is the case where g has signature (m,m + ϵ) and the almost null structure has real index m. In this

case, we literally have a real version of the classification of the Weyl tensor and the Cotton–York tensor, and Theorems 4.6,
4.11 and 5.2 all apply. When integrable, the almost null structure gives rise to a foliation of M bym-dimensional totally null
and geodetic leaves.

5.4.3. Robinson structures
In Lorentzian signature, i.e. k = 2m − 1 + ϵ, ℓ = 1, one needs to distinguish between the cases ϵ = 0 and ϵ = 1.

When ϵ = 0, the real index of an almost null structure N must have constant real index r = 1, and N defines an almost
Robinson structure (N , K) on (M, g), where K is a real null line bundle whose complexification is the intersection of N
and its complex conjugate N . In particular, we have a filtration of vector bundles

K ⊂ K⊥
⊂ TM, (5.8)

where K⊥ is the orthogonal complement of K with respect to the realmetric. When N is integrable, the integral curves of
the generators of K are null geodesics. At every point p, the fibre of the screen space K⊥/K is naturally equipped with a
complex structure, which is preserved along the flow of K . Further, the quotient manifold M/K acquires the structure of
a CR manifold.

In the odd-dimensional case (ϵ = 1), the real index of an almost structure can be either 0 or 1. In fact, it may not even
be constant throughout the manifold: an example is afforded by the five-dimensional black ring [30]. Nonetheless, in a
small enough open set, the real index will remain constant. In the case r = 0, the almost null structure defines an almost
CR structure. On the other hand, when r = 1, if N and N ⊥ are integrable, the real null line bundle K arising from the
intersection of the null distributions generates a congruence of null geodesics. Each fibre of the screen space K⊥/K is
endowed with a CR structure, and the quotient manifold M/K acquires the structure of a CR manifold of codimension 2.
The remaining part of the discussion focuses on Robinson structures.

Geometrically, the existence of a preferred null direction is equivalent to a reduction of the structure group of the frame
bundle to the group Sim(2m − 2 + ϵ), which preserves the filtration (5.8), and which has Lie algebra sim(2m − 2 + ϵ) :=

(R⊕so(2m−2+ϵ))⊕R2m−2+ϵ , a parabolic Lie subalgebra of so(1, 2m−1+ϵ). In the language of relativity, the summands of
sim(2m−2+ϵ) generate boosts, screen space rotations, and null rotations respectively. Clearly, the centre z of sim(2m−2+ϵ)
lies in its R-summand, and the grading element E ∈ z induces a |1|-grading on both so(1, 2m − 1 + ϵ) and its standard
representation. Thus, the tangent bundle (locally) admits the grading TM = K1⊕K0⊕K−1 whereK1 ∼= K, K0 ∼= K⊥/K ,
and K−1 ∼= TM/K⊥. In the relativity literature [21], sections of Ki are said to be of boost weight i. The bundles C and A
now admit Sim(2m − 2 + ϵ)-invariant filtrations of vector bundles

KC2
⊂

KC1
⊂

KC0
⊂

KC−1
⊂

KC−2
= C, KA2

⊂
KA1

⊂
KA0

⊂
KA−1

⊂
KA−2

= A, (5.9)

respectively, and each of the quotient bundles KC i/KC i+1 and KAi/KAi+1 is a completely reducible so(2m−2+ϵ)-module.
The existence of an almost Robinson structure is equivalent to a reduction of the structure group to the Lie group KP

with Lie algebra (R ⊕ u(m − 1)) ⊕ R2m−2+ϵ
⊂ sim(2m − 2 + ϵ). This reduction induces further splitting of each of the

so(2m − 2 + ϵ)-irreducible components of the associated graded bundle of any Sim(2m − 2 + ϵ)-invariant filtrations. In
particular, in even dimensions, the complexification of the screen space splits as a direct sum

C ⊗ K⊥/K = (K⊥/K)1,0 ⊕ (K⊥/K)0,1 ⊕ C,

where (K⊥/K)1,0 and (K⊥/K)0,1 denote the+i- and−i-eigenbundles of the centre z(u(m−1)) respectively, and one can
identify the null distribution N with (C ⊗ K) ⊕ (K⊥/K)0,1.

The complexification of each of the quotient bundles KC i/KC i+1 is now a completely reducible u(m − 1)-module. The
Sim(2m−2+ϵ)-invariant filtrations (5.9) decompose further into KP-invariant subfiltrations, and it is these filtrations that
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are relevant in the Lorentzian version of theGoldberg–Sachs theorem. Theprecise detailswill be given in a future publication.
At this stage, it suffices to say that the curvature conditions for the existence of an Robinson structure can be read off from
Lemma 3.7, provided that appropriate reality conditions are imposed. It is straightforward to check that under these reality
conditions, the complex subbundles N C2 and N C2 of C ⊗ C intersect trivially. Similarly, in odd dimensions, the bundles
N Ck and N Ck intersect trivially when k = 3, 4. In particular, in the light of Remark 3.4, there are no higher-dimensional
Lorentzian analogue of the Petrov type N condition in this context.

In four dimensions, since so(2) ∼= u(1), it is clear that there is no further reduction of the structure group. Geometrically,
it simply means that singling out a null direction is equivalent to singling out an almost Robinson structure. Further, the
isomorphism so(1, 3) ∼= sl(2, C) tells us that the complex conjugate of a self-dual almost null structures is anti-self-dual.
In particular, the self-dual part of the Weyl tensor and an anti-self-dual part of the Weyl tensor are now complex conjugate
of one another. Thus, the algebraic degeneracy of the self-dual part of the Weyl tensor is always mirrored by that of the
anti-self-dual part of the Weyl tensor via complex conjugation. As a result, each of the self-dual complex Petrov types has a
(non-trivial) real Lorentzian counterpart.

Theorem 5.8 already gives a (partial) Lorentzian version of the Goldberg–Sachs theorem. In fact, it tells usmore. Onemay
have multiple Robinson structures, i.e. a Lorentzian analogue of multiple null structures, whereby at most two distinct null
directions are distinguished, each having up to 2m−1 complex structures associated to its screen space. For other degeneracy
classes, however, one must alter the proofs of Theorems 4.6 and 4.11 in order to demonstrate the integrability of the almost
Robinson structure.15 The full analysis in higher dimensions will be presented elsewhere.

Finally, as in the holomorphic category, one may wish to find refinements of the Goldberg–Sachs theorem in terms of
irreducible u(m−1)-modules of the bundle KC. However, it is pointed out in Section 3.4.2 of Ref. [30] that certain algebraic
classes of the Weyl tensor do not necessarily lead to the integrability of the underlying almost Robinson structure, and
these classes are in fact defined by irreducible u(m − 1)-modules.16 This seems to indicate that the N P-invariant filtration
on the complexification C ⊗ C is more relevant than the KP-irreducible modules of the real bundle C in determining the
integrability of (N , K).

6. Conclusion and outlook

Themain thesis of this paper was to deduce the integrability of a given holomorphic maximal totally null distribution on
a complex Riemannianmanifold with prescribedWeyl and Cotton–York tensors in arbitrary dimensions. This can be viewed
as a generalisation of what is known as the complex Goldberg–Sachs theorem. For this purpose, we introduced a higher-
dimensional generalisation of the complex Petrov classification of theWeyl tensor.We also gave an extension of these results
to the case of multiple almost null structures, which were then applied to the category of real smooth pseudo-Riemannian
manifolds.

The discussion used a minimal amount of theory. But at its core was the parabolic Lie algebra stabilising the almost
null structure. There is another parabolic Lie algebra in the story, and it is related to conformal geometry. Indeed it was
pointed out in Section 4.3 that the Goldberg–Sachs theorem in any dimensions is a conformally invariant statement. This
strongly suggests that the present results should be cast in the elegant language of parabolic geometry: the conditions on
the Weyl tensor and the Cotton–York tensor with respect to an almost null structure on a base conformal manifold can be
re-expressed as conditions on the curvature of the projective pure spinor bundle fibred over it, and a section thereof. The
content of the Goldberg–Sachs theorem is that certain curvature prescriptions imply a differential condition on this section,
which can ultimately be translated by a foliation by maximal totally null leaves on the base manifold.
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Appendix. The Bianchi identity

In this appendix, we give the Bianchi identity in component form in the null basis {ξµ, ξ̃µ̃, ϵξµ} introduced in Section 3.3
with the following conventions:

15 For a five-dimensional Einstein Lorentzianmanifold, computations have shown that if theWeyl tensor degenerates to a generic section of the real span
of N Ck

∩
N Ck , for k = 1, 2, then (N , K) is integrable. The latter case is presented in [44,30], and corresponds to the Weyl tensor being determined solely

by a spinor field of real index 1.
16 To see this, we note that in five dimensions, Lorentzian signature, each of the irreducible KP-modules of the graded vector bundle gr(C) is either
one-real-dimensional or one-complex-dimensional, and each can be identified with a real or complex independent component of the Weyl tensor in a
(spinor) frame adapted to (N , K). Thus, the vanishing of one such component – modulo KP-gauge transformations – is tantamount to the projection of
the Weyl tensor to the corresponding irreducible KP-module being zero.
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• the directional derivatives with respect to this frame are denoted

∂µf := ξµf , ∂µ̃f := ξ̃µ̃f , ∂0f := ξ0f ,

for all µ, and for any holomorphic function f ;

• the index notation follows the convention of [45]. In particular, the Einstein summation convention is used throughout,
and square brackets around a set of indices denotes skew symmetrisation;

• only the Bianchi equations in odd dimensions are given—the even-dimensional case can be recovered by ignoring any
term containing an index 0.

∂[µCνρ]κλ = −2Γ[µν
σCρ]σκλ − 2Γ[µν

σ̃Cρ]σ̃ κλ − 2Γ[µν
0Cρ]0κλ

− 2Γ[µ|[κ
σCλ]|σ |νρ] − 2Γ[µ|[κ

σ̃Cλ]|σ̃ |νρ] − 2Γ[µ|[κ
0Cλ]|0|νρ], (A.1)

2∂[µCν]0κλ + ∂0Cµνκλ = −2Γ[µν]
σC0σκλ − 2Γ[µν]

σ̃C0σ̃ κλ − 2Γ0[µ
σCν]σκλ − 2Γ0[µ

σ̃Cν]σ̃ κλ

− 2Γ0[µ
0Cν]0κλ − 2Γ[ν|0|

σCµ]σκλ − 2Γ[ν|0|
σ̃Cµ]σ̃ κλ − 4Γ[µ|[κ

σCλ]|σ |ν]0

− 4Γ[µ|[κ
σ̃Cλ]|σ̃ |ν]0 − 4Γ[µ|[κ

0Cλ]|0|ν]0 − 2Γ0[κ
σCλ]σµν

− 2Γ0[κ
σ̃Cλ]σ̃µν − 2Γ0[κ

0Cλ]0µν, (A.2)

2∂[µCν]ρ̃κλ + ∂ρ̃Cµνκλ = −2gρ̃[κAλ]µν − 2Γ[µν]
σCρ̃σκλ − 2Γ[µν]

σ̃Cρ̃σ̃ κλ − 2Γ[µν]
0Cρ̃0κλ

− 2Γρ̃[µ
σCν]σκλ − 2Γρ̃[µ

σ̃Cν]σ̃ κλ − 2Γρ̃[µ
0Cν]0κλ − 2Γ[ν|ρ̃|

σCµ]σκλ

− 2Γ[ν|ρ̃|
σ̃Cµ]σ̃ κλ − 2Γ[ν|ρ̃|

0Cµ]0κλ − 4Γ[µ|[κ
σCλ]|σ |ν]ρ̃

− 4Γ[µ|[κ
σ̃Cλ]|σ̃ |ν]ρ̃ − 4Γ[µ|[κ

0Cλ]|0|ν]ρ̃

− 2Γρ̃[κ
σCλ]σµν − 2Γρ̃[κ

σ̃Cλ]σ̃µν − 2Γρ̃[κ
0Cλ]0µν, (A.3)

2∂[µCν]0κ0 + ∂0Cµνκ0 = Aκµν − 2Γ[µν]
σC0σκ0 − 2Γ[µν]

σ̃C0σ̃ κ0 − 2Γ0[µ
σCν]σκ0 − 2Γ0[µ

σ̃Cν]σ̃ κ0

− 2Γ0[µ
0Cν]0κ0 − 2Γ[ν|0|

σCµ]σκ0 − 2Γ[ν|0|
σ̃Cµ]σ̃ κ0

− 2Γ[µ|κ
σC0σ |ν]0 + 2Γ[µ|0

σCκσ |ν]0 − 2Γ[µ|κ
σ̃C0σ̃ |ν]0 + 2Γ[µ|0

σ̃Cκσ̃ |ν]0

− Γ0κ
σC0σµν + Γ00

σCκσµν − Γ0κ
σ̃C0σ̃µν + Γ00

σ̃Cκσ̃µν, (A.4)

2∂[µCν]ρ̃κ0 + ∂ρ̃Cµνκ0 = −gρ̃κA0µν − 2Γ[µν]
σCρ̃σκ0 − 2Γ[µν]

σ̃Cρ̃σ̃ κ0 − 2Γ[µν]
0Cρ̃0κ0

− 2Γρ̃[µ
σCν]σκ0 − 2Γρ̃[µ

σ̃Cν]σ̃ κ0 − 2Γρ̃[µ
0Cν]0κ0 − 2Γ[ν|ρ̃|

σCµ]σκ0

− 2Γ[ν|ρ̃|
σ̃Cµ]σ̃ κ0 − 2Γ[ν|ρ̃|

0Cµ]0κ0

− 2Γ[µ|κ
σC0σ |ν]ρ̃ + 2Γ[µ|0

σCκσ |ν]ρ̃ − 2Γ[µ|κ
σ̃C0σ̃ |ν]ρ̃ + 2Γ[µ|0

σ̃Cκσ̃ |ν]ρ̃

− Γρ̃κ
σC0σµν + Γρ̃0

σCκσµν − Γρ̃κ
σ̃C0σ̃µν + Γρ̃0

σ̃Cκσ̃µν, (A.5)

2∂[µCν]0κλ̃ + ∂0Cµνκλ̃ = −2g
[µ|λ̃Aκ|ν]0 − 2Γ[µν]

σC0σκλ̃ − 2Γ[µν]
σ̃C0σ̃ κλ̃ − 2Γ0[µ

σCν]σκλ̃

− 2Γ0[µ
σ̃Cν]σ̃ κλ̃ − 2Γ0[µ

0Cν]0κλ̃ − 2Γ[ν|0|
σCµ]σκλ̃ − 2Γ[ν|0|

σ̃Cµ]σ̃ κλ̃

− 2Γ[µ|κ
σCλ̃σ |ν]0 + 2Γ

[µ|λ̃
σCκσ |ν]0 − 2Γ[µ|κ

σ̃Cλ̃σ̃ |ν]0 + 2Γ
[µ|λ̃

σ̃Cκσ̃ |ν]0

− 2Γ[µ|κ
0Cλ̃0|ν]0 + 2Γ

[µ|λ̃
0Cκ0|ν]0 − Γ0κ

σCλ̃σµν + Γ0λ̃
σCκσµν

− Γ0κ
σ̃Cλ̃σ̃µν + Γ0λ̃

σ̃Cκσ̃µν − Γ0κ
0Cλ̃0µν + Γ0λ̃

0Cκ0µν, (A.6)

2∂[µCν]ρ̃κλ̃ + ∂ρ̃Cµνκλ̃ = 2g
[µ|λ̃Aκ|ν]ρ̃ − gρ̃κAλ̃µν − 2Γ[µν]

σCρ̃σκλ̃ − 2Γ[µν]
σ̃Cρ̃σ̃ κλ̃

− 2Γ[µν]
0Cρ̃0κλ̃ − 2Γρ̃[µ

σCν]σκλ̃ − 2Γρ̃[µ
σ̃Cν]σ̃ κλ̃ − 2Γρ̃[µ

0Cν]0κλ̃

− 2Γ[ν|ρ̃|
σCµ]σκλ̃ − 2Γ[ν|ρ̃|

σ̃Cµ]σ̃ κλ̃ − 2Γ[ν|ρ̃|
0Cµ]0κλ̃ − 2Γ[µ|κ

σCλ̃|σ |ν]ρ̃

− 2Γ[µ|κ
σ̃Cλ̃|σ̃ |ν]ρ̃ − 2Γ[µ|κ

0Cλ̃|0|ν]ρ̃ + 2Γ
[µ|λ̃

σCκ|σ |ν]ρ̃ + 2Γ
[µ|λ̃

σ̃Cκ|σ̃ |ν]ρ̃

+ 2Γ
[µ|λ̃

0Cκ|0|ν]ρ̃ − Γρ̃κ
σCλ̃σµν − Γρ̃κ

σ̃Cλ̃σ̃µν − Γρ̃κ
0Cλ̃0µν

+ Γρ̃λ̃
σCκσµν + Γρ̃λ̃

σ̃Cκσ̃µν + Γρ̃λ̃
0Cκ0µν, (A.7)

∂µCν̃0κ0 + ∂ν̃C0µκ0 + ∂0Cµν̃κ0 = −gν̃κA00µ + Aκµν̃ − Γµν̃
σC0σκ0 − Γµν̃

σ̃C0σ̃ κ0

+ Γν̃µ
σC0σκ0 + Γν̃µ

σ̃C0σ̃ κ0 − Γν̃0
σCµσκ0 − Γν̃0

σ̃Cµσ̃κ0

+ Γ0ν̃
σCµσκ0 + Γ0ν̃

σ̃Cµσ̃κ0 + Γ0ν̃
0Cµ0κ0 − Γ0µ

σCν̃σκ0

− Γ0µ
σ̃Cν̃σ̃ κ0 − Γ0µ

0Cν̃0κ0 + Γµ0
σCν̃σκ0 + Γµ0

σ̃Cν̃σ̃ κ0

− Γµκ
σC0σ ν̃0 − Γµκ

σ̃C0σ̃ ν̃0 + Γµ0
σCκσ ν̃0 + Γµ0

σ̃Cκσ̃ ν̃0

− Γν̃κ
σC0σ0µ − Γν̃κ

σ̃C0σ̃0µ + Γν̃0
σCκσ0µ + Γν̃0

σ̃Cκσ̃0µ

− Γ0κ
σC0σµν̃ − Γ0κ

σ̃C0σ̃µν̃ + Γ00
σCκσµν̃ + Γ00

σ̃Cκσ̃µν̃, (A.8)
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2∂[µ̃Cν̃]ρκ0 + ∂ρCµ̃ν̃κ0 = −2g[µ̃|κA0|ν̃]ρ − 2Γ[µ̃ν̃]
σCρσκ0 − 2Γ[µ̃ν̃]

σ̃Cρσ̃κ0 − 2Γ[µ̃ν̃]
0Cρ0κ0

− 2Γρ[µ̃
σCν̃]σκ0 − 2Γρ[µ̃

σ̃Cν̃]σ̃ κ0 − 2Γρ[µ̃
0Cν̃]0κ0 − 2Γ[ν̃|ρ|

σCµ̃]σκ0

− 2Γ[ν̃|ρ|
σ̃Cµ̃]σ̃ κ0 − 2Γ[ν̃|ρ|

0Cµ̃]0κ0 − 2Γ[µ̃|κ
σC0|σ |ν̃]ρ

+ 2Γ[µ̃|0
σCκ|σ |ν̃]ρ − 2Γ[µ̃|κ

σ̃C0|σ̃ |ν̃]ρ + 2Γ[µ̃|0
σ̃Cκ|σ̃ |ν̃]ρ

− Γρκ
σC0σµ̃ν̃ + Γρ0

σCκσ µ̃ν̃ − Γρκ
σ̃C0σ̃ µ̃ν̃ + Γρ0

σ̃Cκσ̃ µ̃ν̃ (A.9)

2∂[µ̃Cν̃]0κλ + ∂0Cµ̃ν̃κλ = −4g[µ̃|[κAλ]|ν̃]0 − 2Γ[µ̃ν̃]
σC0σκλ − 2Γ[µ̃ν̃]

σ̃C0σ̃ κλ − 2Γ0[µ̃
σCν̃]σκλ

− 2Γ0[µ̃
σ̃Cν̃]σ̃ κλ − 2Γ0[µ̃

0Cν̃]0κλ − 2Γ[ν̃|0|
σCµ̃]σκλ − 2Γ[ν̃|0|

σ̃Cµ̃]σ̃ κλ

− 4Γ[µ̃|[κ
σCλ]|σ |ν̃]0 − 4Γ[µ̃|[κ

σ̃Cλ]|σ̃ |ν̃]0 − 4Γ[µ̃|[κ
0Cλ]|0|ν̃]0

− 2Γ0[κ
σCλ]σµ̃ν̃ − 2Γ0[κ

σ̃Cλ]σ̃ µ̃ν̃ − 2Γ0[κ
0Cλ]0µ̃ν̃, (A.10)

2∂[µCν]0κ̃ λ̃ + ∂0Cµνκ̃λ̃ = −4g[µ|[κ̃Aλ̃]|ν]0 − 2Γ[µν]
σC0σ κ̃λ̃ − 2Γ[µν]

σ̃C0σ̃ κ̃ λ̃ − 2Γ0[µ
σCν]σ κ̃λ̃

− 2Γ0[µ
σ̃Cν]σ̃ κ̃ λ̃ − 2Γ0[µ

0Cν]0κ̃ λ̃ − 2Γ[ν|0|
σCµ]σ κ̃λ̃ − 2Γ[ν|0|

σ̃Cµ]σ̃ κ̃ λ̃

− 4Γ[µ|[κ̃
σCλ̃]|σ |ν]0 − 4Γ[µ|[κ̃

σ̃Cλ̃]|σ̃ |ν]0 − 4Γ[µ|[κ̃
0Cλ̃]|0|ν]0

− 2Γ0[κ̃
σCλ̃]σµν − 2Γ0[κ̃

σ̃Cλ̃]σ̃µν − 2Γ0[κ̃
0Cλ̃]0µν, (A.11)

2∂[µCν]ρ̃κ̃0 + ∂ρ̃Cµνκ̃0 = −2g[µ|κ̃A0|ν]ρ̃ − 2Γ[µν]
σCρ̃σ κ̃0 − 2Γ[µν]

σ̃Cρ̃σ̃ κ̃0 − 2Γ[µν]
0Cρ̃0κ̃0

− 2Γρ̃[µ
σCν]σ κ̃0 − 2Γρ̃[µ

σ̃Cν]σ̃ κ̃0 − 2Γρ̃[µ
0Cν]0κ̃0 − 2Γ[ν|ρ̃|

σCµ]σ κ̃0

− 2Γ[ν|ρ̃|
σ̃Cµ]σ̃ κ̃0 − 2Γ[ν|ρ̃|

0Cµ]0κ̃0 − 2Γ[µ|κ̃
σC0|σ |ν]ρ̃

+ 2Γ[µ|0
σCκ̃|σ |ν]ρ̃ − 2Γ[µ|κ̃

σ̃C0|σ̃ |ν]ρ̃ + 2Γ[µ|0
σ̃Cκ̃|σ̃ |ν]ρ̃

− Γρ̃κ̃
σC0σµν + Γρ̃0

σCκ̃σµν − Γρ̃κ̃
σ̃C0σ̃µν + Γρ̃0

σ̃Cκ̃ σ̃µν (A.12)

2∂[µ̃Cν̃]ρκ̃λ + ∂ρCµ̃ν̃κ̃λ = 2g[µ̃|λAκ̃|ν̃]ρ − gρκ̃Aλµ̃ν̃ − 2Γ[µ̃ν̃]
σCρσ κ̃λ − 2Γ[µ̃ν̃]

σ̃Cρσ̃ κ̃λ

− 2Γ[µ̃ν̃]
0Cρ0κ̃λ − 2Γρ[µ̃

σCν̃]σ κ̃λ − 2Γρ[µ̃
σ̃Cν̃]σ̃ κ̃λ − 2Γρ[µ̃

0Cν̃]0κ̃λ

− 2Γ[ν̃|ρ|
σCµ̃]σ κ̃λ − 2Γ[ν̃|ρ|

σ̃Cµ̃]σ̃ κ̃λ − 2Γ[ν̃|ρ|
0Cµ̃]0κ̃λ

− 2Γ[µ̃|κ̃
σCλ|σ |ν̃]ρ − 2Γ[µ̃|κ̃

σ̃Cλ|σ̃ |ν̃]ρ − 2Γ[µ̃|κ̃
0Cλ|0|ν̃]ρ

+ 2Γ[µ̃|λ
σCκ̃|σ |ν̃]ρ + 2Γ[µ̃|λ

σ̃Cκ̃|σ̃ |ν̃]ρ + 2Γ[µ̃|λ
0Cκ̃|0|ν̃]ρ − Γρκ̃

σCλσµ̃ν̃

− Γρκ̃
σ̃Cλσ̃ µ̃ν̃ − Γρκ̃

0Cλ0µ̃ν̃ + Γρλ
σCκ̃σ µ̃ν̃ + Γρλ

σ̃Cκ̃ σ̃ µ̃ν̃ + Γρλ
0Cκ̃0µ̃ν̃, (A.13)

∂µ̃Cν0κ̃0 + ∂νC0µ̃κ̃0 + ∂0Cµ̃νκ̃0 = −gνκ̃A00µ̃ + Aκ̃µ̃ν − Γµ̃ν
σC0σ κ̃0 − Γµ̃ν

σ̃C0σ̃ κ̃0 + Γνµ̃
σC0σ κ̃0

+ Γνµ̃
σ̃C0σ̃ κ̃0 − Γν0

σCµ̃σ κ̃0 − Γν0
σ̃Cµ̃σ̃ κ̃0 + Γ0ν

σCµ̃σ κ̃0

+ Γ0ν
σ̃Cµ̃σ̃ κ̃0 + Γ0ν

0Cµ̃0κ̃0 − Γ0µ̃
σCνσ κ̃0 − Γ0µ̃

σ̃Cνσ̃ κ̃0

− Γ0µ̃
0Cν0κ̃0 + Γµ̃0

σCνσ κ̃0 + Γµ̃0
σ̃Cνσ̃ κ̃0 − Γµ̃κ̃

σC0σν0

− Γµ̃κ̃
σ̃C0σ̃ ν0 + Γµ̃0

σCκ̃σ ν0 + Γµ̃0
σ̃Cκ̃ σ̃ ν0 − Γνκ̃

σC0σ0µ̃

− Γνκ̃
σ̃C0σ̃0µ̃ + Γν0

σCκ̃σ0µ̃ + Γν0
σ̃Cκ̃ σ̃0µ̃ − Γ0κ̃

σC0σµ̃ν

− Γ0κ̃
σ̃C0σ̃ µ̃ν + Γ00

σCκ̃σ µ̃ν + Γ00
σ̃Cκ̃ σ̃ µ̃ν, (A.14)

2∂[µ̃Cν̃]ρκ̃0 + ∂ρCµ̃ν̃κ̃0 = −gρκ̃A0µ̃ν̃ − 2Γ[µ̃ν̃]
σCρσ κ̃0 − 2Γ[µ̃ν̃]

σ̃Cρσ̃ κ̃0 − 2Γ[µ̃ν̃]
0Cρ0κ̃0

− 2Γρ[µ̃
σCν̃]σ κ̃0 − 2Γρ[µ̃

σ̃Cν̃]σ̃ κ̃0 − 2Γρ[µ̃
0Cν̃]0κ̃0 − 2Γ[ν̃|ρ|

σCµ̃]σ κ̃0

− 2Γ[ν̃|ρ|
σ̃Cµ̃]σ̃ κ̃0 − 2Γ[ν̃|ρ|

0Cµ̃]0κ̃0 − 2Γ[µ̃|κ̃
σC0σ |ν̃]ρ

+ 2Γ[µ̃|0
σCκ̃σ |ν̃]ρ − 2Γ[µ̃|κ̃

σ̃C0σ̃ |ν̃]ρ + 2Γ[µ̃|0
σ̃Cκ̃ σ̃ |ν̃]ρ

− Γρκ̃
σC0σµ̃ν̃ + Γρ0

σCκ̃σ µ̃ν̃ − Γρκ̃
σ̃C0σ̃ µ̃ν̃ + Γρ0

σ̃Cκ̃ σ̃ µ̃ν̃, (A.15)

2∂[µ̃Cν̃]0κ̃λ + ∂0Cµ̃ν̃κ̃λ = −2g[µ̃|λAκ̃|ν̃]0 − 2Γ[µ̃ν̃]
σC0σ κ̃λ − 2Γ σ̃

[µ̃ν̃]
C0σ̃ κ̃λ − 2Γ0[µ̃

σCν̃]σ κ̃λ

− 2Γ0[µ̃
σ̃Cν̃]σ̃ κ̃λ − 2Γ0[µ̃

0Cν̃]0κ̃λ − 2Γ[ν̃|0|
σCµ̃]σ κ̃λ

− 2Γ[ν̃|0|
σ̃Cµ̃]σ̃ κ̃λ − 2Γ[µ̃|κ̃

σCλσ |ν̃]0 + 2Γ[µ̃|λ
σCκ̃σ |ν̃]0

− 2Γ[µ̃|κ̃
σ̃Cλσ̃ |ν̃]0 + 2Γ σ̃

[µ̃|λCκ̃ σ̃ |ν̃]0 − 2Γ[µ̃|κ̃
0Cλ0|ν̃]0 + 2Γ[µ̃|λ

0Cκ̃0|ν̃]0

− Γ0κ̃
σCλσµ̃ν̃ + Γ0λ

σCκ̃σ µ̃ν̃ − Γ σ̃
0κ̃Cλσ̃ µ̃ν̃ + Γ0λ

σ̃Cκ̃ σ̃ µ̃ν̃ − Γ0κ̃
0Cλ0µ̃ν̃ + Γ0λ

0Cκ̃0µ̃ν̃, (A.16)

2∂[µ̃Cν̃]ρκ̃λ̃ + ∂ρCµ̃ν̃κ̃λ̃ = −2gρ[κ̃Aλ̃]µ̃ν̃ − 2Γ[µ̃ν̃]
σCρσ κ̃λ̃ − 2Γ[µ̃ν̃]

σ̃Cρσ̃ κ̃λ̃ − 2Γ[µ̃ν̃]
0Cρ0κ̃ λ̃

− 2Γρ[µ̃
σCν̃]σ κ̃λ̃ − 2Γρ[µ̃

σ̃Cν̃]σ̃ κ̃ λ̃ − 2Γρ[µ̃
0Cν̃]0κ̃ λ̃ − 2Γ[ν̃|ρ|

σCµ̃]σ κ̃λ̃

− 2Γ[ν̃|ρ|
σ̃Cµ̃]σ̃ κ̃ λ̃ − 2Γ[ν̃|ρ|

0Cµ̃]0κ̃ λ̃ − 4Γ[µ̃|[κ̃
σCλ̃]|σ |ν̃]ρ

− 4Γ[µ̃|[κ̃
σ̃Cλ̃]|σ̃ |ν̃]ρ − 4Γ[µ̃|[κ̃

0Cλ̃]|0|ν̃]ρ − 2Γρ[κ̃
σCλ̃]σµ̃ν̃

− 2Γρ[κ̃
σ̃Cλ̃]σ̃ µ̃ν̃ − 2Γρ[κ̃

0Cλ̃]0µ̃ν̃, (A.17)
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2∂[µ̃Cν̃]0κ̃0 + ∂0Cµ̃ν̃κ̃0 = Aκ̃µ̃ν̃ − 2Γ[µ̃ν̃]
σC0σ κ̃0 − 2Γ[µ̃ν̃]

σ̃C0σ̃ κ̃0 − 2Γ0[µ̃
σCν̃]σ κ̃0 − 2Γ0[µ̃

σ̃Cν̃]σ̃ κ̃0

− 2Γ0[µ̃
0Cν̃]0κ̃0 − 2Γ[ν̃|0|

σCµ̃]σ κ̃0 − 2Γ[ν̃|0|
σ̃Cµ̃]σ̃ κ̃0

− 2Γ[µ̃|κ̃
σC0σ |ν̃]0 + 2Γ[µ̃|0

σCκ̃σ |ν̃]0 − 2Γ[µ̃|κ̃
σ̃C0σ̃ |ν̃]0 + 2Γ[µ̃|0

σ̃Cκ̃ σ̃ |ν̃]0

− Γ0κ̃
σC0σµ̃ν̃ + Γ00

σCκ̃σ µ̃ν̃ − Γ0κ̃
σ̃C0σ̃ µ̃ν̃ + Γ00

σ̃Cκ̃ σ̃ µ̃ν̃, (A.18)

2∂[µ̃Cν̃]0κ̃ λ̃ + ∂0Cµ̃ν̃κ̃λ̃ = −2Γ[µ̃ν̃]
σC0σ κ̃λ̃ − 2Γ[µ̃ν̃]

σ̃C0σ̃ κ̃ λ̃ − 2Γ0[µ̃
σCν̃]σ κ̃λ̃ − 2Γ0[µ̃

σ̃Cν̃]σ̃ κ̃ λ̃

− 2Γ0[µ̃
0Cν̃]0κ̃ λ̃ − 2Γ[ν̃|0|

σCµ̃]σ κ̃λ̃ − 2Γ[ν̃|0|
σ̃Cµ̃]σ̃ κ̃ λ̃ − 4Γ[µ̃|[κ̃

σCλ̃]|σ |ν̃]0

− 4Γ[µ̃|[κ̃
σ̃Cλ̃]|σ̃ |ν̃]0 − 4Γ[µ̃|[κ̃

0Cλ̃]|0|ν̃]0

− 2Γ0[κ̃
σCλ̃]|σ |µ̃ν̃ − 2Γ0[κ̃

σ̃Cλ̃]|σ̃ |µ̃ν̃ − 2Γ0[κ̃
0Cλ̃]|0|µ̃ν̃, (A.19)

∂[µ̃Cν̃ρ̃]κ̃ λ̃ = −2Γ[µ̃ν̃
σCρ̃]σ κ̃λ̃ − 2Γ[µ̃ν̃

σ̃Cρ̃]σ̃ κ̃ λ̃ − 2Γ[µ̃ν̃
0Cρ̃]0κ̃ λ̃

− 2Γ[µ̃|[κ̃
σCλ̃]|σ |ν̃ρ̃]

− 2Γ[µ̃|[κ̃
σ̃Cλ̃]|σ̃ |ν̃ρ̃]

− 2Γ[µ̃|[κ̃
0Cλ̃]|0|ν̃ρ̃]

. (A.20)
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