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a b s t r a c t

This article gives a study of the higher-dimensional Penrose transform between confor-
mally invariant massless fields on space–time and cohomology classes on twistor space,
where twistor space is defined to be the space of projective pure spinors of the conformal
group. We focus on the six-dimensional case in which twistor space is the 6-quadric Q in
CP7 with a view to applications to the self-dual (0, 2)-theory.We showhow spinor-helicity
momentum eigenstates have canonically defined distributional representatives on twistor
space (a story that we extend to arbitrary dimension). These yield an elementary proof of
the surjectivity of the Penrose transform.We give a direct construction of the twistor trans-
form between the two different representations ofmassless fields on twistor space (H2 and
H3) in which the H3s arise as obstructions to extending the H2s off Q into CP7.

We also develop the theory of Sparling’s ‘Ξ-transform’, the analogous totally real split
signature story based now on real integral geometry where cohomology no longer plays
a role. We extend Sparling’s Ξ-transform to all helicities and homogeneities on twistor
space and show that it maps kernels and cokernels of conformally invariant powers of the
ultrahyperbolic wave operator on twistor space to conformally invariantmassless fields on
space–time. This is proved by developing the six-dimensional analogue of the half-Fourier
transform between functions on twistor space andmomentum space. We give a treatment
of the elementary conformally invariant Φ3 amplitude on twistor space and finish with a
discussion of conformal field theories in twistor space.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Twistor methods have come to constitute a powerful tool in the study of four-dimensional gauge theories [1–4] and the
question arises as to how they might interact with other important techniques such as AdS/CFT and reductions of (2, 0)
self-dual gerbe theory in six dimensions. This article is a study of the appropriate higher-dimensional twistor theory that
applies to such higher-dimensional theories with a focus on six dimensions. Ultimately we would like to encode interacting
field theories on twistor space in higher dimensions, but this paper will focus mostly on the twistor correspondence for
linear fields (with the exception of a discussion of the φ3 vertex for scalar fields).

The Penrose transform in higher dimensions, and indeed for general classes of homogeneous spaces, was developed in
the 1980s with the general framework summarized in [5]. In higher even dimension 2m, twistor space can be taken to be
the space of totally null self-dual m-planes, so that twistor space is the projective self-dual chiral pure spinor space of the
conformal group [6]. There is a Penrose transform from conformally invariant massless fields on space–time to cohomology
classes on regions in twistor space. In six dimensions the conformal group is a real form of SO(8,C) and we have a version
of triality such that the chiral spinor representations for the conformal group are eight dimensional and are endowed with
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a quadratic form like the fundamental one. This is the first dimension in which the purity condition is non-trivial, being the
condition that the chiral spinors should be null with respect to the quadratic form. Thus, twistor space turns out to be the
six-dimensional complex quadric Q in CP7. As a manifold it is the same as complexified space–time, but the representation
of the conformal group and its correspondence with space–time is quite different. Conformally invariant massless fields on
space–time are represented on Q both as H2 and as H3 cohomology classes (i.e., closed Dolbeault (0, 2)-forms or (0, 3)-
formsmodulo exact ones). As far as massless fields are concerned, Maxwell and linearized gravity are no longer conformally
invariant, but the wave equation and symmetric spinor fields satisfying higher spin versions of the massless Dirac equation
are, and it is these fields of a fixed chirality that aremost straightforwardly represented on twistor space. The abelian version
of the (2, 0) self-dual gerbe theory can be built from such ingredients andwe focus on these fields in this paper. The Penrose
transform for H3s, which we will describe as the direct transform, is the most straightforward, being easily obtained from
an integral formula (3), and was the first to be studied in [7–10]. The Penrose transform for H2s is not direct, although we
give an integral formula in (24). This is the case that naturally gives rise to a holomorphic gerbe on twistor space [11] and so
may well be the most geometrically natural for making contact with the (0, 2) gerbe theory.1 In [12] a supertwistor space
was introduced and some speculations were made concerning the Penrose transform of the (0, 2)-theory (in H3 form).

Much recent progress in the study of scattering amplitudes in four dimensions has exploited the simplicity arising from
spinor-helicity methods and these have recently been extended to six dimensions and higher [13,14]. The spinor-helicity
method is essentially a method for efficiently encoding the polarization information of momentum eigenstates in terms
of spinors. It is a useful starting point for exploring the twistor space formulation of scattering amplitudes and thereby
gives insight into the structure of the twistor formulation of the theory; it is straightforward to construct the twistor
space representation of an amplitude given the twistor representation of momentum eigenstates and themomentum space
amplitude in spinor-helicity form. This has been instrumental in recent progress, both for expressing known amplitudes
in twistor space and for obtaining amplitudes on momentum space from their counterparts in twistor space; see for
example [15–17].

In this paperwe obtain distributional Dolbeault representatives on twistor space for such spinor-helicity representations
ofmomentumeigenstates.Wedo so in away that naturally extends to higher dimensions and indeed gives some explanation
of the structure of the Penrose transform in higher dimensions: the fact that in dimension 2m, the relevant cohomology is
obtained inHm−1 andHm(m−1)/2, and the fact that the helicities obtained for these different cohomology degrees are the same
form odd, and opposite form even. In brief, the spinor-helicity data for amomentum eigenstate consist of a null momentum
P and polarization data ξ in some irreducible representation of the ‘little group’, i.e., the SO(2m − 2) inside the stabilizer
of P . For our massless fields, the polarization data will be irreducible symmetric spinor representations of this little group
and these can be obtained either as holomorphic sections of line bundles, or dually as H(m−1)(m−2)/2s on the chiral projective
pure spinor spaces for the little group. These can then be combined with distributional Dolbeault forms supported on the
little group spin space inside twistor space to generate the spinor-helicity Dolbeault representatives. In four dimensions,
withm = 2, the projective pure spin space for the little group is trivial (just a point) and so this feature does not play a role,
but in six dimensions it is the Riemann sphere and so this is the first non-trivial case where this comes in. It is the dimension
of this little group pure spin space that gives the difference between the cohomology degrees in the Penrose transform.

These twistor representatives associatedwith spinor-helicity forms of themomentumeigenstates constitute a useful tool
that allowsus to understandkey features of the Penrose transform. For example, they give an elementary proof of the Penrose
transform isomorphism without the spectral sequences of [5]. One feature that is peculiar to six dimensions is that the
same massless fields are represented both as H2s and H3s. We will see that the best way to understand the correspondence
between these two representations is to consider the problem of extending the cohomology classes off Q into CP7. The
H2s turn out to have a unique extension to the order given by the helicity, but any further extension is obstructed with
obstruction given by the corresponding H3. This understanding of the extrinsic behaviour of the cohomology class allows
us to write an integral formula in this indirect case. The proof here is expedited by the spinor-helicity representatives
introduced earlier. Although such features are not encountered in four-dimensional twistor space CP3, they are reminiscent
of the extensions off ambitwistor space that arise in the description of four-dimensional physics [18–24] although in that
case it is the H1s that are extended with obstructions in H2s as opposed to the H2s being extended with obstructions in H3.

Another tool that has proved important in four dimensions is the half-Fourier transform introduced by Witten [1] and
developed and exploited in [25]. The Penrose transform is replaced here by an integral transform first studied by Sparling
[26,27] for the wave equation and referred to as the Ξ-transform. In four dimensions this is known as the X-ray transform
and takes functions on real twistor space, RP3, to functions on split signature space–time by integrating over lines. This
can then be concatenated with the Fourier transform which then gives functions on the momentum light-cone. This is the
half-Fourier transform which involves Fourier transforming in two of the four non-projective variables. In six dimensions,
twistor space is now six dimensional whereas themomentum light-cone is only five dimensional and so theremust be some
loss of information. The spinor-helicitymomentum eigenstates have a natural representation in this split signature also, and
lead to a natural generalization of the half-Fourier transform from functions on twistor space to the momentum light-cone
augmented by the pure spinor space for the little group at each point. This is also a 6-manifold and hence can be, and is, an
isomorphism.

1 We remind the reader that, loosely speaking, a gerbe is the extension of the concept of a line bundle with connection 1-form (or (0, 1)-form deforming
a ∂̄-operator in the holomorphic case) replaced by a connection 2-form (or (0, 2)-form in the holomorphic case).
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We make a preliminary investigation of amplitudes. However, for the self-dual gerbe theory, Huang and Lipstein
[28,29] have observed, using the spinor-helicity formalism, that there are no good candidates for amplitudes that are local
in space–time. This is in keeping with the idea that the self-dual gerbe theory only exists as a strongly coupled theory in six
dimensions with no parameters that can be taken as a coupling constant to expand in to obtain perturbative amplitudes.
Because we have restricted our attention to conformally invariant chiral fields in this paper, the only non-trivial interaction
that we are able to consider is the basic conformally invariant φ3 vertex, but we see that it has a natural formulation on
twistor space.

In this article, we find new features important to higher-dimensional twistor theory that are absent in the four-
dimensional case. This may account for some of the remarkable features of six-dimensional quantum theories. One of
the motivations for studying higher-dimensional twistor space was the realization that twistor theory is the natural
framework in which to study extended supersymmetry [30]. It is tempting to suggest that a study of higher-dimensional
supersymmetric physics from a twistorial perspective may shed light on many of the mysterious properties that higher-
dimensional supersymmetric theories exhibit [31–38]. We hope to return to this in a subsequent paper.

The format of this paper is as follows. Section 2 gives an overview of the geometry of six-dimensional twistor space and
the Penrose transforms that relate cohomology classes in twistor space to the solutions of zero-rest-mass field equations.
Section 3 presents a higher-dimensional formalism for relating spinor-helicity methods and twistor theory that generalizes
the four-dimensional approach outlined in [15] to six dimensions. Although the focus is on the six-dimensional case, in
Section 4 we show how our formalism works in arbitrary dimension. Section 5 considers two integral transforms that exist
in split signature. The first is a six-dimensional analogue of the half-Fourier transform introduced by Witten in [1] which
relates objects on null momentum space to objects in twistor space. The second is theΞ-transform introduced by Sparling
in [26,27].We find an analogue of the half-Fourier transform in six dimensions and extend theΞ-transform to include fields
of arbitrary spin. We give a brief discussion of interacting theories in six dimensions focusing on the conformal Φ3 scalar
theory. We show how the three-point amplitude for this theory may be constructed from six-dimensional twistor space
and close with some discussion of the formulation of conformal field theories in twistor space. In an Appendix, we give the
indirect Penrose transform for a gerbe.

Whilst preparing this manuscript we learnt of the work [39] which overlaps with some sections of this article.

2. The six-dimensional twistor correspondence

In this section we review the structure of six-dimensional twistor space and the Penrose transform. For reviews of the
four-dimensional case see [40,41,4]. In order to deal with a variety of different signatures, we will start by working on
complexified Minkowski space, MI

= C6. We can extend MI to the compactified, complexified Minkowski space M by
adding a light-cone at infinity to give a 6-quadric M in CP7. For the most part, we shall be working with some region in M
or one of its real slices and its associated twistor space. Introducing spinor indices from the start, we can coordinatize MI

with coordinates xAB = x[AB], A, B = 1, . . . , 4, equipped with metric

ds2 =
1
2
εABCD dxAB dxCD, εABCD = ε[ABCD], ε0123 = 1.

The two four-dimensional chiral spinor representations, dual to one another, are denoted as SA and SA with the given index
structure and have structure group SL(4,C) in the complex.

The real slices MI
p,q of MI are those R6

⊂ C6 on which the metric has signature (p, q). On Euclidean, Lorentzian and split
signature real slices, the spin group reduces to the real subgroups SU(4), SL(2,H) and SL(4,R) respectively. These can be
characterized as follows:
• (p, q) = (6, 0) ❀ SU(4), the subgroup of SL(4,C) that commutes with the conjugation πA → π̄A with πAπ̄

A positive
definite.

• (p, q) = (5, 1) ❀ SL(2,H) is the subgroup commuting with a quaternionic conjugationˆ : πA → πA =: π̂A on SA (and on
SA) where

π̂A = (−π̄1, π̄0,−π̄3, π̄2).

We have ˆ̂πA = −πA, so there are no real spinors.
• (p, q) = (4, 2) ❀ SU(2, 2), the subgroup of SL(4,C) that commutes with the conjugation πA → π̄A, but this time, SA

divides into three parts according to the definiteness of πAπ̄
A.

• (p, q) = (3, 3) ❀ SL(4,R), the group commuting with a conjugation πA → π̄A, and we can take spinors to be real;
πA = π̄A.

There is no natural way to raise or lower individual spin indices; however, skew-symmetric pairs of indices can be raised
and lowered by means of 1

2εABCD, i.e. vAB =
1
2εABCDv

CD. We have the useful identities vACvBC =
1
4δ

B
Av

2 for any vector vAB.
A null vector vAB satisfies v[ABvCD]

= 0, and so has vanishing determinant as a 4×4matrix. Since skewmatrices have even
rank, if it is to be non-trivial, this rank must be 2, so it can be decomposed as vAB = λ0

[Aλ
1
B] for some spinors λaA = (λ0A, λ

1
A).

This decomposition is not unique, but is subject to the SL(2,C) freedom λaA → Λa
bλ

b
A for some Λa

b ∈ SL(2,C). For a real
null vector in Lorentz signature we can take λ1A = λ̂0A and in split signature the λaA can be taken to be real.
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Fig. 1. Self-dual null planes are represented by points in twistor space.

Fig. 2. Two α-planes always intersect in a null line in M.

2.1. Twistor space

The twistor space Q is the six-dimensional projective quadric in CP7 [6]. We introduce the homogeneous coordinates
Zα = (ωA, πA) ∈ SA

⊕ SA on CP7, and define the quadric as

Q := {[Zα] ∈ CP7
|Z2

= 0} where Z2
= 2ωAπA. (1)

The relationship with space–time MI follows from the incidence relations

ωA
= xABπB, (2)

where we assume πB ≠ 0 for now. Since xAB is skew-symmetric, we must have the condition ωAπA = 0, i.e., the quadric
condition Z2

= 0. Holding xAB fixed in Eq. (2) and varying [ωA, πA], this defines a three-dimensional linear subspace
CP3

⊂ Q , which we shall denote as Sx. The converse statement, of what a point in twistor space corresponds to in
space–time, is found by holding [ωA, πA] fixed and allowing xAB to vary. This determines a totally null self-dual 3-plane
xAB = xAB0 + εABCDπAαB for some αB defined modulo πB. This is an α-plane (see Fig. 1).

We have so far ignored the case where πA = 0, but we can easily extend the geometric interpretation of twistor space to
compact complex space–time M by simply identifying [ωA, 0] as the CP3 corresponding to the point added to MI at infinity.
Notationally, Q and Q I will refer to the twistor spaces of M and MI respectively.

In contrast to the four-dimensional case where a null line in space–time is a point in twistor space, null lines in six-
dimensional space–time correspond to null lines in six-dimensional twistor space. Generically two α-planes, α1 and α2, do
not intersect. However, if Z1 · Z2 = 0, then they do and indeed they must do in a null line L = α1 ∩α2 [42]. In twistor space,
this configuration is given by the line joining the two twistors, Z1 and Z2, connected by the null line L′ corresponding to the
null line L in space–time (if Z1 · Z2 ≠ 0, then the line joining Z1 to Z2 in CP7 will not lie in Q )—see Fig. 2.

Twistor space is a quadric in the projectivization of the positive chiral spinor representation Sα of SO(8,C). Primed
twistor space Q ′ is the quadric in the projectivization of the negative chiral spinor representation Sα

′

of SO(8,C)which we
can coordinatize as Wα′

= (µA, λ
A) with inner product W · W = 2λAµA. Primed twistor space Q ′ is the space of all anti-

self-dual null planes, β-planes, in M given by µA = xABλB. In analogy to Q I , the primed twistor space of MI will be denoted
as Q ′I .

This primed twistor space is the six-dimensional analogue of the dual twistor space from four dimensions. The latter is
also a primed twistor space, but happens to be isomorphic to the dual of twistor space, a feature of dimensions 0 mod 4.
However, in dimensions 2 mod 4, twistor space and primed twistor space have canonically defined inner products and so
are dual to themselves. Thus important aspects of the Penrose transform are different in these cases as we shall see.

As a final remark, we note that one of the features of six-dimensional twistor theory is the triality between the three
six-dimensional complex quadrics M,Q and Q ′. This can be described by means of the generators of the Clifford algebra for
SO(8,C), but here, it suffices to say that the geometric correspondences between M and Q , and M and Q ′ are also mirrored
by one between Q and Q ′, e.g. an α-plane in Q ′ corresponds to a point in Q , and so on. Triality holds in split signature, but
is broken by other choices of signature (it holds also for SO(8,R) but then the real quadrics are empty).
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2.2. Massless fields

Ourmain area of interest in this articlewill be conformally invariant chiral theories. Unlike in four dimensions, Yang–Mills
theories cannot be chiral in six dimensions, nor are they conformally invariant. We will instead focus on symmetric spinor
fields φA1···Ak = φ(A1···Ak) and ψ

A1···Ak = ψ (A1···Ak) describing chiral fields of helicity k
2 and −

k
2 respectively. In linearized, or

non-interacting theories, such fields with k > 0 satisfy the zero-rest-mass equations of motion

∇
BA1φA1A2···Ak = 0, ∇BA1ψ

A1A2···Ak = 0, where ∇AB =
∂

∂xAB
.

For scalar fields (k = 0)we have

�φ = 0.

For any k ∈ Z, the space of massless fields of helicity k/2 on a region U in space–time will be denoted as Γk(U), although
we will often drop the dependence on U .

2.3. The Penrose transform

In six dimensions, the Penrose transform [43,5] relates the space of massless fields of non-negative helicity on a region
U ⊂ M to the cohomology classes with values in certain holomorphic line bundles O(m) over the corresponding region
Q U swept out by the Sx with x ∈ U in twistor space. For most of the paper, we shall in fact take U to be MI , complexified
space–time, so the corresponding twistor space Q U will simply be Q I , the six-dimensional quadric with a CP3 removed.
The line bundles O(m) are the restriction of the corresponding line bundles from CP7 whose sections can be identified with
holomorphic functions on the non-projective space C8 that are homogeneous of degree m. We denote these cohomology
classes by H•(Q U

; O(m)).
We note that one can obtainmassless fields of negative helicity from cohomology of holomorphic line bundles over some

subset of primed twistor space. This is in contradistinction to four-dimensional twistor theory, where fields of any integral
helicity can be obtained from twistor space. This dichotomy corresponds to that of whether twistor space is canonically
isomorphic to itself or to its primed counterpart.

There are two ways in which one can obtain Γk for k ≥ 0 from cohomology classes in Q . The first, the direct Penrose
transform, is

P : H3(Q U ,O(−k − 4))
≃

−→ Γk(U).

This is direct in the sense that it follows explicitly by means of an integral formula:

FA1···Ak(x) =


Sx
πA1 · · ·πAk f (x · π, π)D3π, (3)

where f = f (ω, π) is a (0, 3)-form homogeneous of degree −k − 4 representing the cohomology class2 on twistor space,
and D3π = εABCDπA dπB dπC dπD is the projective volume form on Sx = CP3.

The second transform will be referred to as the indirect Penrose transformP : H2(Q U ,O(k − 2))
≃

−→ Γk(U).

In this case, the cohomology classes in H2(Q U ,O(k − 2)) have trivial restriction on CP3 embedded in Q U . For this reason,
one cannot obtain the value of a massless field directly. The transform most naturally yields a potential modulo gauge
description3 of the field, but this is nevertheless equivalent locally to the given field.

3. Spinor-helicity representatives

In this section we turn to the problem of how to relate the six-dimensional spinor-helicity methods proposed in [13] to
the six-dimensional twistor theory discussed in the preceding section. We first review the spinor-helicity formalism.

2 We focus on Dolbeault cohomology here but it is sometimes more elegant to express the cohomology class in terms of Čech cohomology, by use of the
Čech–Dolbeault isomorphism

Ȟ•(Q ; O(m)) ∼= H•

∂̄
(Q ; O(m))

so thatmassless space–time fields can be described by holomorphic functions on regions in twistor space. In this case (3) is interpreted as a contour integral
surrounding poles of f .
3 We elaborate on this construction in Section 6.
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3.1. The spinor-helicity formalism

For the fields Γk, a momentum eigenstate is a field ΦA1···Ak = Φ0
A1···Ak

eiP·x with Φ0
A1···Ak

constant. The massless field
equation then implies that PBA1Φ0

A1···Ak
= 0. We can solve these algebraic equations as follows. Firstly, if PAB were invertible

then Φ0
A1···Ak

would have to vanish. Thus its rank must be less than 4 for a non-trivial solution. However, a skew matrix
necessarily has even rank, so if P is to be non-zero, it must have rank 2. This certainly implies P2

= 0 and furthermore
means that we can write

PAB = εabλ
a
Aλ

b
B, a, b = 0, 1,

for some λaA. We refer to a, b as ‘little group’ indices. The little group is SU(2) × SU(2), the maximally compact part of the
stabilizer of P in Spin(1, 5). The representations of this maximal compact subgroup constitute the possible polarization data
for massless fields. The a, b are indices for the first of these SU(2) factors and we will introduce a′, b′ indices below for
the second. Little group indices will be raised and lowered by means of the invariant skew forms εab and εab respectively,
satisfying εacεbc = δba . The reduction from SL(2,C) to SU(2) is effected by choosing λ1A = λ̂0A.

It is easily seen from the definition of λaA that PABλaB = 0 and in fact that λaA, a = 0, 1, span the kernel of PAB. Thus
Φ0

A1···Ak
= λ

a1
A1

· · · λ
ak
Ak
ξa1···ak for some ξa1···ak = ξ(a1···ak). The irreducible polarization information is therefore contained in

the polarization spinor ξa1···ak which is a spin k/2 representation of the little group (which is the spin group two dimensions
down, here a four-dimensional spin group).We therefore have the spinor-helicity representation of amomentumeigenstate
as

ΦA1···Ak(x) = λ
a1
A1

· · · λ
ak
Ak
ξa1···ake

iP·x

with data (λaA, ξa1···ak). Massless fields of the opposite chirality and of mixed type can be treated similarly4 but we will not
consider them here although we will return to these in [44]; they require the use of cohomology with values in a vector
bundle rather than a line bundle, and in the mixed case require also the breaking of conformal invariance.

3.2. Twistor representatives for momentum eigenstates

We now find canonical twistor cohomology classes for such momentum eigenstates. Using Dolbeault cohomology, the
twistor representatives will be ∂̄-closed (0, 3)-forms (6) of weight −k − 4 for the direct transform (3) or a (0, 2)-form (7)
of homogeneity k − 2 for the indirect case. We first establish some machinery and notation.

We can encode the polarization information as a cohomology class on a Riemann sphere CP1
u acted on by the unprimed

SU(2) of the little group. We will use homogeneous coordinates ua, a = 0, 1, on CP1
u (hence the subscript). The polarization

information can be expressed as a holomorphic function homogeneous of degree k on CP1
u:

ξ(u) = ξa1···aku
a1 · · · uak ∈ H0(CP1

; O(k)).

Alternatively, by Serre duality, there is an αξ ∈ H1(CP1,O(−2 − k)) such that

ξa1···ak =


CP1

u

ua1 · · · uakαξ ∧ Du, e.g. αξ = ξa1···ak û
a1 · · · ûak Dû,

where

ûa
=

1
|u0|

2 + |u1|
2
 ū0

ū1


, and Du = ua dua, Dû = ûa dûa.

4 For the massless fields of the opposite chirality we introduceλAa′ such that

ΦA1 ···Ak (x) =λA1a′1 · · ·λAka′k ξ a′1 ···a′keiP·x where PAB
= εa′b′λAa′λBb′

, a′, b′
= 0, 1.

Linearized gravity and Maxwell theory are of mixed type. Maxwell theory is described by using a photon with (traceless) field strength FA
B satisfying

∇ABF B
C = 0 = ∇

ABF C
B with momentum eigenstates

FA
B (x) =λAa′λbB ζ a′

b e
iP·x,

for some little group spinor ζ a′
b . Similarly, linearized gravity is described by a linearized Weyl tensor Ψ CD

AB symmetric in each pair, subject to ∇ABΨ
BC
DE =

0 = ∇
ABΨ DE

BC with momentum eigenstates

Ψ AB
CD (x) =λAa′λBb′λ

c
Cλ

d
D ζ

a′b′

cd e
iP·x,

for some little group spinor ζ a′b′

cd = ζ
(a′b′)

(cd) . The corresponding polarization data ζ a′
b and ζ

a′b′

cd have little group indices of both types.
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Here the ûa coordinates can also be invariantly defined as ûa =
ūa

ubūb
, where ūa = (−ū1, ū0) are anti-holomorphic coordinates

on CP1
u, so that it is normalized, i.e. uaûa

= 1, and is thus homogeneous of weight −1 in ua.
The little group spinor u defines two full spinors

λA(u) := λaAua, λA(u) := λaAûa

and we will have that PAB = λ[AλB]. We will often suppress the indices and dependence on u, just writing λ andλ for these
quantities in what follows, and make the dependence explicit with λ · uwhere confusion might otherwise arise.

The twistor representative associated with the momentum space eigenstate of null momentum P will turn out to be
supported on the line in the ‘πA’ spin space spanned by the two λaA, a = 1, 2. This can be done with holomorphic delta
functions on CP3. To define these, we first introduce, for z = x + iy,

δ̄(z) = δ(x)δ(y) dz̄.

These can be multiplied together to give delta functions on C4: δ̄4(µA) =
4

A=1 δ̄(µA). To give a delta function on the
projective space CP3, for two points with homogeneous coordinates µA, νA we define

δ̄3k (µ, ν) =


C

ds
sk+1

∧ δ̄4(µ+ sν)

which has weight −k − 4 in µ and k in ν.
Given spinor-helicity data (λaA, ξa1···ak), we can now write the two formulae for the twistor representatives. We define

the corresponding representative φ ∈ H3(Q ; O(−k − 4)) to be

φ(ω, π) = eiP·x


CP1
u

αξ ∧ δ̄3k (π, λ) ∧ Du, (4)

and the representative ψ ∈ H2(Q ; O(k − 2)) to be

ψ(ω, π) = eiP·x


CP1
u

ξ(u) δ̄3
−2−k(π, λ · u) ∧ Du. (5)

Throughout, we take k ≥ 0.
In these formulae, P ·x is not manifestly a twistor function; however, on the support of the delta function it is in the sense

that it satisfies πA∂
AB(P · x) = 0 as PABπB = 0. We can make this more explicit by observing that PAB = λ[AλB] and that on

the support of the delta function δ̄4(sπ − λ)we can take sπA = λA. Thus, using the incidence relations x · P = −sω ·λ. We
therefore obtain as our definitive formulae for our twistor representatives of momentum eigenstates

φ(ω, π) =


C×CP1

u

e−isω·λ αξ ∧ δ̄4(sπ − λ · u) ∧ sk+3 ds ∧ Du, (6)

ψ(ω, π) =


C×CP1

u

e−isω·λ ξ(u) δ̄4(sπ − λ · u) ∧
ds

sk−1
∧ Du. (7)

In both cases it is easy to check that all the weights and form degrees match appropriately. The ∂̄-closure on Z ·Z = 0 can be
seen by checking ∂̄-closure of the integrands of (7) and (6), as ∂̄-closure is preserved by integration. In the H3 case ∂̄-closure
follows by virtue of its holomorphic dependence on ω and being a form of maximal degree on the CP3

× CP1 parametrized
by (π, u). In the H2 case, ξ(u) δ̄3

−2−k(π, λ · u) ∧ Du is ∂̄-closed. Operating with ∂̄ on the exponential factor we obtain, on
the support of the delta function,

∂̄

ω ·λ = ωAλaA∂̄ ûa = −ωAλaAuaDû (8)

where we have used the fact that ∂̄ ûa = uaDû. On the support of the delta function, ωAλaAua = ω · π , and so (8) vanishes
on Q .

4. Twistor spinor-helicity states in higher dimensions

The spinor-helicity formalism and the corresponding twistor space representatives that we have presented in six
dimensions have straightforward extensions to higher dimensions. One new issue that we meet in higher dimensions is
the fact that purity conditions come in for spinors in dimensions greater than 6 and symmetric spinors are then no longer
an irreducible representation of the Lorentz group, so further irreducibility conditions must be imposed. The other is that
the canonical structures and identifications amongst spinors change from dimension to dimension. We will work in the
complex to avoid further changes in character between the various signatures.

The purity condition on a spinor πA′

can be expressed in many ways, but the most convenient for our purposes will
be as follows. We first establish notation. Let µ = 1, . . . , 2m be the space–time indices, and A = 1, . . . , 2m−1 and
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A′
= 1′, . . . , 2m−1′ be the primed and the unprimed spinor indices, and decompose the gamma matrices into their chiral

parts, so that we have

Γµ =


0 γ µA

B′

γ µA′
B 0


, (9)

and the Clifford algebra relations become

γ (µ|A′
Aγ |ν)A

B′

= −ηµν δ
B′

A′ , γ (µ|A
A′

γ |ν)A′
B

= −ηµν δ
B
A, (10)

where ηµν is the metric on C2m. The purity condition on a spinor πA is the condition

πA′

πB′

γ µA′
Aγ µB′

B
= 0. (11)

This guarantees that the vector fields of the form Vµ = γ µA′
AπA′

αA for arbitrary αA span a totally null plane which can be
of dimension at mostm and will, for non-zero πA′

, be anm-dimensional one.

4.1. Spinor helicity in higher dimensions

Weshall only be interested in the elementary conformally invariant symmetric spinor fields thatwe have been discussing
in six dimensions; massless fields such as Maxwell and linearized gravity are never conformally invariant in dimensions
greater than 4 with their standard second-order field equations. Thus we will take our massless fields to be symmetric
spinors φA′

1···A
′
k = φ(A

′
1···A

′
k) and ψA1···Ak = ψ(A1···Ak). This choice allows us to deal with both cases of m even and odd at

once. But when m is odd, there will be some redundancy in this notation since primed indices can be eliminated by means
of the isomorphism between primed spinor space and dual spinor space. This is consistent with the fact that the Penrose
transform, as we describe it in this paper, produces massless fields of both positive and negative helicities when m is even,
but only massless fields of positive helicity when m is odd. Further distinctions between these cases will be pointed out in
the course of this section and the next. In dimensions greater than 6 these spinors are also subject to a further irreducibility
condition. This can be expressed in the form

φA′
1···A

′
kγ µA′

1
Aγ µA′

2

B
= 0, ψA1···Akγ µA′

A1γ µB′
A2 = 0. (12)

The zero-rest-mass equations on such fields are then

γ µA′
1
A
∇
µφA′

1···A
′
k = 0, γ µA′

A1∇µψA1···Ak = 0. (13)

We can now obtain the spinor-helicity formalism for such fields. We shall assume that our momentum eigenstates take

the form φA′
1···A

′
k = eiP·xφ

A′
1···A

′
k

0 and ψA1···Ak = eiP·xψ0
A1···Ak

with φ
A′
1···A

′
k

0 and ψ0
A1···Ak

constant, and so

Pµγ µA′
1
AφA′

1···A
′
k = 0, Pµγ µA′

A1ψA1···Ak = 0. (14)

The Clifford algebra relations imply that Pµγ µA′
B is invertible unless P is null, in which case it is standard5 that Pµγ µA′

B is
nilpotent with rank 2m−2. We can, as before, introduce bases λA

′

a and λaA (a = 1, . . . , 2m−2), respectively, of the kernel of
P · γ and deduce that we must have

φ
A′
1···A

′
k

0 = ξ a1···akλ
A′
1

a1 · · · λ
A′
k

ak , ψ0
A1···Ak = ηa1···akλ

a1
A1

· · · λ
ak
Ak
, (15)

for some symmetric ξ a1···ak and ηa1···ak . However, we must now also implement the irreducibility conditions (12) on ξ a1···ak
and ηa1···ak . To do this we note that a is a spinor index for the group SO(2m− 2,C), the spin group for the space–time of two
dimensions lower, which is the semi-simple part of the stabilizer of P acting on P⊥/P . The irreducibility conditions

ξ a1a2···akλ
A′
1

a1λ
A′
2

a2γ µA′
1
A1γ µA′

2

A2 = 0, ηa1a2···akλ
a1
A1
λ
a2
A2
γ µA′

1

A1γ µA′
2

A2 = 0 (16)

are then simply the analogues of (12) for symmetric spinors ξ a1···ak and ηa1···ak for SO(2m− 2,C). This is first non-trivial for
dimension 2m = 10, when it is simply a trace-free condition on ξa1···ak . Here again, we remark that whenm is odd, the little

5 This follows by choosing another null vector Q with P · Q =
1
2 and observing that P · γ · Q · γ + Q · γ · P · γ = 1 and this algebra has a standard

representation with

P · γ =


0 I
0 0


, Q · γ =


0 0
I 0


,

where I is the identity matrix on C2m−2
.
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group spinor space is isomorphic to its dual, and the little group spinor indices can be raised and lowered. Thus, in this case,
the identification of λA

′

a with λaA is consistent with the fact that only massless fields of positive helicity are treated here. On
the other hand, whenm is even, the little group spinor space and its dual are not isomorphic to one another, but correspond
to distinct chiral spinor spaces for SO(2m − 2,C).

Thus we are left with momentum eigenstates for solutions to (12) and (13) given by the formula

φA′
1···A

′
k = ξ a1···akλ

A′
1

a1 · · · λ
A′
k

ak e
iP·x, ψA1···Ak = ηa1···akλ

a1
A1

· · · λ
ak
Ak
eiP·x. (17)

This gives the chiral spinor-helicity description for these fields.

4.2. Twistor representatives for spinor-helicity states

Following the last chapter of [6], in arbitrary even dimension 2m, twistor space will be defined to be the projective pure
spinors for the conformal group SO(2m + 2,C). Here we work in the complex and make no restriction onm, so we have to
work independently of the special structures that arise in different dimensions modulo 8. The space of projective positive
pure spinors for SO(2m,C) will be denoted as PPSm. The space PPSm has dimension m(m − 1)/2 and can be represented
as the space of α-planes, the homogeneous space SO(2m)/U(m) or the complex subvariety of the (2m−1

− 1)-dimensional
projective spin space PSm cut out by the purity conditions

πA′

πB′

γ µA′
Aγ µB′

B
= 0. (11)

This condition guarantees that Vµ = γ µA′
AπA′

αA is a null vector for any choice of αA and, with the purity condition, this
will be maximal, so πA′

will determine a totally null self-dual m-plane through the origin. We take PT := PPSm+1 as our
definition of (projective) twistor space, the space of such totally null self-dual m-planes but not necessarily through the
origin in C2m. For example, in dimension 6 (m = 3) the twistor space is PT = Q = PPS4, the space of projective pure
spinors in eight dimensions. These null self-dual planes, often called α-planes in this context, can be represented by the
incidence relation

ωA
= xµγ µA′

AπA′

, (18)

as is familiar in dimension 4 and as was seen for dimension 6 in (2) where primed indices are eliminated in favour of the
unprimed ones. However, we note that (18) will be inconsistent unless (ωA, πA′

) is a pure SO(2m + 2) spinor.
If we nowwish to proceed analogously to howwe developed the six-dimensional theory presented in previous sections,

we must describe the physical degrees of freedom in terms of cohomology representatives on spaces of projective pure
spinors, i.e. on twistor spaces. Let PPSm−1 be the (m − 1)(m − 2)/2-dimensional space of projective pure spinors for
SO(2m−2,C). Wewill take ua to be homogeneous coordinates on the projective spin space PSm−1 = CP2m−2

−1 and impose
the purity conditions

ua1ua2λ
A′
1

a1λ
A′
2

a2γ µA′
1
Aγ µA′

2

B
= 0.

It is a standard consequence of Bott–Borel–Weyl theory [5] that the representations defined by (16) can be represented by

αξ ∈ H top(PPSm−1,O(4 − 2m − k)) and η(u) ∈ H0(PPS∗

m−1,O(k)) (19)

respectively, where top = (m−1)(m−2)/2 is the dimension of PPSm−1; these are related by Serre duality, as the canonical
bundle on PPSm−1 is O(4 − 2m) (see [5]). The second of these is simply given by η(u) = ηa1···aku

a1 · · · uak whereas the first
will not in general have a canonical representative, and we will denote such a representative simply by αξ satisfying

ξ a1a2···ak =


PPSm−1

ua1ua2 · · · uakαξDu,

where Du is the projective holomorphic volume form of weight 2m− 4 on PPSm−1. Whenm is odd, one has ξa1···ak = ηa1···ak
since the little group spinor space is isomorphic to its dual, and we thus have two ways of representing the polarization
spinor of a given massless field of positive helicity.

We must also introduce the projective holomorphic volume form Dπ of weight 2m − 2 on PPSm and the weighted delta
function δ̄(π, ρ) ∈ Ω0,m(m−1)

2 (2 − 2m − k) on PPSm. The former exists simply via the identification of the canonical bundle
of PPSm as the restriction of O(2 − 2m), as follows from the Bott–Borel–Weyl theory as described in [5] (explicit formulae
in terms of the ambient projective coordinates in PSm are obtained in [10]). The delta function is defined tautologically by

f (π) =


f (ρ) δ̄(π, ρ)Dρ (20)

where f is a function on PPSm of weight k,Dρ is the canonical holomorphic volume form of weight 2m− 2 and δ̄(π, ρ) has
appropriate weights in each of its arguments for the formula to make sense, i.e., of weight k in π and weight 2 − 2m − k
in ρ.
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We can now define the twistor representatives for the spinor-helicity states (17) as

φ(ω, π) =


eiP·xαξ ∧ δ̄(π, λ · u)Du

ψ(ω, π) =


eiP·xη(u) δ̄(π, λ · u)Du (21)

and it can be seen that these are respectively ∂̄-closed (0, 1
2m(m− 1))-forms of weight 2− 2m− k and (0,m− 1)-forms of

weight k − 2. This follows from the weights k of η(u), 4 − 2m − k of αξ and 2m − 4 of the canonical holomorphic volume
form Du on PPSm−1. It can be checked that eiP·x is indeed a function on twistor space when restricted to the support of the
delta function as before, as it will be annihilated by πA′

γ µA′
A∂µ on the support of the delta function.

5. Formal neighbourhoods and the twistor transform

In four dimensions a field of a given helicity is represented by the H1(PTI
; O(m)) cohomology classes on twistor space

and the H1(PT∗I
; O(m − 4)) classes on dual twistor space. The direct map between these two representations is known as

the twistor transform. In six dimensions, the situation is rather different, as the fields of positive helicity k/2 correspond
to classes on the same twistor space either as an H2 of homogeneity k − 2 or an H3 of homogeneity −k − 4. There is no
description of such fields simply in terms of homogeneous functions on dual twistor space. We will identify the direct map
between these representatives, the twistor transform, T , on twistor space in this section via an obstruction to the problem
of extending the H2s off the quadric Q ⊂ CP7. The twistor transform can be written schematically as

ΦA1···Ak(x)

P−1

zzuuuuuuuuu P−1

$$IIIIIIIII

g(Z) Too // f (Z)

whereΦA1···Ak(x) ∈ Γk, g(Z) ∈ H3(Q I
; (−k − 4)) and f (Z) ∈ H2(Q I

; (k − 2)).
The obstruction problem can also bemotivated by the task of writing integral formulae for the indirect transform. In four

dimensions, there are integral formulae for the space–time fields associated with classes in H1(PTI
; O(k − 2)) involving

derivatives of the twistor function; for example at k = 2, the self-dual photon, we have

Fa′b′(x) =


CP1

x

Dλ
∂2

∂µa′∂µb′
f (x · λ, λ)

where f ∈ H1(PTI
; O). Such a formula was proposed for dimension 6 [10] with (µ, λ) replaced by (ω, π). However, there

are a number of problems: in six dimensions, the cohomology classes are, a priori, only defined on Q rather than CP7,
and straightforward differentiation with respect to ωA takes a derivative in directions off Q into CP7, and so they are not
immediately meaningful. We will however show in the following that certain such derivatives can be canonically defined
in the positive homogeneity case (although there are other problems with the formula in [10], as the homogeneity weights
and cohomology degrees are not right either).

We will therefore consider the task of constructing extensions of the cohomology classes off the quadric as an expansion
in powers of Z2. In the H3 cases we will see that classes can be extended off the quadric to all orders in Z2, but that there
is no way to fix the ambiguity that arises at each order and so the derivatives do not have any invariant meaning. In the H2

case, we will show:

Proposition 5.1. Every f ∈ H2(Q I ,O(k− 2)) has a canonical extension to the kth-order formal neighbourhood around Q , so, in
particular, its kth derivative transverse to Q is canonically defined; however, any further extension is obstructed, the obstruction
being the corresponding g ∈ H3(Q I ,O(−4 − k)) to which it corresponds under the twistor transform.

Thus in examining the obstruction theory we find the canonical map from H2(Q I ,O(k − 2)) to H3(Q I ,O(−4 − k)) that we
knowmust exist via the Penrose transform to space–time, intrinsically in twistor space. This also enables us towrite integral
formulae for the H2 case.

Such extensions will be examined explicitly below for our representatives above. We will first examine the problem
abstractly of extending cohomology classes to formal neighbourhoods of the quadric Z · Z = 2ωAπA = 0. The subsequent
explicit calculations will then demonstrate that certain maps are indeed isomorphisms as claimed (see Fig. 3).
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Fig. 3. The extension of f ∈ H2 off Q is obstructed by g ∈ H3 .

5.1. Formal neighbourhoods

We are interested in determining to what extent the cohomology classes H2(Q I
; O(k − 2)) and H3(Q I

; O(−k − 4))
can be extended off the quadric. The natural language in which to approach this question is that of formal neighbourhoods
[20,18,45,23,24]: a step by step process inwhichwe consider the task of extending a class defined to rth order to the (r+1)th
order about Q ⊂ CP7. The starting point is a twistor cohomology class f (Z) ∈ H•(Q I

; O(n)) defined only on Z2
= 0. The

extension to the first formal neighbourhood is given by introducing the commuting variable ξ such that ξ 4 = 0 and allowing
the twistor function to now depend on (Zα, ξ), where Z2

= ξ 2. Similarly, we can think of the twistors associated with the
rth formal neighbourhood as the usual twistor Zα with an additional variable ξ , for which ξ 2(r+1)

= 0, subject to

(Zα, ξ) ∼ (tZα, tξ) Z2
= ξ 2 ξ 2(r+1)

= 0.

This leads to a thickening of twistor space Q → Q[r] [22] where Q[r] can be thought of as Q , but with the enlarged sheaf of
holomorphic functions O[r] that contain the information of the first r-derivatives off Q into CP7 encoded in the dependence
on Z and ξ .

More formally,wemake use of the long exact sequence of cohomology groups that follows from the short exact sequence:

0 → OQ (n − 2r)
×(Z ·Z)r
−→ O[r](n) −→ O[r−1](n) → 0.

So O[r] is the sheaf of functions on the rth formal neighbourhood which can be thought of as local functions on a
neighbourhoodofQ inCP7 modulo local functions of the form (Z ·Z)r+1

×g where g is another local function,withOQ = O[0].
We have, in terms of the ideal sheaf I of Q , O[r] =

r
i=0 Ir/Ir+1. In the following we abbreviate OQ to O.

This short exact sequence leads to long exact sequences of cohomology groups in the usual way. We know from [5] that
the cohomology groups are only non-zero at the H2(Q I

; O(n)) level for n ≥ −2 and H3(Q I
; O(n)) for n ≤ −4. To give an

idea of the process we first consider the easy case of extending H3(O(n)) for n ≤ −4. The long exact sequence gives

0 → H3(O(n − 2r)) → H3(O[r](n)) → H3(O(n))
δ

→ 0.

The zeros arise because there are no H2s in these homogeneity degrees and there are never any H4s. Thus the obstruction δ
to extending a class from one formal neighbourhood to a higher one always vanishes. However, there is always the freedom
arising from adding the choice of an element of H3(O(n − 2r)) to some original choice. So, we can extend any class in
H3(O(n)) to all orders but with much ambiguity, with a new non-trivial term arising at each term in its Taylor series.

The problem of extending H2(Q I ,O(n)) for n ≥ −2 is much less trivial. For the extension to the first formal
neighbourhood O[1], the long exact sequence gives

0 → H2(O(n − 2)) → H2(O[1](n)) → H2(O(n))
δ

→ H3(O(n − 2)) → · · · .

The case n = −2 is exceptional here asH3(O(n−2)) = H3(O(−4)) is only non-vanishing in this case and by the Penrose
transform is given by solutions to the wave equation and so is indeed isomorphic toH2(O(−2)). In fact wewill see by direct
computation that δ is an isomorphism, so it is impossible to extend an element of H2(O(−2)) to H2(O[1](−2)). In fact this
sequence then implies that H2(O[1](−2)) = 0 as H2(O(−4)) = 0.

For n > −2,H3(O(n)) = 0, so the obstructionmap δ always vanishes, andwe can always extend subject to an ambiguity
inH2(O(n−2)). This ambiguity is trivial forn = −1 and in that case there is a unique extensionH2(O[1](−1)) = H2(O(−1)),
but in all other cases there is some ambiguity. Finally for n ≥ 0, we now have no obstruction to extension as the
corresponding H3(O(n − 2)) vanishes, but we have an ambiguity of H2(O(n − 2)) in the choice of extension.

At the higher orders we obtain

0 → H2(O(n − 2r)) → H2(O[r](n)) → H2(O[r−1](n))
δ

→ H3(O(n − 2r)) → · · · .

For n = −1 and r = 2 we now see that there is a possible obstruction to extension as H2(O[1](−1)) = H2(O(−1)) =

H3(O(−5)) and indeed, as we shall see later, the map δ is again an isomorphism. Thus H2(O[2](−1)) = 0 and there is no
extension to the second formal neighbourhood in this homogeneity.
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The other case that we will be interested in is that of homogeneity n = 0. As we saw earlier, an α ∈ H2(O(0)) could
always be extended to an H2(O[1](0)) but with freedom in H2(O(−2)). Here at the next order r = 2, the obstruction group
is now H3(O(−4)) and indeed this map can be non-zero because, in H2(O[1](0)), we had the summand (the freedom in
extension to H2(O[1])) consisting of H2(O(−2)) which is isomorphic to H3(O(−4)). We will see again later that δ is an
isomorphism from this summand and so we can always choose an extension of α to α[1] ∈ H1(O[1](0)) such that δα[1] = 0.
This condition fixes the ambiguity in the first step completely and there exists a unique α[2] ∈ H2(O[2]) that maps onto α[1]
because at this homogeneity, H2(O(−4)) = 0. Now, at r = 3 the obstruction to further extension is δ(α[2]) ∈ H3(O(−6)).
This latter space is now isomorphic to the space H2(O) that we started with and in fact the map δ will be seen to be an
isomorphism.

5.1.1. An explicit example: momentum eigenstates
Our task here is to explicitly compute the ‘connecting homomorphism’ δ using the spinor-helicity based twistor

representatives and to show that it is an isomorphism whenever the cohomology groups it connects are related by the
twistor transform. In fact the action of δ on Dolbeault representatives is clear. If we take the first non-trivial case δ :

H2(Q I
; O(−2)) → H3(Q I

; O(−4)), with ϕ ∈ H2(Q I
; O(−2)) we should, abusing notation, redefine ϕ to be an arbitrary

smooth (0, 2)-form on a neighbourhood of Z2
= 0 that agrees with the originally chosen ϕ. Then, because the original ϕ is a

cohomology class, we will have ∂̄ϕ = 0 on Z2
= 0, so on a neighbourhood we must have

∂̄ϕ = Z2δϕ

for some (0, 3)-form δϕ. If we change the extension of ϕ to ϕ + Z2Λ, then δϕ → δϕ + ∂̄Λ|Z2=0, so the cohomology class of
δϕ is well defined.

We first show that for ϕ ∈ H2(O(−2)), δφ ∈ H3(O(−4)) is precisely the twistor transform of the class that we started
with, corresponding to the same solution to the wave equationΦ on space–time. We have that

ϕ =


CP1

Du δ̄3
−2,−2(π, λ · u) e−iω·λ, φ =


CP1

DuDû δ̄3
−4,0(π, λ · u) e−iω·λ.

The classes clearly extend off Z2
= 0 and, using (8), we see that φ is ∂̄-closed. There is clearly much freedom in extending

these representatives off the quadric as we can add on Z2 multiplied by any form of the same degree and with homogeneity
two lower; however, the form φ is not closed away from Z2

= 0. Following the calculation in (8) but not imposing the
condition Z2

= 0 we find

∂̄ϕ = −iω · π


CP1

DuDû e−iω·λ δ̄3(π, λ) = −iZ2φ.

Thus δϕ = −iφ and this gives the non-triviality of the map δ.
Similar calculations can be donewith other homogeneities. We shall be particularly interested in twistor representatives

corresponding to k = 0, 1 and 2 and so we only deal with these cases here.
For k = 1 we have representatives χ ∈ H2(Q I ,O(−1)) and ψ ∈ H3(Q I ,O(−5)) corresponding to momentum

eigenstates of the spin-1/2 field ΨA(x) given by

χ =


CP1

Du ξ · u δ̄3
−1,−3(π, λ) e

−iω·λ, ψ =


CP1

DuDû ξ · û δ̄3
−5,1(π, λ) e

−iω·λ.
As before we calculate the anti-holomorphic derivative of the H2 representative

∂̄χ = −iω · π


CP1

DuDû ξ · u δ̄3(π, λ) e−iω·λ.
All this does not vanish to first order in Z2

= ω · π . However, to first order in Z2 we must have that this is exact by the
abstract arguments above. To see this, we observe that

∂̄


CP1

Du ξ · û δ̄3(π, λ) e−iω·λ
=


CP1

DuDû (ξ · u) δ̄3(π, λ)e−iω·λ
− iω · πψ

with the first term arising from ∂̄ξ · û and the second from ∂̄ of the exponential. Thus, if we redefine

χ =


CP1

Du

ξ · u δ̄3

−1,−3(π, λ)+ i(ξ · û) (ω · π) δ̄3
−3,−1(π, λ)


e−iω·λ

we obtain the desired relation

∂̄χ = −iZ4ψ.

The final case of interest to us is the case corresponding to spin-1 fields, described in twistor space by b ∈ H2(Q I ,O) and
h ∈ H3(Q I ,O(−6)). Following the above strategy, we now see that if we adopt the redefinition

b =


CP1

Du e−iω·λ̂

ξabuaub δ̄30,−4(π, λ)− ξabuaûb ω · π δ̄3

−2,−2(π, λ)+ ξabûaûb(ω · π)2δ̄3
−4,0(π, λ)





Author's personal copy

L.J. Mason et al. / Journal of Geometry and Physics 62 (2012) 2353–2375 2365

and

h =


CP1

DuDû ξabûaûb δ̄3
−6,2(π, λ) e

−iω·λ,
then we will have

∂̄b = Z6h (22)

as desired. By the abstract arguments of the previous subsection, the final forms of these representatives are unique. In
general we have

∂̄ f = Z2k+2 g (23)

where g(Z) ∈ H3(Q I
; (−k − 4)) and f (Z) ∈ H2(Q I

; (k − 2)).

5.2. Integral formulae in the k − 2 homogeneity case

The above uniquely extended representatives in the k − 2 homogeneity case, together with their connection to the
negative homogeneity case, allow us to define integral formulae. We recall the form of the integral expression for the direct
Penrose transform:

FA1···Ak(x) =


Sx
D3π πA1 · · ·πAk g(ω, π)

where g(Z) ∈ H3(Q I
; (−k − 4)). Combining this with the expression (23), we have

FA1···Ak(x) =


Sx
D3 πZ−2k−2 πA1 · · ·πAk ∂̄ f (ω, π) (24)

where f (Z) ∈ H2(Q I
; (k− 2)). This integral formula hides the fact that we have to perform the onerous construction of the

canonical extension of f off Q , so its practical use may well be rather limited.

6. Ξ and half-Fourier transforms in split signature

As described in Section 2, in split signature, the components of the twistor Zα can be taken to be real and twistor space
to be the real quadric of signature (4, 4) inside RP7,Q = (S3 × S3)/Z2. In this signature, the integral formula for solutions
to the massless fields equations

F(x)A1···Ak =


Sx
D3π πA1 · · ·πAk f


xABπB, πA


, (25)

can be taken as an integral now over Sx = RP3 with f being a straightforward smooth function on Q of weight−4−k rather
than as a representative of some H3 cohomology class. Thus we have the benefit in split signature that Čech and Dolbeault
representatives are replaced by real functions on the real slice where all twistor coordinates and space–time coordinates
are real. Tree amplitudes generally are rational functions and so extend to split signature real slices. This real approach
simplifies matters significantly and allows one to exploit standard tools such as Fourier analysis. Sparling [26,27] referred
to the k = 0 version of this transform as the Ξ-transform, and we will follow his terminology here. We will use Fourier
analysis to identify the kernel of this map on twistor space and to extend it to the ‘indirect’ cases of weight k − 2.

In four dimensions with split signature the Penrose transform similarly has a non-cohomological analogue, the X-ray
transform, that maps functions on the real twistor space, RP3, to solutions to the massless field equations on space–time by
straightforward integration along lines in the real twistor space. This can be combined with the Fourier transform to give
a map from functions on twistor space to functions on the light-cone in momentum space. This yields what has become
known as the ‘half-Fourier transform’ [1]. Both the momentum light-cone and twistor space are three-dimensional and the
map is a Fourier transform along a natural family of two-dimensional fibres.

In this section we derive the analogue of this construction for six-dimensional space–timewith split signature. However,
the real momentum space light-cone is five dimensional whereas the real twistor space is six dimensional and we will find
that this leads to new features in the correspondence as it can no longer be one to one. For this context, the transforms have
been studied by Sparling [26,27] for thewave equation and homogeneities−2 and−4; he referred to them asΞ-transforms.
He discovered that the −4 case leads to solutions to the wave equation but the kernel of the map consists of those twistor
functions F that are in the image of the conformally invariantwave operator� on twistor space, f = �g for some g (recall that
twistor space, being a quadric, is canonically a conformal manifold in six dimensions). Using triality he was able to follow
this around the correspondences between twistor space, primed twistor space and space–time, with them all on an equal
footing. Here we will extend this to all other weights, both positive and negative, and see how the conformally invariant
powers of the Laplacian of [46,47] play a role in characterizing the twistor data in this case.
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Twistor space is a conformal manifold and so admits conformally invariant powers of the ultrahyperbolic wave
operator [47]

�k+1
: E(−k − 2) → E(−k − 4).

Here, E(k) denotes the sheaf of smooth sections over Q homogeneous of degree k.
We will show:

Proposition 6.1. The kernel of theΞ-transform (25) for functions on twistor space of weight −k − 4 is the image of

�k+1
: Γ (Q , E(−k − 2)) → Γ (Q , E(−k − 4)).

TheΞ-transform therefore gives an isomorphism

Γk(M) ≃ Γ (Q , E(−k − 4))/{Im�k+1
: Γ (Q , E(−k − 2)) → Γ (Q , E(−k − 4))}

and we will show, as the analogue of the indirect Penrose transform:

Proposition 6.2. For k > 0, there is a one to one correspondence

{h ∈ Γ (Q , E(k))|�k+1h = 0} ≃ Γk(M).

Our main tool will be the six-dimensional analogue of the half-Fourier transform. However, before we embark on that, we
remark that the spinor-helicity representatives for cohomology classes that we obtained earlier have totally real analogues
that we write down directly here as

φ(ω, π) =


R×RP1

u

e−isω·λ αξ δ4(sπ − λ · u) sk+3 ds ∧ Du, (26)

ψ(ω, π) =


R×RP1

u

e−isω·λ ξ(u) δ4(sπ − λ · u)
ds

sk−1
∧ Du (27)

where now Z, λaA, ua and s are real, ûa = (u1,−u0)/(u2
0 + u2

1) as before but is real and αξ is a smooth function of the ua of
homogeneity −k − 2 satisfying

RP1
u

ua1 · · · uakαξDu = ξa1···ak .

Here, αξ can still be thought of as a representative of a class in H1(CP1,O(−k − 2)), but now as a Čech cocycle defined on
RP1

⊂ CP1. It is easily seen that substituting (26) into (25) gives the spinor-helicity momentum eigenstate as expected.
Analogues of these representatives can be found in higher dimensions also as before.

6.1. The Fourier and half-Fourier transforms

We first formulate the Fourier transform from space–time for a field F(x)A1···Ak . Since it satisfies the massless field
equation ∇

ABFB···D = 0, the transform to momentum space

F(P)A1···Ak =


d6x F(x)A1···Ak eiP·x

will satisfy PABFB···D = 0. ThusF only has support when PAB has rank 2. In particular P is null and F is supported on the
momentum light-cone

M0 = {PAB
|P2

= 0} = {PAB|PAB = εabλ
a
Aλ

b
B}

for some λaA defined up to SL(2,R) on the a index. As before, we obtain the spinor-helicity representationFA1···Ak =F(λ)a1···akλa1A1 · · · λ
ak
Ak
δ(P2),

and defineFa1···ak to be the Fourier transform of the field F(x)A1···Ak .
Our next task is to establish the following.

Proposition 6.3. We have the following direct formula forFa1···ak in terms of the twistor function f that gives rise to it via (25) in
split signature:

F(λa)a1···ak =


Du ua1 · · · uak


d4ω δ(ωAλA) f (ωA, λA) e−iλAωA

(28)

where λA = λaAua where ua are now homogeneous coordinates on RP1 andλA is any spinor chosen such that λ[AλB] = PAB.
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For definiteness we will often chooseλA = λaAûa where ûa = (−u1, u0)/(u2
0 + u2

1) but our formulae will be invariant underλ →λ+ αλ for all α.

Proof. In split signature all quantities, P, x, λ, u, û, ω and π can be taken real and, at least for homogeneity −k − 4, the
twistor cohomology class can be replaced by a smooth function f of the real twistor variables (ωA, πA) of projective weight
−k − 4. The direct Penrose transform gives a space–time massless field

F(x)A1···Ak =


Sx
D3π πA1 · · ·πAk f


xABπB, πA


,

where now the integral is over Sx = RP3. We can Fourier transform this to get a function on momentum space and,
substituting in its above form, we must obtain

F(λ)a1···akλa1A1 · · · λ
ak
Ak
δ(P2) =


d6x D3π πA1 · · ·πAk f


xABπB, πA


eiP·x.

We now reverse the order of integration performing the x-integral first. We can reparametrize x with ωA together with
a parameter χA defined up to the addition of multiples of π by

xAB = εABCDω
CαD

+ χ[AπB].

We can choose αA such that α ·π = 1 and fix the freedom in χ such that α ·χ = 0. This is then consistent with the incidence
relation ωA

= xABπB and χA has three independent components (and projective weight −1). We may now write

P · x = 2PABωAαB
+ PABχAπB.

The measure on space–time can then be written as

d6x = d4ω D3χ δ(ωAπA)

where D3χ = εABCDπA dχB dχC dχD(= d4χ δ(αAχA)). Thus we have

F(λ)A1···Akδ(P2) =


d4ω D3χ D3π δ(ω · π) πA1 · · ·πAk f (ω

A, πA) e2iPABω
AαB+iPABχAπB .

Performing the χ integration we have6
D3χ eiP

ABχAπB = δ(P2)


RP1

Du δ3
−2(πA, λ

a
Aua).

On the support of this δ-function all the πA factors can be replaced by λaAua and we can now remove the λaA and δ(P
2) factors

from both sides of the equation to obtain

F(λ)a1···ak =


Du ua1 · · · uak


d4ω D3π δ(ωAπA) δ

3(πA; λA · u) f (ωA, πA) e2iPABω
AαB .

Using εab = (uaûb − ubûa), on the support of the delta functions, the exponent may be written as

2iPABωAαB
= −iλAωA

where λA = λaAua andλA = 2λaAûa. With this, and using the δ3(πA, λA) to do the D3π integration, the map from functions
on twistor space to scalar fields on the null-cone becomes

F(λa)a1···ak =


Du ua1 · · · uak


d4ω δ(ωAλA) f (ωA, λA) e−iλAωA

(29)

as required. �

This map factors into a half-Fourier transform followed by an integral over u (see Fig. 4). The half-Fourier transform part
of the map, being a Fourier transform, is necessarily one to one. This takes functions on twistor space Q to functions on
an extension of the momentum light-cone M0 by RP1 to include the real projective coordinate ua giving a six-dimensional

6 To see this, choose α such that α · χ = χ1 = 0 so that

D3χ eiχI P

IAπA =


I=2,3,4 δ
3(P IAπA). On P12 ≠ 0, we can choose λ01 = 1 λ02 = λ11 = 0 and

λ12 = P12 and we find

|P12|δ(P3AπA)δ(P4AπA) = δ2(πA, λ
a
A).

Consider now δ(P2)δ2(πA; λ
+, λ−) = |P12|δ(P12P34

+ P14P23
+ P13P42)δ(P3AπA)δ(P4AπA). On the support of the second and third delta functions, the first

can be rewritten and we find δ(P2)δ2(πA; λ
a) = δ3(P IAπA) and therefore


D3χ eiP

ABχAπB = δ(P2)δ2(πA, λ
a
A).
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Fig. 4. The half-Fourier transform relates a bundle overM0 to Q .

auxiliary space with coordinates {λaA, u
a
}/{SL(2,R) × R∗

} with the SL(2,R) acting on the a-index and the R∗ on ua. We
identify this space with the bundle T (−2)RP3 of tangent vectors of homogeneity (−2) over RP3. This follows by rewriting
the data (λaA, u

a) as
λA,λB :=


λ · u, λ · û


−→


λA · u, λA · û

∂

∂λA


∈ RP3

× TλRP3

whereλ is only defined up to the addition of multiples of λ but λ · ∂/∂λ is zero in TλRP3.

Definition 6.1. The half-Fourier transform takes a homogeneous function f (ω, π) of weight −4 − k on twistor space to a
homogeneous function K(λ,λ) on T (−2)RP3 of weight 2 − k through

K(λ, λ̂) =


d4ω δ(ωAλA) f (ωA, λA) e−iλAωA

. (30)

We remark that in this definition, k can be any integer.

The delta function in the integrand implies thatK(λ,λ+αλ) = K(λ,λ) for allα. This gives an analogue of the half-Fourier
transform familiar from four dimensions. It is invertible with inverse

f (ωA, λA) δ(ω
AλA) =

1
(2π)4


d4λ K(λA,λA) eiλAωA

where we think of f (ωA, λA)δ(ω
AλA) as a distribution on RP7 with support on the twistor quadric, the delta function arising

because K(λ,λ) = K(λ,λ+ rλ) for all r .

6.2. The extended directΞ-transform and half-Fourier transform

Our proposition above therefore gives the Fourier transform of the massless field as the following integral over RP1 of
the half-Fourier transform K of f :

F(λaA)a1···ak =


RP1

Du ua1 · · · uakK(λ,λ). (31)

The combination cannot be one to one since the dimension of twistor space is 6 and the dimension of the momentum null-
cone is 5. There must therefore be a kernel of the map (25) from twistor functions to massless fields which we now seek to
identify. Clearly, since the half-Fourier transform is 1:1, the kernel is that of the integration in (31), i.e., those K for which the
integrand is exact. We will identify this and its counterpart on twistor space. We will also in the process see how to extend
this correspondence to the case of homogeneity k − 2 which will work dually.

It is clear that the integration (31) has as kernel those K for which the integrand is exact for the RP1 integration. In order
to understand this kernel, we need to review the theory of the ðk operators on RP1. These are operators defined in the first
instance on functions on RP1, for k ≥ 0,

ðk+1
: E(k) → E(−k − 2),

that are invariant under Mobius transformations. Following [48] we observe that for f (u) of weight k, ∂kf
∂ua1 ···∂uak has weight

0 and so

ua0
∂kf

∂ua0 · · · ∂uak
= 0.

Thus

∂kf
∂ua0 · · · ∂uak

= ua0 · · · uak ðk+1 f
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for some ðk+1 f of weight −k − 2. This defining equation can be written as

d


∂kf
∂ua1 · · · ∂uak


= ua1 · · · uak ðk+1 f Du, (32)

thus showing that K is in the kernel of the integral (31) iff K = ðk+1 J for some J .
This gives a complete characterization of the kernel of the integration in (31) where now ðk+1 is understood fibrewise for

the fibres of the fibration T (−2)RP3
→ M0. In order to understand what this means on twistor space, we first express ð in

terms of the (λ,λ) coordinates on T (−2)RP3. We first observe that if we are not concerned to preserve manifest projective
invariance on RP1, then we can define ðk+1

= (ð)k+1 where on a function f of weight k we define the action of a single
ð : E(k) → E(k − 2) for all integral values of k by

ðf = (u2
0 + u2

1)
k/2ð


(u2

0 + u2
1)

−k/2f

.

It is now possible to see that, with this definition, (ð)k+1 is independent of the choice of quadratic form (here (u2
0 + u2

1))
and reduces to the invariant form given above. As an operator on K(λ,λ) with K(λ,λ + αλ) we find, using the chain rule,
together with ðua = ûa and ðûa = ua, that

ðK(λ,λ) =λ ·
∂K
∂λ
.

It is now straightforward to see that, since under the half-Fourier transform,λ ↔ ∂/∂ωA, we have

ðK ↔
∂2f

∂ωA∂πA
.

Thus ð corresponds to the ultrahyperbolic wave operator � on the non-projective R8 associated with the RP7 in which Q
lives. Homogeneous functions on RP7 do simply correspond to ordinary functions on this R8, but this is in general not well
defined on functions onQ as the derivative off the quadricQ is not given. However, forweights k ≥ 0 the following operators
are well defined on homogeneous functions on Q :

�k+1
: E(k − 2) → E(−k − 4)

as defined in precisely this context in [47] (see also [46,49] for antecedents). Thus we have:

Proposition 6.4. The kernel of theΞ-transform (31) for functions on twistor space of weight −k − 4 is the image of

�k+1
: Γ (Q , E(−k − 2)) → Γ (Q , E(−k − 4)).

TheΞ-transform therefore gives an isomorphism

Γk(M) ≃ Γ (Q , E(−k − 4))/{Im�k+1
: Γ (Q , E(−k − 2)) → Γ (Q , E(−k − 4))}.

6.3. The indirectΞ-transform

The question remains as to how the Ξ-transform works for homogeneity k − 2. The half-Fourier transform is an
isomorphism from functions h of weight k − 2 on twistor space to functions J of weight k on T (−2)RP3. The map from
a momentum space representativeF(λaA)a1···ak to such a function J of weight k is clear: it should be

J =F(λaA)a1···akua1 · · · uak .

This is inverted by setting

F(λaA)a1···ak =
∂k

∂ua1 · · · ∂uak
J(λ,λ)

but if J has been chosen arbitrarily, this will only give a sensible momentum space representative if the right hand side is
independent of ua. Using (32) we see that this will follow iff ðk+1 J = 0. Using the above argument, we can see that this is
equivalent for the function h on twistor space to the vanishing of the conformally invariant power of the ultrahyperbolic
wave equation �k+1h = 0. Thus we have the positive chiralityΞ-transform:

Proposition 6.5. For k > 0, there is a one to one correspondence

Γk(M) ≃ {h ∈ Γ (Q , E(k))|�k+1h = 0}.
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Thus theΞ-transformmaps solutions of differential equations on one space to solutions on another in this case. We remark
also that in split signature we have triality, so twistor space, primed twistor space and (compactified) space–time are all on
an equivalent footing and theΞ-transform applies between any two of these three spaces in either direction.

We finally note the integral formula in this case:

φA1···Ak(x) =


γ⊂Sx

∂k+1h
∂ωA1 · · · ∂ωAk∂ωAk+1

εAk+1BCDπB dπC dπD, (33)

where the integral is over some two-dimensional contour γ cohomologous to RP2
⊂ Sx = RP3. In order to make sense of

the ∂/∂ωA derivatives, hmust be extended offQ to kth order inRP7; the k+1th derivative is skewedwithπA and so is acting
only tangent to Q . This is precisely what is done in [47] with the extension determined by the condition that �R8h = 0 in
the ambient non-projective space to the appropriate order; the operator �k+1

Q on h is obtained in [47] as the obstruction to
extending h as a solution to �R8h = 0 at k + 1th order, although there is in any case some ambiguity at that order. The
result is independent of the chosen contour by virtue of �k+1h = 0 which in particular implies that the kth-order extension
is annihilated by �R8 . We remark that it is not sufficient to check this with the spinor-helicity representative (27) except for
the k = 0 case, as for general k (27) has not been extended appropriately off Q into RP7 and formulae more analogous to
those used in the formal neighbourhood discussion are required.

7. Interactions and scattering amplitudes

There has been considerablework on the spinor-helicity construction of scattering amplitudes for (1, 1) super Yang–Mills
theory in six dimensions [13,50–54]. The invariances of the theory appear to uniquely fix the form of the three-photon
amplitude andhigher-point amplitudes have been derived using the BCFWconstruction [13].7 Despite a clear demonstration
that spinor-helicity methods are useful in six dimensions, there is little understanding of how to construct scattering
amplitudes from six-dimensional twistor space. We shall return to the question of how to describe non-chiral theories
such as the Yang–Mills one in future work. In this article we are chiefly concerned with conformally invariant and chiral
theories. Because the amplitudes for the (0, 2)-theory are believed to be trivial, we are rather limited as to the amplitudes
that we can consider and we focus on theΦ3 vertex. (The only fields of spin less than 1 that we can consider are scalars and
spin-1/2 fermions and it does not seem possible to construct an interaction involving spin-1/2 fields without introducing a
spin-1/2 field Ψ A(x) of opposite chirality.)

We can write down a classically conformally invariant Lagrangian for an interacting scalar field:

L =
1
2
∂µΦ ∂

µΦ +
κ

6
Φ3 (34)

where κ is a dimensionless coupling constant. On applying the Fourier transform, the three-scalar amplitude corresponding
to theΦ3 vertex takes the simple form

A(P1, P2, P3) =
κ

6
δ6


3

i=1

P i
AB


.

A natural candidate for the three-point scalar amplitude in terms of indirect Penrose transform functions ϕi, i = 1, 2, 3,
of weight −2 is

A(P1, P2, P3) =


RP7

D7Z δ(Z · Z) ϕ1 ϕ2 ϕ3.

We insert the twistor representatives for momentum eigenstates:

ϕi(ω, π) =
1
2


Dui dki ki δ4(πA − kiλiA) e−

i
k
λiAωA

where a factor of 1/2 has been introduced for later convenience.
The scattering amplitude is then

A(P1, P2, P3) =
1
8


D3π d4ω δ(ω · π)


3

i=1


Dui dki ki δ4(πA − kiλiA)


exp


−i

3
i=1

ωAλiA
ki


.

Writing the quadric delta function as an integral,

δ(ω · π) =


dt ei t ω·π ,

7 Loop amplitudes have also been constructed by unitarity methods in [50,52].
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and then doing the four ωA integrations, gives

A(P1, P2, P3) =
1
8


D3π dt


3

i=1


Dui dki ki δ4(πA − kiλiA)


δ4


t πA −

3
i=1

λiA
ki


.

We can already see that this expression has the support of the 6-momentum conserving delta functions. Consider the skew
product of the argument of the delta function δ4


tπA −


i
1
ki
λiAwith π :

tπ[AπB] −


i

1
ki
π[A|
λi|B] = 0.

The first term vanishes and on the support of the δ4(πA − kiλiA), and the second term may be written as

0 =


i

λi[A|
λi|B] =


i

P i
AB,

which gives the expected momentum conservation. Thus

A(P1, P2, P3) = Kδ6


3

i=1

P (i)AB


(35)

for someK . Since there are no Lorentz invariants of three null momenta that add up to zero, we see thatK must be constant
and so we have the correct amplitude. A more laborious argument can be used to obtain K explicitly.

8. Discussion: conformal theories in twistor space

One of the triumphs of the twistor programme was the elegant description of self-dual Yang–Mills theory in four
dimensions in terms of the Penrose–Ward correspondence [55]. This correspondence relates a holomorphic vector bundle
on projective twistor space without connection to a holomorphic bundle over space–time with self-dual connection. In six
dimensions, a connection on a fibre bundle cannot be self-dual; however, a gerbe can have self-dual connection. In this
section we shall be particularly interested in six-dimensional linearized physical theories in which self-dual gerbes play a
role. These objects play an important role in string theory and it is doubtful that a full understanding of M-theory will be
possible without at least a partial understanding of the conjectured non-linear versions of such theories.

8.1. Self-dual gerbes in twistor space

An abelian gerbe on space–time is usually thought of as a generalization of a connection in which the connection 1-form
is replaced by a 2-form, B, defined modulo the addition of the exterior derivative of a 1-form, and so the ‘curvature’ dB is
now a 3-form. On twistor space, we have the two descriptions: as b ∈ H2(O) and g ∈ H3(O(−6)), both as forms modulo
∂̄-exact forms. Since these are both in a potential modulo gauge format, the form degree of the latter does not naturally fit
the concept of the gerbe, but theH2 case does. Indeed this case has already been studied as a route to defining a holomorphic
gerbe on twistor space by Hitchin [56] and Chatterjee [11]who present the theory as a generalization of the Čech description
of line bundles; this is outlined in the Appendix for Čech cohomology along with the Penrose transform in the indirect case
leading to a potential modulo gauge description for the space–time field.

The Dolbeault route gives a picture slightly different to that arising from the Čech approach. In the Dolbeault picture, we
can think of the b ∈ H2(O) as defining a class of local ∂̄-operators ∂̄ai on a fixed complex line bundles over a covering Ui of
Q I for which ∂̄2ai = b. In the simplest case these can be ∂̄-operators on the same trivial line bundle and b is the obstruction
to extending the local ∂̄ai to a global ∂̄-operator.

It is straightforward to write down action principles for the linear theories on twistor space. We first define the holo-
morphic volume formΩ ∈ Γ (Q ,Ω6(6)) by

Q
(·)Ω =


CP7
(·) D7Z δ̄1(Z2).

In Euclidean signature, for MI
= Euclidean R6, the Sx sweep out Q I . Then an action for a pair (g, f ) ∈ Ω0,2(k − 2) × Ω0,3

(−k − 4) to define Dolbeault cohomology classes is

S[g, f ] =


Q
g ∧ ∂̄ f ∧Ω,

since solutions to field equations mod gauge give

([g], [f ]) ∈ H2(O(k − 2))× H3(O(−k − 4)) = Γk × Γk.
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For k = 2 this is an action for a pair of self-dual gerbe fields and for k = 4 it gives an action for a pair of the spin-2 fields
discussed below. Such an action for the k = 2 case is echoed on space–time by the action

S(H, B) =


MI

H ∧ dB, (H, B) ∈ Ω3+
×Ω2,

since self-dual 3-forms annihilate self-dual 3-forms under the wedge product in six dimensions. Thus it is not so surprising.
In Lorentz signature we can write action formulations that do not seem to have a space–time analogue. Recall that we

have in Lorentz signature the quaternionic reality structure πA → π̂A etc, Z → Ẑ with ˆ̂Z = −Z . In this signature, the Sx that
are invariant under the quaternionic conjugation only sweep out the real codimension-1 set

Q0 = {Z ∈ Q |Z · Ẑ = 0}.

If we now choose data (g, g̃) ∈ Ω0,2(k − 2)×Ω0,2(−k − 4)we obtain

S[g, g̃] =


Q0

g̃ ∧ ∂̄g ∧Ω.

The field equations lead to a pair of cohomology classes but now

([g], [g̃]) ∈ H2(Q0,O(k − 2))× H2(Q0,O(−k − 4)) = Γk × 0.

Because of the vanishing of H2s for sufficiently negative homogeneity, we only obtain one helicity-k/2 field. Thus an action
corresponding to a linear self-dual gerbe theory on Minkowski space is given by

S[b] =


Q0

D7Z ∧ δ̄(Z2) ∧ δ̄(Z · Ẑ) ∧ b̃ ∧ ∂̄ b (36)

for some twistor field b̃ of homogeneity −4. The equations of motion imply that b ∈ H2(Q ; O) as it should be, and
b̃ ∈ H2(Q ; O(−4)); however, H2(Q ; O(−4)) = 0 and so b̃ has no on-shell degrees of freedom and acts simply as a Lagrange
multiplier that vanishes on the shell, constraining b to lie in H2(Q ; O).

The scattering amplitude for the scalar theory in split signature suggests that there is a twistor action for the space–time
Lagrangian (34), at least in Euclidean and split signatures. However, it is difficult to make this work coherently. One is
tempted to write

S[ϕ, φ] =


CP7

D7Z ∧ δ̄(Z2) ∧


φ ∧ ∂̄ϕ +

1
6
ϕ ∧ ϕ ∧ ϕ


(37)

where δ̄(Z2) is a (0, 1)-form of weight −2 and D7Z = εα0α1···α7Z
α0∂Zα1 ∧ · · · ∧ ∂Zα7 = D3π d4ω is the natural projective

(7, 0)-form on CP7 of weight+8. Here ϕ is a (0, 2)-form of weight−2 and φ is a (0, 3)-form of weight−4. The form degrees
and weights match and so this action makes sense as an action functional. In split signature, the interaction term gives the
expression for the three-point amplitude (35). This action is well defined on the quadric Q and, under variation with respect
to the representatives, gives

∂̄ϕ = 0, ∂̄φ +
1
2
ϕ ∧ ϕ = 0.

So ϕ corresponds simply to a solution of the wave equation whereas φ seems likely to correspond to a solution to an
imhomogeneous wave equation sourced by ϕ2.

It therefore remains difficult to piece these together to give an action for theΦ3 theory on twistor space. The Lorentzian
formulation seems to be no better as it is not clear how to encode the cubic interaction as a (0, 5)-form.

8.2. Non-geometric gravitational theories

Up to now we have been concerned with spin-1 gerbes; here we extend our considerations to spin-2 fields. The on-
shell graviton is given by a field strength Ψ CD

AB with spinor-helicity polarization data Ψ ab
a′b′ , having nine degrees of freedom;

however, the spin-2 field strength Gabcd arising from the direct Penrose transform

GABCD =


Sx
D3π πAπBπCπD g(ω, π) (38)

has five on-shell degrees of freedom. Furthermore Gabcd is a chiral field, whereas the graviton is not. This spin-2 field
appearing from twistor space is clearly not describing linearized Einstein gravity, but amore exotic six-dimensional relative.
It is conjectured that there exists a superconformal (4, 0) theory in six dimensions [32,57,58,33] which includes just such a
field; however, we can consider this field in a bosonic context. A discussion of the supersymmetric theory will be presented
in [44]. The novelty of this theory is that the spin-2 field is not a graviton in the conventional sense and is not thought
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to give rise to a conventional, geometric, theory of gravitation. Rather, the spin-2 field is given by a tensor Cµνλρ with the
symmetries of the Riemann tensor and field strength

Gµνλρση = 3∂µ∂[νCλρ]ση + 3∂η∂[νCλρ]µσ + 3∂σ ∂[νCλρ]ηµ

which is self-dual:

Gµνλρση =
1
3!
ερση

κξζGµνλκξζ .

In terms of spinor notation, the field can be encoded into a potential field CCD
AB symmetric in each pair of indices with

(linearized) manifestly self-dual field strength

GABCD = ∇(A|M∇|B|NC|CD)
MN .

This field, with five on-shell ‘gravi-gerbe’ degrees of freedom, is the highest spin member of the (4, 0) multiplet. At the
linearized level, a dimensional reduction on a circle to five dimensions yields the linearized form of the conventional
Einstein maximal supergravity in five dimensions and it is conjectured that there exists a non-linear (4, 0) theory in six
dimensions which gives rise to the full Einstein supergravity in five dimensions [32]. It is not clear what the full non-linear
(4, 0) theory should look like but it is expected that the interactions will not be of a conventional field-theoretic type but
rather should be based on yet to be identifiedM-theoretic principles. In this section we consider only the linearized form of
the (4, 0) theory in supertwistor space. The spin-2 field may be described in terms of the conventional Penrose transform
(38) where g(ω, π) ∈ H3(Q I

; O(−8)) and it is straightforward to generalize the arguments above for the spin-1 gerbe to
a representative of H2(Q I

; O(+2)) to get a description of this field in terms of a potential CABCD, modulo gauge invariance,
from the indirect Penrose transform.

In a subsequent paper we will turn to the supersymmetric formulations, non-conformally invariant and non-chiral
theories, and reductions to lower dimensions.
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Appendix. The indirect Penrose transform for a self-dual gerbe

It is perhaps simplest to understand what a holomorphic gerbe is by comparing its definition with that of a holomorphic
line bundle [56]. A line bundlemay be understood in terms of a set of transition functions between open sets gij : Ui∩Uj → S1

with gij = g−1
ji and a triviality condition on the overlap of three open sets: gijgjkgki = 1 on Ui ∩ Uj ∩ Uk. The bundle is

holomorphic if the gij are holomorphic functions. By contrast a gerbe is defined by functions on a triple intersection

bijk : Ui ∩ Uj ∩ Uk → S1,

with bijk = b−1
jik = b−1

ikj = b−1
kji and the triviality condition on the overlap of four open sets

bjklb−1
ikl bijlb

−1
ijk = 1, on Ui ∩ Uj ∩ Uk ∩ Ul.

Crucially a gerbe, unlike a fibre bundle, is not a manifold.8 A holomorphic gerbe is one for which the bijk are holomorphic
functions.

We can also do differential geometry on gerbes. We can define a connection on a line bundle by Ai − Aj = g−1
ij dgij and a

field strength, defined over the whole bundle, F = dAi = dAj. On a gerbe we may define a connection in a similar way:

H = dBi = dBj, Bi − Bj = dAij, Aij + Ajk + Aki = b−1
ijk dbijk,

where Bi is the connection9 and H is a globally defined closed 3-form field strength. A connection on a gerbe is (anti-)self-
dual if H = ± ∗ H . The six-dimensional analogue of the Penrose–Ward correspondence, which we sketch below, relates
cohomology classes [b] = {bijk} on twistor space to self-dual connections B on space–time.

8 An equivalent way to define a gerbe is in terms of transition line bundles on Ui ∩ Uj , as opposed to the transition functions that define a line bundle.
9 Following the physics literature, we shall also refer to Bi as ‘the gerbe’.
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The simplest twistor representation for such a self-dual gerbe is via the direct Penrose transform given by

HAB(x) =


Sx
D3π πAπB h (ω, π) ,

where h ∈ Ȟ3(Q I
; O(−6)) and the integral is taken over the CP3 picked out by the incidence relation. However, this

represents the gerbe as a (0, 3)-form potential modulo gauge which is not appropriate for defining a gerbe on twistor space.
The most natural association between twistor cohomology and connections of a gerbe in space–time comes from

representatives of H2(Q I ,O) or more geometrically its exponentiation H2(Q I
; O∗) given by the indirect Penrose transform.

This defines a holomorphic gerbe on twistor space. Following [11], this can be understood via Čech coholomogy: let [b] be a
representative of Ȟ2(Q I

; O∗) and {Ui} a Leray cover10 of Q . We then have a family of functions of homogeneity degree zero,
[b] = {bijk}, defined on the triple intersection:

bijk : Ui ∩ Uj ∩ Uk → C∗, bijkbjklbkliblij = 1.

Here bijk is a cohomology representative and is defined on Q and may be lifted to the correspondence space F = {(x, [π ]) ∈

M × CP3
} where, by virtue of being pulled back from twistor space, it satisfies

µ∗

πB∇

ABbijk


= 0.

Restricting to Sx = CP3, Ȟ2(Sx; O) = 0 and so we can write

bijk = aijajkaki. (39)

Here aij = aij(x, π) is not pulled back from twistor space (assuming [b] was not trivial) and so πB∇
ABaij ≠ 0. We can define

aijA = πB∇
AB log aij, and differentiating (39) we obtain

aijA + ajkA + akiA = 0.

It is also the case that Ȟ1(Sx; O) = 0 and so

aijA = fiA − fjA. (40)

Furthermore, since partial derivatives commute, πC∇
C[AaB]ij = 0. Thus, differentiating (40) we obtain

πC∇
C[Af B]i = πC∇

C[Af B]j = SAB.

The left and right hand sides of the first equality are defined on different patches (Ui and Uj) but are equal. From this we
infer the existence of the globally defined field sAB which is homogeneous of degree 2 in πA. We can therefore express the
π dependence explicitly as sAB = sABCDπCπD. We note that skew symmetry implies that πAπB∇

AB
= 0, so πAaAij = 0 = πAf Aij

and πASAB = 0. Thus sABCD can be expressed in terms of some BB
A by

sABCD =
1
2
εABE(CBD)

E .

This potential can be taken to be traceless, corresponding to a 2-form, and is defined modulo gauge:

BB
A ∼ BB

A + ∇ACABC
−

1
4
δBA∇ · A

for a 1-form ABC
= −ACB because f Ai was defined up to f Ai → f Ai + εABCDπBACD. BB

A can therefore be interpreted as a gerbe
connection on space–time. We have that πA∇

A[BSCD]
= 0 from its definition, and this gives the field equation

∇
A(BBC)

A = 0.

The gauge-invariant field strength for the gerbe is therefore

HAB = ∇(A|CBC
|B),

corresponding to a self-dual 3-form which is closed, being the exterior derivative of the 2-form corresponding to B.
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