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a b s t r a c t

We show that the Euclidean Kerr–NUT-(A)dS metric in 2m dimensions locally admits 2m
Hermitian complex structures. These are derived from the existence of a non-degenerate
closed conformal Killing–Yano tensor with distinct eigenvalues. More generally, a
conformal Killing–Yano tensor, provided its exterior derivative satisfies a certain condition,
algebraically determines 2m almost complex structures that turn out to be integrable as a
consequence of the conformal Killing–Yano equations. In the complexification, these lead
to 2m maximal isotropic foliations of the manifold and, in Lorentz signature, these lead to
two congruences of null geodesics. These are not shear-free, but satisfy a weaker condition
that also generalises the shear-free condition from four dimensions to higher dimensions.
In odddimensions, a conformal Killing–Yano tensor leads to similar integrable distributions
in the complexification.We show that the recently discovered five-dimensional solution of
Lü, Mei and Pope also admits such integrable distributions, although this does not quite fit
into the story as the obvious associated two-form is not conformal Killing–Yano. We give
conditions on the Weyl curvature tensor imposed by the existence of a non-degenerate
conformal Killing–Yano tensor; these give an appropriate generalisation of the type D
condition on a Weyl tensor from four dimensions.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In the construction of exact solutions to the Einstein equations in four dimensions, a prominent rôle is played by shear-
free congruences of null geodesics. In vacuum, these lead, via the Goldberg–Sachs Theorem, to the algebraic degeneracy
of the Weyl tensor and considerable simplification of the gravitational field equations. The Kerr–Newman black hole
solutions [1,2] have degenerate Weyl tensor of type D and such solutions are particularly well endowed in the sense that
they admit two such congruences. In higher dimensions, the Kerr–Schild and Kerr–NUT-(A)dS solutions of [3–6] do have
preferred null congruences, but they are not shear-free. In [7] it was proposed that the appropriate higher-dimensional
concept to extend the four-dimensional results should be that of an integrable complex distributionD ⊂ TCM , [D,D] ⊂ D
that is totally null and of maximal dimension. With this definition, a number of four-dimensional results were generalised
to arbitrary dimension. In Euclidean signature in even dimensions, this is simply a metric compatible complex structure,
i.e., a Hermitian structure. In Lorentz signature,D ∩D is necessarily one-dimensional and defines a null congruence. This
is automatically shear-free in four dimensions, but not in higher dimensions, but it Lie derives a complex structure on the
tangent space orthogonal and transverse to the null congruence. In this paper we show that it is these null congruences that
are relevant in the study of the higher-dimensional Kerr–NUT-(A)dS solutions.
In four dimensions the type D condition on the Weyl curvature of a vacuum spacetime is equivalent to the condition

that it admits two distinct geodesic shear-free congruences. It is also equivalent to the existence of a conformal Killing–Yano
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tensor, a 2-form φ that, on a general n-dimensional manifold, satisfies

∇Xφ =
1
3
Xyτ +

1
n− 1

X∗ ∧ K ,

for all vector fields X , where τ, a 3-form and K , a 1-form, are determined by the equation. Such a form is said to be a Killing
2-form if K ≡ 0, and a ∗-Killing 2-form if τ ≡ 0. In four dimensions Killing 2-forms are mapped onto ∗-Killing 2-forms
by Hodge duality, but in general dimension, the two concepts are distinct. Killing–Yano tensors and their generalisation to
any p-forms were first introduced by Kentaro Yano as a natural generalisation of Killing vectors to forms in [8,9]. Conformal
Killing–Yano tensors as a generalisation of conformal Killing vectors made their first appearance in [10,11], and are often
referred to as conformal Killing forms or twistor forms.
Killing–Yano tensors underlie much of the theory of the four-dimensional black hole solutions. In [12], Brandon Carter

identifies the fourth conserved quantity in the Kerr–Newman black hole solution, which allows the separation of the
Hamilton–Jacobi equations and the complete integrability of geodesic motions. In [13,14] it is shown that this ‘hidden’
symmetry can be represented by a Killing tensor, which turns out to be the ‘square’ of a conformal Killing–Yano tensor (or
2-form). In the same papers, a spinorial approach to the problem sheds light on the null geodesic shear-free congruences in
the Kerr geometry: in tensor language, the real eigenvectors of the conformal Killing–Yano tensor define a pair of geodesic
shear-free null congruences.
Subsequently, Killing–Yano tensors were found to play an equally important rôle in the solution of the Dirac equation in

a Kerr–Newman black hole background [15], and these ideas were later extended to the realm of supersymmetry [16,17].
More recently, similar structures have been found for the black hole solutions in higher dimensions. These have been the
object of intensive study motivated to a large extent by ideas from string theory and M-theory. The Kerr–NUT-(A)dS metric
is a higher-dimensional generalisation of the Kerr metric, generalising also the Plebański–Demiański metric. Explicitly, in
Euclideanised form, the n-dimensional Kerr–NUT-(A)dS metric is given by [18]

g =
m∑
µ=1

(
eµ � eµ + em+µ � em+µ

)
+ εe2m+1 � e2m+1

where, in terms of local coordinates {xµ, ψk},

eµ =
(
Uµ
Xµ

)1/2
dxµ, em+µ =

(
Xµ
Uµ

)1/2 m−1∑
k=0

A(k)µ dψk, e2m+1 =
(
−
c
A(m)

)1/2 ( m∑
k=0

A(k)dψk

)
with

Xµ = (−1)ε
(g2x2µ − 1)

x2εµ

m−1+ε∏
k=1

(a2k − x
2
µ)+ 2Mµ(−xµ)

1−ε, Uµ =
m∏
ν=1
ν 6=µ

(x2ν − x
2
µ),

c =
m∏
k=1

a2k, A(k)µ =
∑

ν1<ν2<···<νk
νi 6=µ

x2ν1x
2
ν2
· · · x2νk , A(k) =

∑
ν1<ν2<···<νk

x2ν1x
2
ν2
· · · x2νk .

Here, m = [n/2], and ε = n − 2m. The constants ak, −i1+εMm, Mµ (µ 6= m) are the rotation coefficients, the mass and
the NUT parameters respectively, and λ = −g2 is proportional to the cosmological constant. (With appropriate choices of
the constants, Lorentzian real slices can also be found.) Like its four-dimensional counterpart, the Kerr–NUT-(A)dS metric
admits a closed conformal Killing–Yano tensor

φ =
∑
xµeµ ∧ em+µ. (1.1)

Aspects of the four-dimensional theory have been generalised to Kerr–NUT-(A)dS metric in arbitrary dimensions in a series
of papers [19–36] in which the separation of the Hamilton–Jacobi, Klein–Gordon and Dirac equations and the complete
integrability of geodesic motions are dealt with. In this paper, we turn our attention to the existence of a set of integrable
almost complex structures. Defining

θµ = 2−1/2(eµ + iem+µ) and θ̄
µ̄
= 2−1/2(eµ − iem+µ)

puts the Kerr–NUT-(A)dS metric into the form

g =
∑
µ

2θµ � θ̄
µ̄
+ εe2m+1 � e2m+1.

A straightforward computation of the Levi-Civita connection 1-form implies the integrability of each of the 2m distributions
defined as the annihilator of a set of m 1-forms obtained by choosing one from each pair {θµ, θ̄

µ̄
}, µ = 1, . . . ,m. These

correspond to integrable almost complex structures in the case ε = 0, and to integrable CR structures in the case ε = 1.
These results are essentially local in nature and although the complex structures will be defined on a dense open set, they
will not generally extend over the whole of the regular spacetime (thus they will not be global on S4 or S6).
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The plan of the paper is as follows.We first recall the basic facts concerning conformal Killing–Yano tensors andmaximal
isotropic distributions while establishing the notation.We then prove our main result on integrability, both in even and odd
dimensions and discuss the examples above in more detail. In these examples the Killing Yano tensor is closed. We also
study the example of the new five-dimensional metrics discovered by Lü, Mei and Pope [37] which we show does admit the
corresponding integrable distribution, although the most obvious choice for a conformal Killing–Yano tensor does not seem
to work.
We go on to show how a Killing–Yano tensor imposes algebraic restrictions on theWeyl tensor.We also study the closely

related structure of Hamiltonian 2-forms and show that these also lead to a family of integrable complex structures as for
Killing–Yano tensors. In the last section, we re-express our results in terms of spinors. In particular, eigenspinors of the
conformal Killing–Yano tensor are shown to be pure and to determine the integrable distributions discussed earlier. Finally,
we briefly discuss further issues arising from our discussion, the different possible reality structure, the Kerr–Schild form of
the metrics, the Kerr Theorem, degenerate Killing–Yano tensors and Killing spinors.

2. Preliminaries

By and large we will not use the Einstein summation convention, but will occasionally when there is no ambiguity and
will warn the reader of this. We adopt the notation that round and square brackets enclosing a group of indices denote
symmetrisation and anti-symmetrisation respectively, e.g.

k(ab) =
1
2!
(kab + kba) and k[abc] =

1
3!
(kabc − kbac + kbca − kcba + kcab − kacb) .

Indices are raised and lowered via the metric. Tensorial quantities will be given in bold symbols, and scalar quantities in
regular symbols.

2.1. Conformal Killing 2-forms

Conformal Killing–Yano tensors are now much studied, see [38] for a thorough treatment. We shall only state results
pertinent to conformal Killing 2-forms. In what follows, X [ ≡ g(X), and d∗ the adjoint of the exterior derivative d. On p-
forms on an n-dimensional (pseudo-) Riemannian manifold, it is given by d∗ = (−1)np+n+1 ∗ d ∗, where the ∗ is the Hodge
duality operator.

Definition 2.1. A conformal Killing–Yano tensor or conformal Killing 2-form on an n-dimensional (pseudo-) Riemannian
manifoldM is a 2-form φ which satisfies the following equation

∇Xφ =
1
3
Xyτ +

1
n− 1

X [ ∧ K ,
(
∇cφab = τcab +

2
n− 1

gc[a K b]

)
(2.1)

for all vector fields X . It follows at once τ = dφ and K = −d∗φ. If φ is co-closed, i.e. K = 0, it is called a Killing 2-form. If φ
is closed, i.e. τ = 0, it is called a ∗-Killing 2-form.

Eq. (2.1) is over-determined and one can show that in the case n 6= 4 it is equivalent to a parallel section of the bundle
E2(M) =

∧2 T ∗M⊕
∧3 T ∗M⊕

∧1 T ∗M⊕
∧2 T ∗M with respect to the Killing connection ∇̃ as described in [38]. An element

8 = (φ, τ,K ,χ) ∈ E2(M) satisfies ∇̃8 = 0 if and only if τ = dφ, K = −d∗φ, and χ = 1φ where 1 = dd∗ + d∗d is the
Beltrami–Laplacian on forms. The case n = 4 necessitates a slight modification of the prolongation in which Hodge duality
must be taken into account. In flat space with flat coordinates {xa}, integration leads to

φ =

(
1
2
‖x‖2χ̊− x∗ ∧ xyχ̊

)
+ x∗ ∧ K̊ + xyτ̊ + φ̊, (2.2)

where x = (x1, x2, . . . , xn) is the position vector field, and χ̊, K̊ , τ̊ and φ̊ are constants.

2.2. Maximal isotropic foliations and null congruences

We will be concerned with integrable distributions D ⊂ TCM that are maximal and isotropic, i.e., in 2m dimensions,
D will be m-dimensional and the metric vanishes on restriction to D , i.e., for V ,W ∈ D , g(V ,W ) = 0 and the
integrability being given by the Frobenius integrability condition [D,D] ⊂ D . It is always possible to find a frame of
1-forms {θa} = {θµ, θµ}, (a = 1, . . . , 2m; µ = 1, . . . ,m) such thatD is the annihilator of the θµ and g =

∑
µ 2θ

µ
� θµ.

In Euclidean signature,D∩D̄ = {0} because there are no real non-zero null vectors, and so such distributions correspond
to complex structures with respect to which the metric is Hermitian, i.e., we can choose θµ = θµ.
In Lorentz signature,D ∩ D̄ is one-dimensional because, on the one hand, there are no linear subspaces of a Lorentzian

lightcone of dimension greater than one, and on the other, if D ∩ D̄ = {0}, D would be a complex structure for which
the metric is Hermitian, but such metrics must have an even number of positive and negative eigenvalues over the reals,
whereas in Lorentz signature there is just one positive eigenvalue.
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We have the following lemma

Lemma 2.2. Suppose that the maximal isotropic distributionD is integrable, [D,D] ⊂ D , then, supposing the spacetime to be
analytic, the integral surfaces of D in the complexification are totally geodesic.

Proof. This can be seen as follows. Introduce a basis {Va} = {Vµ,Vµ} of vector field dual to {θa} = {θµ, θµ} where Vµ
spansD . The Ricci rotation coefficientsωµνλ,ωλµν , etc., will be given by [Vµ,Vν] =

∑
λ(ωµνλV

λ
+ωλµνVλ). The integrability

condition [Vµ,Vν] ∈ D implies that the Ricci rotation coefficients ωµνλ = 0 and so also the corresponding connection
coefficients Γµνλ = 0 where∇VµVν =

∑
λ(Γµν

λVλ+ΓµνλV λ). This allows one to deduce that the form θ1∧· · ·∧ θm, which
is orthogonal to all the Vµ, is parallel up scale along the Vµ, i.e.

∇Vµθ1 ∧ · · · ∧ θm =
∑
ν

Γµν
νθ1 ∧ · · · ∧ θm.

Thus the integral surfaces ofD are totally geodesic. �

We have the straightforward corollary

Corollary 2.3. In Lorentzian signature, the null congruence defined byD ∩ D̄ is geodesic.

Further, the integrability of the isotropic distribution imposes the following condition on theWeyl conformal curvature.

Proposition 2.4. Let D be an integrable maximal isotropic distribution. Then, the Weyl conformal tensor satisfies

C(Vµ,Vν,Vρ,Vσ ) = 0, (2.3)

for all Vµ inD .

Proof. From the integrability of D , we have ∇VµVν = Γµν
ρVρ so that computing the Riemann tensor viewed as an

endomorphism on the tangent bundle yields

RVµ,VνVρ = ∇Vµ∇VνVρ −∇Vν∇VµVρ −∇[Vµ,Vν ]Vρ = RVµ,Vν
λ

ρ
Vλ,

and the result follows immediately from the decomposition of the Riemann tensor into irreducible parts and the fact that
the distribution is maximally isotropic. �

2.3. The normal form of a generic 2-form

Throughout this paper we will restrict attention to the case where the Killing–Yano tensor φ is generic in the sense that
all its eigenvalues will be assumed to be distinct (i.e., the eigenvalues of the endomorphism obtained by raising one index
with the metric). The following is a standard result and we only sketch its proof briefly to set notation.

Lemma 2.5. There exists a basis of 1-forms {θa} = {θµ, θµ, εe2m+1} that are a null basis for the metric, i.e., g =
∑

µ θ
µ
� θµ+

εe22m+1 (so that each of the 1-forms {θ
µ, θµ} is null) and such that

φ =
∑
µ

λµθ
µ
∧ θµ. (2.4)

This normal form is unique up to separate rescalings of the (θµ, θµ)→ (aµθµ, a−1µ θµ) with aµ 6= 0, and up to permutations of
the µ and (θµ, θµ)→ (θµ, θ

µ) for one value of µ, with the other forms left invariant.
[Here as before, ε = 1 in the odd-dimensional case and zero otherwise.]

Proof (Sketch). The genericity assumption allows us to use a basis of eigen-(co)vectors for φ. It is a standard fact that the
eigenvectors with non-zero eigenvalue of a 2-form with respect to a metric are isotropic. This follows from the identity
(using the summation convention now until the end of this section)

φablb = λgablb ⇒ λlala = φablalb = 0.

A pair of eigenvectors la, na with eigenvalues λ, ν respectively satisfy φablanb = νlana = −λlana and so will be orthogonal
to each other unless their eigenvalues differ by a sign. Thus, since the eigenvectors span the space, they must come in pairs
with eigenvalues of opposite sign with possibly one zero eigenvalue in odd dimensions, and can be normalised such that
the claims of the lemma are satisfied. �

We note that for a real φ in Euclidean signature we must have θµ = θµ and the λµ will all be imaginary. For real φ
in Lorentzian signature, we must have that one eigenvalue, say λ1 is real, as will therefore be θ1 and θ1, with the other
eigenvalues imaginary (with θµ = θµ). This follows from the requirement that the metric have just one timelike direction
as before in the discussion of maximal isotropic foliations.
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3. Main results

3.1. Maximal isotropic distributions associated to φ and their integrability

Given the representation of φ in Lemma 2.5, we can write down 2m maximal isotropic distributions, one for each choice
of integers µ1 < µ2 < · · · < µr ⊂ {1, . . . ,m}. These are defined to be the distribution annihilated by the forms
{θµ1 , . . . , θµr , θν1 , . . . , θνm−r , εe2m+1}where the ν1, . . . , νm−r are the distinct integers in the complement of theµ1, . . . , µr
in {1, . . . ,m}. The purpose of this section is to prove the following theorem.

Theorem 3.1. Let M be a 2m-dimensional Riemannian manifold equipped with a non-degenerate conformal Killing–Yano tensor
φ in normal form with distinct eigenvalues. Let the 3-form τ = dφ satisfy

θµ ∧ τ(Vµ, ·, ·) = 0, θµ ∧ τ(Vµ, ·, ·) = 0, (3.1)

for each µ (i.e., with no summation). Then the 2m maximal isotropic distributions associated to φ are integrable. In Euclidean
signature they define 2m distinct complex structures, whereas in Lorentzian signature they define just two geodesic congruences,
each associated with 2m−1 integrable maximal isotropic distributions.

Remark 3.2. Condition (3.1) is automatically satisfied
1. when the conformal Killing–Yano tensor is closed, and
2. in four dimensions.
Proof. Let M be a (real) 2m-dimensional (pseudo-) Riemannian manifold and φ be a non-degenerate Killing–Yano tensor
on M . Suppose that φ has the form (2.4) in a null basis of one-forms {θµ, θµ}, dual basis {Vµ,Vµ} and distinct eigenvalues
{λµ,−λµ}.
In terms of the vector basis {Vµ,Vµ}, the integrability of all these distributions will be implied by the conditions

[Vµ,Vν] = ωµνµVµ + ωµννVν,
[Vµ,V ν] = ωµνµVµ + ωµννV ν,

[Vµ,V ν] = ωµνµVµ + ωµ
ν
ν V

ν,

(3.2)

satisfied for all distinct µ, ν, and no summation. These are constraints on the Ricci rotation coefficients and hence on the
connection. In terms of the connection coefficients we must show

Γκµν = 0, Γ κµν
= 0, (for all κ, µ, ν),

Γκµ
ν
= 0, Γ κ

ν
µ
= 0, (for all ν 6= µ, κ),

Γκ
µν
= 0, Γ κ

µν = 0, (for all κ 6= µ, ν)
(3.3)

which imply Eqs. (3.2).
In terms of basis components, the Killing–Yano equation (2.1) yields (no summation)

∂κφ
ν
µ +

(
λµ − λν

)
Γκµ

ν
= τκµ

ν
−

1
n− 1

δνκKµ, (3.4a)

(
λµ + λν

)
Γ κ

µν = τ
κ
µν +

2
n− 1

δκ[µ K ν], (3.4b)(
λµ + λν

)
Γκµν = τκµν . (3.4c)

From Eqs. (3.4a), we then obtain

Kµ = −(n− 1)∂µλµ, (3.5a)

τνµ
µ
= ∂νλµ, for all ν 6= µ, (3.5b)

τνµ
ν
−

1
n− 1

Kµ = (λµ − λν)Γνµν, for all ν 6= µ, (3.5c)

δµκ τκµ
ν
=
(
λµ − λν

)
Γκµ

ν, for all ν 6= κ, µ. (3.5d)

On the other hand, Eqs. (3.4b) give

τκ
µν
= (λµ + λν)Γκ

µν, for all κ 6= µ, ν, (3.6a)

τ ννµ +
1
n− 1

Kµ = (λµ + λν)Γ ν
νµ, for all ν 6= µ. (3.6b)

By symmetry, we have similar relations involving Γ κ
µ
ν , Γ µν

κ , and Γ
κµν . By assumption all the eigenvalues {λµ,−λµ} are

distinct, so that Eqs. (3.4c), (3.5d) and (3.6a) imply the integrability conditions (3.3) if and only if



Author's personal copy

912 L. Mason, A. Taghavi-Chabert / Journal of Geometry and Physics 60 (2010) 907–923

τκµν = 0, τ κµν = 0, (for all κ, µ, ν),

τκµ
ν
= 0, τ κ ν

µ
= 0, (for all ν 6= µ, κ),

τκ
µν
= 0, τ κµν = 0, (for all κ 6= µ, ν),

which is equivalent to Eq. (3.1).
At this point, we now have enough information about the connection to obtain the integrability of the maximal isotropic

distributions. In particular, we have the condition Γµνλ = 0 which implies as in the proof of Lemma 2.2,

∇Vµθ1 ∧ · · · ∧ θm =
∑
ν

Γ ν
µνθ1 ∧ · · · ∧ θm.

This, in particular, implies for � = θ1 ∧ · · · ∧ θm that d� = α ∧ � for some 1-form α, so that the distribution
D = 〈V1, . . . ,Vm〉 orthogonal to � is integrable. However, all the maximal isotropic distributions determined by φ
are on an equal footing with D; all such distributions are equivalent to D by interchanging (θµ, θµ) → (θµ, θ

µ) for
different values of µ. Thus, all such distributions are integrable. This can, of course, be checked explicitly by calculating
∇W θσ(1) ∧ · · · ∧ θσ(p) ∧ θ

σ(p+1)
∧ · · · θσ(m) where σ is an arbitrary permutation of 1, . . . ,m and W is in the kernel of

θσ(1) ∧ · · · ∧ θσ(p) ∧ θ
σ(p+1)

∧ · · · θσ(m). �

For future usewe record the expressions for some of the remaining connection components. Combining Eqs. (3.5a), (3.5c)
and (3.6b) gives

Γνµ
ν
= ∂µ ln |λµ − λν |, Γ νµ

ν = ∂
µ ln |λµ − λν |, (3.7a)

Γ ν
µν = ∂µ ln |λµ + λν |, Γν

µν
= ∂µ ln |λµ + λν |. (3.7b)

Remark 3.3. We emphasise that the above result is essentially local. We have made the assumption, for example, that the
Killing–Yano tensor has distinct and non-constant eigenvalues, and this assumption will generically break down on some
non-trivial subset of codimension at least one. In general, then, the complex structures will not extend globally over such
subsets. The Kerr–NUT-(A)dSmetric provides such an example. Setting themass and the NUT parameters to zero, themetric
reduces to a Ricci-flat conformally flat metric. But it is a standard result that the round four-sphere does not admit a global
Hermitian complex structure (there are complex structures on the complement of a point in S4 that naturally extend toCP2
or a quadric).

3.2. Odd-dimensional manifolds and integrable CR structures

The above results extend naturally to odd-dimensional manifolds. WhenM is a (2m+ 1)-dimensional real manifold, the
natural analogue of a complex structure is a CR structure. An almost Cauchy–Riemann (CR) structure is an m-dimensional
subbundleD of the complexified tangent bundle TCM , so thatD∩D̄ = 0. It is a CR structure if it is integrable, [D,D] ⊂ D .
This is the structure that a hypersurface in Cm+1 inherits from the ambient complex structure; D are those vectors in the
holomorphic tangent bundle T (1,0) that are tangent to the hypersurface. On our (pseudo-) Riemannian manifold, we will
also requireD to be isotropic so that we will have TCM = D ⊕ D̄ ⊕ K where K is the orthogonal complement ofD ⊕ D̄ .
Given a non-degenerate Killing–Yano tensorφ onM , K will be the kernel ofφ. By Lemma 2.5, assuming thatφ has distinct

non-zero eigenvalues, we can find a basis of 1-forms {e0, θµ, θµ} all null except e0, in which φ =
∑

µ λµθ
µ
∧θµ is in normal

form, degenerate onK , but non-degenerate onK⊥.Wewrite {V0,Vµ,Vµ}, (µ = 1, . . . ,m), for the corresponding dual vector
basis so thatV0 spansK , and the 2m distributions are found by choosing one vector fromeach of the pairs (Vµ,Vµ) for eachµ.
The question of whether the 2m almost Cauchy–Riemann structures φ are integrable reduces to the integrability of the

2m maximal isotropic distributions on K⊥, hence, to whether relations (3.2) are satisfied. So, ifD is one of our 2m maximal
isotropic distribution in K⊥, then [D,D] ⊂ D . More precisely, relations (3.2) tell us that ωµν0 , ω

µν
0, and ωµ

ν
0 vanish for

all µ 6= ν. In odd dimensions, the conformal Killing–Yano equations (2.1) gives the extra conditions

∂0φµ
ν
+ (λµ − λν)Γ0µ

ν
= 0 (3.8a)

(λµ + λν)Γ0µν = τ0µν (3.8b)

λµΓ00µ =
1
n− 1

Kµ (3.8c)

−λµΓνµ0 = τνµ0 (3.8d)

λµΓ
ν
µ0 = τ

ν
µ0 +

1
n− 1

δνµK0. (3.8e)

Eqs. (3.8a) lead to

∂0λµ = 0 (3.9a)

(λµ − λν)Γ0µ
ν
= 0 for all µ 6= ν, (3.9b)
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and Eqs. (3.8e) to

λµΓ
ν
µ0 = τ

ν
µ0 for all µ 6= ν, (3.10a)

λµΓ
µ
µ0 = τ

µ
µ0 +

1
n− 1

K0. (3.10b)

By the assumptions on the eigenvalues, Eqs. (3.8d) and (3.10a) show that

Γνµ0 = 0 = Γ νµ
0 = Γ

ν
µ0 ⇐⇒ τνµ0 = 0 = τ νµ0 = τ νµ0, for all µ 6= ν,

which is subsumed into condition (3.1). Thus, Theorem 3.1 extends to the odd-dimensional case.

Remark 3.4. Given such an integrable distribution D , we can adjoin V0 to form the distribution D̃ = {V0,D}. The
integrability of this distribution requires in addition to the above, that [Vµ,V0] = ωµ0

µVµ + ωµ00V0 and [Vµ,V0] =
ωµ0µVµ + ω

µ

0
0 V0 for all µ, but this follows from the above conditions on the connection. Thus, these distributions will

also be integrable.

We also note that combining Eqs. (3.5a) and (3.8c) yields

Γ 00µ = −∂µ ln |λµ|. (3.11)

3.3. Examples

3.3.1. The ∗-Killing (or closed conformal Killing–Yano) case
For the Kerr–NUT-(A)dS, we can see these distributions explicitly. The integrability ismost evident in terms of the inverse

metric which in the even-dimensional case is given by [18]

g−1 =
m∑
µ=1

2Vµ � Vµ

where

Vµ =
2−1/2√
Uµ

(√
Xµ

∂

∂xµ
− i

1√
Xµ

(
m−1∑
k=0

(−1)kx2(m−1−k)µ

∂

∂ψk

))
, Vµ = Vµ.

The key feature here is that, apart from the scale factor
√
Uµ, in these coordinates, the coefficients of the vectors Vµ and

Vµ depend only on the coordinate xµ. Thus a distributions made up of any set of the basis vectors with distinct values of µ
will commute amongst themselves so that the distribution is integrable. (The only pairs of these basis vectors that do no
commute amongst themselves in this way are {Vµ,Vµ}.) In particular, all the maximal isotropic distributions spanned by
m such basis vectors with distinct values of µwill form an integrable distribution. Explicitly, we have[

Vµ,Vν
]
= 2−1/2

xν
√
Qν

x2ν − x2µ
Vµ − 2−1/2

xµ
√
Qµ

x2µ − x2ν
Vν

[Vµ,V ν ] = 2−1/2
xν
√
Qν

x2ν − x2µ
Vµ − 2−1/2

xµ
√
Qµ

x2µ − x2ν
V ν

[
Vµ,V ν

]
= 2−1/2

xν
√
Qν

x2ν − x2µ
Vµ − 2−1/2

xµ
√
Qµ

x2µ − x2ν
V ν

[
Vµ,Vµ

]
= 2−1/2

∂
√
Qµ

∂xµ

(
Vµ − Vµ

)
+ 2 · 2−1/2

∑
ν 6=µ

xµ
√
Qν

x2ν − x2µ
(Vν − V ν) ,

where Qµ = Xµ/Uµ.

3.3.2. A five-dimensional black hole solution
We consider the recently discovered metric of Lü, Mei and Pope, [37]. The metric is g5 =

∑4
i=0(e

i)2 with

e0 =
(
a0
xy

)1/2
(dφ + (x+ y)dψ + xydt),

e1 =
1

2(1− xy)

(
x− y
X

)1/2
dx e3 =

1
1− xy

(
X

x(x− y)

)1/2
(dφ + ydψ)

e2 =
1

2(1− xy)

(
y− x
Y

)1/2
dy e4 =

1
1− xy

(
Y

y(y− x)

)1/2
(dφ + xdψ)
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where X and Y are quartic polynomials in x and y respectively. Then, the dual vector basis is given by

e0 =
(
1
a0xy

)1/2
∂t

e1 = 2(1− xy)
(
X
x− y

)1/2
∂x e3 = (1− xy)

(
1

x(x− y)X

)1/2
(x2∂φ − x∂ψ + ∂t)

e2 = 2(1− xy)
(
Y
y− x

)1/2
∂y e4 = (1− xy)

(
1

y(y− x)Y

)1/2
(y2∂φ − y∂ψ + ∂t).

Defining V1 = 2−1/2(e1 − ie3) and V2 = 2−1/2(e2 − ie4), we obtain the Ricci rotation coefficients from the commutators

[V1,V2] = −2−1/2
(
Y
y− x

)1/2
(−2x2 + xy+ 1)

x− y
V1 + 2−1/2

(
X
x− y

)1/2
(−2y2 + xy+ 1)

y− x
V2

[
V1,V 2

]
= −2−1/2

(
Y
y− x

)1/2
(−2x2 + xy+ 1)

x− y
V1 + 2−1/2

(
X
x− y

)1/2
(−2y2 + xy+ 1)

y− x
V 2

[
V1,V 1

]
= 2−1/2

(
2∂x

(
(1− xy)

(
X
x− y

)1/2)
+

(
X
x− y

)1/2 (1− 5xy
x

))
(V1 − V 1)

− 2−1/2
(
Y
y− x

)1/2 ( x
y

)1/2 2(1− xy)
(x− y)

(V2 − V 2)+ 2i
(
a0
xy

)1/2
(1− xy)2x−1/2e0

[V1, e0] = −2−1/2
1− xy
x

(
X
x− y

)1/2
e0

with the remaining commutators given by complex conjugation and the symmetry 1 ↔ 2 accompanied by x ↔ y and
X ↔ Y .
It is also straightforward to check that its associated rank-two and rank-three complex distributions are all integrable.
We now turn our attention to the existence of a conformal Killing–Yano tensor φ in normal form in this basis. We first

note that the four-dimensional metric g4 =
∑4
i=1(e

i)2 has a conformal Killing–Yano tensor given by

φ = i
x1/2

1− xy
θ1 ∧ θ1 + i

y1/2

1− xy
θ2 ∧ θ2

=
1

2(1− xy)3
(dx ∧ (dφ + ydψ)+ dy ∧ (dφ + xdψ))

where θµ = 2−1/2(eµ + ie2+µ) and θµ = θµ. This choice can be justified by the fact that the metric g4 is simply a
conformal rescaling of a (Euclideanised) Kerrmetric in Plebański–Demiański form, and that a conformal Killing–Yano tensor
has conformal weight 3. One can also check that, with this choice, the eigenvalues of φ satisfy Eqs. (3.7a) and (3.7b). On the
other hand, on considering the full metric g5 and by (3.11), the eigenvalues λµ of φmust also satisfy

2∂x ln |λ1| =
1
x

2∂y ln |λ2| =
1
y
,

solutions of which can be taken to be λ1 = x1/2 and λ2 = y1/2. Hence, in spite of the existence of integrable maximal
isotropic distributions, there is no conformal Killing–Yano tensor in normal form in this basis, and the converse of the (odd-
dimensional version of) Theorem 3.1 does not hold.

3.4. Conditions on the Weyl conformal tensor

Let us return to the general case of a conformal Killing–Yano tensor φ on a real 2m-dimensional (pseudo-) Riemannian
manifoldM . As before, we consider the complexification of the tangent bundle TM . We can extend φ to an endomorphism
φ̂ on the space of 2-forms

∧2 T ∗M . Similarly, we can view the Weyl tensor C as an endomorphism Ĉ on
∧2 T ∗M . It is a

standard result [38] that the commutator of Ĉ and φ̂ vanishes, i.e.[
Ĉ, φ̂

]
= 0. (3.12)

If φ is in normal form in the null basis {θa} = {θµ, θµ}, then φ̂ is also diagonal in the canonical basis of 2-forms {θa ∧ θb},
and

φ̂
(
θµ ∧ θν

)
=
(
λµ + λν

)
θµ ∧ θν, φ̂

(
θµ ∧ θν

)
= −

(
λµ + λν

)
θµ ∧ θν,

φ̂
(
θµ ∧ θν

)
=
(
λµ − λν

)
θµ ∧ θν .
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Assuming that the eigenvalues of φ are all distinct, φ̂ has 2m(m−1) non-zero eigenvalues and has anm-dimensional kernel
spanned by {θµ ∧ θµ : µ = 1, . . . ,m}. By the commutation relation (3.12), it then follows that Ĉ and φ̂ have m(2m − 1)
common eigen-2-forms, and we can deduce that all components of the Weyl tensor with the possible exception of

Cµνµν, Cµ
ν
ν
µ
, Cµ

µ
ν
ν, Cµ

µ
µ
µ
,

for all distinct µ, ν, vanish in the canonical basis. Consequently,

Theorem 3.5. Let φ be a non-degenerate conformal Killing–Yano tensor with distinct eigenvalues, in normal form in the null
basis {θa} = {θµ, θµ}. Then the Weyl tensor C satisfies (no summation)

C(Va,Vb,Vc,Vd) = 0, C(Vµ,Vµ,Va,Vb) = 0,
C(Vµ,Va,Vµ,Vb) = 0, C(Vµ,Va,Vµ,Vb) = 0,

for all distinct µ, a, b, c, d, where {Va} = {Vµ,Vµ} is the dual basis.

Remark 3.6. Using the notation set in Section 3.2, we note that θµ∧ e0 and θµ∧ e0 are also eigenspinors of φ̂, and thus, of Ĉ
too, which implies that Cµ0µ0may not vanish. Hence, the above theorem also holds in odd dimensions, where the lower-case
Roman indices may now take the value 0.

In four dimensions, the Weyl tensor Ĉ splits into a SD part Ĉ+ and an ADS part Ĉ−. Each of Ĉ± has a pair of degenerate
eigenvalues, and their eigen-2-forms are precisely the SD and ASD 2-planes{

θ1 ∧ θ2, θ1 ∧ θ2, θ
1
∧ θ1 + θ

2
∧ θ2

}
and

{
θ1 ∧ θ2, θ1 ∧ θ

2, θ1 ∧ θ1 − θ
2
∧ θ2

}
.

In the language of general relativity, this is the defining property for themanifold to be of Petrov1 typeD. In fact, the existence
of a conformal Killing 2-form φ on a four-dimensional (Lorentzian) manifold implies [40–42] that the spacetime is of Petrov
type D or N according to whether φ is of rank 4 or of rank 2. A classification of the Weyl tensor in higher-dimensional
Lorentzian spacetimes has been undertaken in [43–47], wherein the four-dimensional concept of (gravitational) principal
null direction (GPND) is generalised to that ofWeyl aligned null directions (WAND). It is shown in [32,47] that the Kerr–NUT-
(A)dSmetric is of Petrov typeD in an appropriate sense.More generally, the following statement,which answers a conjecture
put forward in [22], is a direct consequence of Theorem 3.5.

Corollary 3.7. Let φ be a non-degenerate conformal Killing–Yano tensor with distinct eigenvalues, in normal form in the null
basis {θa}. Then each of the basis vectors {Va} is a multiple WAND of the Weyl tensor C . In particular, C is of type D.

3.5. Relation to Hamiltonian 2-forms

Reference [48] introduces the notion of a Hamiltonian 2-form on a Kähler manifold, a (1, 1)-form ψ which satisfies

∇Xψ =
1
2

(
dσ ∧ J(X∗)− J(dσ) ∧ X∗

)
,

(
∇cψab = −

1
2

(
ωc[a∇ b]σ +

∑
d

gc[a J b]d∇dσ

))
(3.13)

for all vector fields X . Here,∇ is the Levi-Civita covariant derivative, and J the complex structure. Contracting Eq. (3.13) with
the Kähler form ω yields σ = trωψ, the trace of ψ with respect to ω.
In [49], a new class of five-dimensional toric Einstein–Sasakimanifolds is constructed by taking the BPS (supersymmetric)

limit of a four-dimensional black hole solution similar to the Kerr–NUT-(A)dS metric. These limiting cases were later
generalised to arbitrary dimensions in [18,32]. Broadly, under the change of coordinates xµ → xµ = 1 + εξµ and after
linear redefinitions of the coordinatesψk and the constants, in the limit ε→ 0, the 2m-dimensional Kerr–NUT-(A)dSmetric
becomes

g =
m∑
µ=1

(
ẽµ � ẽµ + ẽm+µ � ẽm+µ

)
where, in terms of the local coordinates {ξµ, tk},

ẽµ =
(
∆µ

Θµ

)1/2
dξµ, ẽm+µ =

(
Θµ

∆µ

)1/2 m∑
k=1

σ (k)µ dtk,

1 Although this classification applies mostly to Lorentzian manifolds, it can easily be extended to four-dimensional proper Riemannian manifolds [39].
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with

∆µ =

m∏
ν=1
ν 6=µ

(ξν − ξµ), σ (k)µ =
∑

ν1<ν2<···<νk
νi 6=µ

ξν1ξν2 · · · ξνk , σ (k) =
∑

ν1<ν2<···<νk

ξν1ξν2 · · · ξνk ,

and where Θµ = Θµ(ξµ) are functions of one variable. In this limiting case the almost-Hermitian structure ω =
∑

µ eµ ∧
em+µ becomes

ω =

m∑
k=1

dσ (k) ∧ dtk,

which is closed, and hence, ω is Kähler.
Themetric g is thus Kähler, and turns out to be Ricci-flat. Further, as pointed out in [49,32], it is identical to the orthotoric

metric that has been found independently in [48]. Such metrics are characterised by the existence of a Hamiltonian 2-form.
The Hamiltonian 2-form for the above metric is given explicitly by

ψ =
∑
µ

ξµẽµ ∧ ẽm+µ. (3.14)

The striking parallel between ∗-Killing 2-forms on Einstein manifolds and Hamiltonian 2-forms on Kähler manifolds leads
us to the natural question of whether the latter play a rôle similar to that of the former in the context of integrable isotropic
distributions. The answer to this question is yes, and the result follows directly by a computation of the components of the
connection 1-form as in the proof of Theorem 3.1.

Theorem 3.8. Let (M, g, J ,ω) be a 2m-dimensional Kähler manifold equipped with a non-degenerate Hamiltonian 2-formψ in
normal form with distinct eigenvalues. Then, the 2m maximal isotropic distributions associated to ψ are integrable and define 2m
distinct complex structures.
Proof. The defining equation (3.13) for the Hamilton 2-form gives in terms of the null basis

∂κ ψµ
ν
+(λµ − λν)Γκµ

ν
= −

i
2
δνκ∂µσ (3.15a)

(λµ + λν)Γ
κ
µν = 0 (3.15b)

(λµ + λν)Γκµν = 0. (3.15c)

Eq. (3.15a) implies further

∂µλµ = −
i
2
∂µσ (3.16a)

∂νλµ = 0 for all ν 6= µ (3.16b)

(λµ − λν)Γνµ
ν
= −

i
2
∂µσ for all ν 6= µ (3.16c)

(λµ − λν)Γκµ
ν
= 0 for all distinct κ , µ, ν. (3.16d)

Since by assumption the eigenvalues are distinct, the integrability conditions (3.3) are satisfied. �
We also know [48,50] that given a Hamiltonian 2-form ψ, the 2-form φ defined by

φ ≡ ψ −
1
2
σω

is a conformal Killing 2-form. Such a φ will not be closed in general. In fact,

dφ = −
3
n− 1

ω ∧ J(d∗φ), (3.17)

so that φ is closed iff it is co-closed iff it is parallel. On examining Eq. (3.7b) and the eigenvalues of φ, one can see that
Eq. (3.17) is equivalent to the vanishing of the connection components Γ ν

µν and Γνµν as implied by Eq. (3.16d). This thus
provides an example of a non-closed conformal Killing–Yano tensor which gives rise to 2m integrable complex structures.

4. Foliating spinors

In four dimensions, maximal isotropic planes correspond to spinors up to scale, [51], and so spinors provide an efficient
and convenient calculus for studying such isotropic planes. In higher dimensions, spinors are less efficient as spin spaces
grow in dimension exponentially, and the condition that a spinor is ‘pure’, i.e., that it corresponds to a maximal isotropic
plane becomes non-trivial. Nevertheless, they form a natural formalism for understanding these structures. In particular,
the generalised Kerr Theorem [7] shows that maximally isotropic foliations of complexified flat spacetime are in 1:1
correspondence with holomorphic m-surfaces in twistor space and this can be identified with the bundle of pure spinors
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over a Euclidean signature real slice. In the following we give a spinor formulation of our previous results. This will perhaps
also be of benefit in answering other spinorial questions, such as, for example, the separation of variables in spinor equations
in a spacetime with a Killing–Yano tensor.
In this section, we first recall the basic facts of spin geometry. Our exposition is based on various sources [52,51,53],

and we have harmonised the different approaches as far as possible. We then recast the previous results in the language of
spinors.

4.1. The split signature model

Let V be an m-dimensional real vector space with dual V ∗, and consider the direct sum V ⊕ V ∗ endowed with an inner
product g of split signature (m,m). One can always find a null basis {θa}2ma=1 =

{
θµ, θ

µ
}m
µ=1 of V ⊕ V

∗, i.e.

g(θµ, θν) = δµν and g(θµ, θν) = 0 = g(θµ, θν),

for all µ, ν, so that the inner product is given by

g =
∑
2θµ � θµ.

The canonical basis for the exterior algebra
∧
•
(V ⊕ V ∗) is induced from the basis of V ⊕ V ∗, and we will often use the

notation

θµ1···µp ν1···νq ≡ θ
µ1 ∧ · · · ∧ θµp ∧ θν1 ∧ · · · ∧ θνq ,

θa1···ap+q ≡ θa1 ∧ · · · ∧ θap+q ,

where 1 ≤ µi, νi, ai ≤ m. We denote by 1 the basis element of
∧0
(V ⊕ V ∗) ∼= R ∼=

∧0 V ∼=
∧0 V ∗.

Remark 4.1. Any even-dimensional real vector spacewith a positive definitemetric g , once complexified, admits a splitting
V ⊕ V̄ where the anti-holomorphic subspace V̄ is isotropic and can be identified with the dual space V ∗ via the Hermitian
inner product induced by g . If {θa}2ma=1 ≡ {θ

µ, θ̄
µ̄
}µ,µ̄=1,...,m are the complex basis 1-forms, then

g : θ̄µ̄ → θµ,

where

g =
∑
2θµ � θ̄

µ̄
.

Similarly we can see that all of the subsequent results on V ⊕ V ∗ apply to all signatures on the understanding that they will
need to be applied to the complexification of V ⊕ V ∗.

A subspace N of V ⊕ V ∗ such that N ⊆ N⊥ is called isotropic and maximal isotropic when strict equality holds. Under
the action of the Hodge duality operator, the space of all maximal isotropic subspaces splits into self-dual (SD) and anti-self-
dual (ASD) components. When V ⊕ V ∗ is complexified we have a one-to-one correspondence between SD (ASD) maximal
isotropics and orthogonal complex structures with positive (negative) orientation.

4.2. Spin representation

The spin representation S of the special orthogonal group SO(V ⊕V ∗) is a 2m-dimensional vector space, which splits into
two 2m−1-dimensional irreducible representations S+ and S−. These are the chiral spin representations of SO(V ⊕ V ∗). We
shall give two alternative approaches to the theory of spinors, both of which will be used in the present paper according to
the context.
The Clifford algebra can be regarded as a matrix algebra consisting of γ -matrices satisfying the Clifford equation

γaγb + γbγa = −2gabI,

where I is the identity on S. Introduce a basis {θα} = {θA, θA′} of S = S+ ⊕ S−, so that lower-case Greek indices (beginning
of the alphabet) running from 1 to 2m refer to S, and unprimed and primed upper-case Roman indices running from 1 to
2m−1 to S+ and S− respectively, with α = A⊕ A′, and similarly for the dual spin spaces. The action on each of the chiral spin
spaces S± can similarly be expressed in terms of ‘reduced’ γ̂ - and γ̌ -matrices

γaα
β
=

(
0 γ̂ B′

aA
γ̌ B
aA′ 0

)
satisfying the relations

γ̂aγ̌b + γ̂aγ̌b = −2gabI+ and γ̌aγ̂b + γ̌bγ̂a = −2gabI−,
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where I± are the identity endomorphisms on S±. In the following statements, γ̂ - and γ̌ -matrices may be substituted for
γ -matrices in an appropriate way. Thus, one can express Clifford multiplication ·, i.e. the action of the Clifford group on S,
as follows: given a vector V = V aθa and a spinor ζ, then

V · ζ = V aγaζ.
On the other hand, we note that S is isomorphic as a vector space to the exterior algebra

∧
• V ∗. More precisely, S+ and

S− are isomorphic to
∧even V ∗ and

∧odd V ∗ with canonical bases {1, θµ1···µp : p even} and {θµ1···µp : p odd} respectively. In
this setting, Clifford multiplication is given explicitly by2

(X + ξ) · ζ = −Xyζ + ξ ∧ ζ
for all vectors X + ξ ∈ V ⊕ V ∗.
The advantage of the former approach is conciseness of notationwhen dealingwith purely spinorial quantities. However,

the latter providesmore practical toolswhen it comes to computations in arbitrary dimensions.We shall set up a convenient
dictionary between the two formalisms by identifying each of the basis elements {θα} with each of the basis elements
{1, θµ1···µp} of S ∼=

∧
• V ∗ as follows.

θα ↔ 1, θµ1···µp for any 1 ≤ p ≤ m
θA ↔ 1, θµ1···µp for any even 1 ≤ p ≤ m
θA′ ↔ θµ1···µp for any odd 1 ≤ p ≤ m.

One may regard the indices α, A, and A′ as labels for a group of indices µ0 · · ·µp. Both types of bases will be regarded as the
canonical bases of S, S+ and S− induced from the basis of V .
Since the Clifford algebra is isomorphic to the exterior algebra

∧
•
(V ⊕ V ∗), one can extend the Clifford multiplication

to any elements of
∧
•
(V ⊕ V ∗). Writing γa1···ap = γ[a1 · · · γ ap], and employing the summation convention from hereon

until the end of the subsection, then, for any p-form φ = φa1···apθ
a1···ap and any spinor ζ, we have φ · ζ = φa1···apγ

a1···apζ.
Of particular importance is the Lie algebra so(V ⊕ V ∗), which is isomorphic to

∧2
(V ⊕ V ∗). Any element φ of so(V ⊕ V ∗)

admits the decomposition

φ =

(
A β
B −A∗

)
, (4.1)

where A ∈ EndV , and β ∈ Hom(V ∗, V ) and B ∈ Hom(V , V ∗) are skew. The action of φ on spin space S is then given by
B · ζ = Bµνθν ∧ (θµ ∧ ζ) = −B ∧ ζ (Bµν = B[µν])

β · ζ = βµνθνy(θµyζ) = βyζ (βµν = β [µν]) (4.2)

A · ζ = Aνµ θ
µ
∧ (θνyζ)−

1
2
tr Aζ = A∗ζ −

1
2
tr Aζ (Aνµ = − Aµ

ν),

for any spinor ζ.
Spin space S is equipped with an inner product 〈·, ·〉 which is symmetric or anti-symmetric according to m. This inner

product descends to an inner product on each of the chiral spin spaces S± whenm is even, but it is degenerate on S± when
m is odd, in which case it gives rise to an isomorphism between a space of one chirality and the dual of the space of the
opposite chirality, i.e. S± ∼= (S∓)∗. In general, given any two spinors η and ζ one can define a p-form φ by

φ = 〈η, θa1···apγa1···apζ〉.

4.3. Maximal isotropic planes and pure spinors

To any non-zero spinor ζ one can associate an isotropic subspace given by
N(ζ) =

{
X + ξ ∈ V ⊕ V ∗ : (X + ξ) · ζ = 0

}
,

and any element X + ξ ∈ N(ζ) has the form
X + ξ = 〈η, θaγ aζ〉

for some spinor η. If N(ζ) is maximal we say that ζ is a pure spinor. In particular, the 2m basis elements {1, θµ1···µp} of S are
pure with associated maximal isotropic planes

N(1) = span {θ1, . . . , θm} ,
N(θµ1···µp) = span

{
θµp+1 , . . . , θµm , θ

µ1 , . . . , θµp
}
,

N(θ1···m) = span
{
θ1, . . . , θm

}
,

where µi 6= µj for all i 6= j.

2 Our convention differs from [52] where the Clifford multiplication squares to plus the norm squared.
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One can show that a spinor is pure if and only if it is chiral. We denote the space of ± chiral pure spinors by T±. The
projective pure spinors PT± are the spaces T± defined up to scalings. There is a one-to-one correspondence between
projective pure spinors of a given chirality and maximal isotropic planes of a given duality. The next proposition is a direct
consequence of Eq. (4.2).

Proposition 4.2. Let φ be an element of so(V ⊕ V ∗) such that φ is in normal form in the null basis {θµ, θµ}, i.e.

φ =
∑
µ

λµθ
µ
∧ θµ, (4.3)

for some λµ. Then the eigenspinors of φ regarded as an endomorphism on S are simply the basis elements of
∧
V ∗(=S), i.e.

φ · 1 = λ̃01, φ · θµ1···µp = λ̃µ1···µpθ
µ1···µp

where the eigenvalues λ̃0, λ̃µ1···µp are given in terms of the eigenvalues λµ by

λ̃0 = −
1
2

∑
µ

λµ, λ̃µ1···µp = −
1
2

∑
µ

(−1)ελµ

where ε =
∑p
i=1 δ

µi
µ . It follows that the eigenspinors of φ are pure.

4.4. Twistor bundle and integrability condition

Let M be a real 2m-dimensional (pseudo-) Riemannian spin manifold so that at each point p, its complexified tangent
space C⊗ TpM can be given the structure of C⊗ (V ⊕ V ∗). The preceding sections translate into the language of bundles in
the obvious way so that V , S, T, etc. will now refer to bundles over the complexificationMC ofM . We extend the Levi-Civita
covariant derivative ∇ to a covariant derivative on the spin bundle S—also denoted ∇ . For any basis spinor field θ we have

∇θ = −
1
2

∑
0abθ

a
∧ θb · θ, (4.4)

where 0a
b is the Levi-Civita connection 1-form on T ∗M , and 0ab = 0[ab].

Maximal isotropic distributions of TM are in one-to-one correspondence with orthogonal almost complex structures on
C ⊗ TM and sections of the projective twistor bundle PT over MC (i.e. projective pure spinor fields on M). The Frobenius
integrability condition can then be articulated as follows.

Proposition 4.3. A maximal isotropic distribution or its associated orthogonal almost complex structure is integrable if and only
if the associated projective pure spinor field ζ satisfies

(∇Xζ) ∧ ζ = 0, i.e. ∇Xζ = fXζ, (4.5)

for all vector fields X ∈ Γ (Nζ) and for some function f on the manifold depending on X . In other words, integrable orthogonal
almost complex structures correspond to holomorphic sections of the projective twistor bundle.

If one applies Eq. (4.5) to all the (projective) basis elements of the spin bundle and adopts the following convention
Γca

b
= θcy0a

b

for the components of 0a
b, one then obtains

Proposition 4.4. All 2m projective basis elements 1, θµ1···µp of the projective twistor bundle PT ⊂ PS ∼= P(
∧
• TV ∗) are

integrable if and only if the connection components

Γκµν, Γ
κµν, (for all µ, ν, κ),

Γκ
µν, Γ κ

µν, (for all κ 6= µ, ν),

Γκµ
ν, Γ κ

ν
µ
, (for all ν 6= κ, µ),

(4.6)

all vanish.

Remark 4.5. We note that Eqs. (4.6) are equivalent to Eqs. (3.2) obtained by the Frobenius integrability condition.
By Proposition 4.2, we have

Corollary 4.6. The eigenspinors of any spin endomorphism on S of the form (4.3) are integrable if and only if the components of
the connection 1-form (4.6) all vanish.

We can then reformulate Theorem 3.1 as follows.

Theorem 4.7. Let M be a 2m-dimensional spin manifold equipped with a conformal Killing–Yano tensor φ as in Theorem 3.1.
Then the 2m eigenspinors of φ are integrable.
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4.5. Weyl curvature restrictions revisited

We can also give a spinorial articulation of Theorem 3.5 in the same vein as [51]. Denote by9 and by9± the completely
traceless elements of

⊙2 End(S) and
⊙2 End(S±) corresponding to the Weyl tensor C viewed as an element of

⊙2
so(n).

In spin components,

Ψ+
BD
AC ≡ γ̂

a
A
E′ γ̌ bE′

B Cabcd γ̂ c C
F ′ γ̌ dF ′

D and Ψ−
B′D′

A′C ′ ≡ γ̌
a
A′
E γ̂ bE

B′ Cabcd γ̌ c C ′
F γ̂ dF

D′ ,

where we have used the summation convention. Theorem 3.5 can then be reformulated in spinorial terms:

Theorem 4.8. Let φ be a non-degenerate conformal Killing–Yano tensor with distinct eigenvalues in normal form in the null
basis {θa}. Then each of the eigenspinors θA, θA′(A, A′ = 1, . . . , 2m−1) of the corresponding spin endomorphisms satisfies (no
summation)

9+ (θA, θA) ∧ θA = 0 and 9− (θA′ , θA′) ∧ θA′ = 0. (4.7)

In four dimensions, each spin space S± is a two-dimensional complex vector space equipped with a symplectic inner
product, so that any symmetric spinor of valence p is fully decomposable as a symmetric product of p spinors of valence 1.
In particular, the9± admit such a decomposition, and Eqs. (4.7) are equivalent to

9+ = Ψ2θ
1
� θ1 � θ2 � θ2,

where Ψ2 ≡ Ψ1122, and similarly for 9−. If the metric is Ricci-flat, by the Goldberg–Sachs Theorem, it follows that each of
the spinors θA, θA′ , (A, A′ = 1, 2), satisfies the integrability condition (4.5).

Remark 4.9. A possible classification of9± in six dimensions and its relationwith integrable spinors were first investigated
in [54–56].

4.6. Spin bundle over odd-dimensional manifolds

LetM be a (2m+1)-dimensional Riemannian spinmanifold. Then, the complexification TCM of the tangent bundle admits
a splitting V ⊕ V ∗ ⊕ K , where V and V ∗ are m-dimensional vector bundles dual (and conjugate) to each other, and K is a
complex line bundle. The spin bundle S overM is now irreducible and isomorphic to

∧
V ∗. Maximal isotropic distributions

of V ⊕ V ∗ correspond to sections of the projective twistor (or pure spinor) bundle PT overM , or equivalently, to orthogonal
almost complex structures on V ⊕ V ∗. When such an isotropic distribution is integrable, the corresponding section of PT
is holomorphic, and the corresponding almost CR structure of M integrable. The eigenspinors of a conformal Killing–Yano
tensorφ are precisely the basis elements of the spin bundle S induced from the basis of V ∗. Now, assuming thatφ has distinct
eigenvalues, Theorem 4.7 extends naturally to odd-dimensional manifolds.

5. Concluding remarks and applications

5.1. Intersection of foliations and reality conditions

To obtain similar results on a real pseudo-Riemannian manifold M , it suffices to impose suitable reality conditions on
the complexified tangent bundle TCM . Given a real manifold equipped with a pseudo-Riemannian metric of signature s, the
intersection of an integrablemaximal isotropic distributionD and its (integrable) conjugate D̄ gives rise [7] to an integrable
real isotropic distribution K = D ∩ D̄ whose rank can be any of (2m− |s|)/2 modulo 2 (in [7] it was claimed in error that
the rank is always (2m − |s|)/2). As we have shown earlier, in the complexification, the integral surfaces of D are totally
geodesic, and so therefore are those of K . In the case of Lorentzian manifolds, where |s| = 2m − 2, the foliation K is one-
dimensional and tangent to a congruence of null geodesics and the screen space K⊥/K of K inherits the complex structure on
TCM fromD that is Lie derived along the congruence [7,57]. In four dimensions, the preservation of the complex structure
on the screen space is equivalent to the shear-free condition, i.e., the preservation of the conformal structure of K⊥/K along
K . This is a consequence of the fact that complex structures and conformal metrics on a surface are the same. However,
this is not true in higher dimensions, and a six-dimensional counter-example invalidating this equivalence between being
shear-free and preserving a complex structure in higher dimensions is given in [58].
Spinorially, the real structure of M induces a complex conjugation C on the spin bundle, which preserves each of the

chiral spin bundles when s/2 is even, and interchanges them when s/2 is odd. Depending on s, C may be quaternionic [51],
i.e. C2 = −1. In the Lorentzian case, a real vector field k as a section of the isotropic line bundle K as defined above can then
be expressed as3

k = 〈ζ̄, eaγ aζ〉, (5.1)
where ζ is an integrable pure spinor, and ζ̄ its conjugate under C. In dimensions greater than six, the choice of the spinor ζ
for k is no longer unique. A more general treatment of real structures and spinors is given in [59].

3 This is always possible and guaranteed by the various properties of the spin inner product and the conjugation in different dimensions and signatures.
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5.2. The Kerr–Schild ansatz

The Kerr–NUT-(A)dS metric given in [18] has a long history that originates in the four-dimensional Kerr–Schild ansatz
found in [1] in 1963. The original aim of Kerr’s paper was to construct a solution to Einstein’s equations which is of Petrov
type D with a twisting (i.e. not hypersurface orthogonal) GPND k. It turns out that the newly-found metric is an exact first-
order perturbation of the flat metric, and describes a rotating black hole of massM:

g = g̃ +
2M
U
(k)2 (5.2)

where g̃ is the Minkowski background metric, U some function, and k is a shear-free isotropic geodesic (real) vector field
with respect to both g and g̃ . Since k is shear-free, it belongs to a maximal isotropic integrable distribution of complexified
Minkowski spacetime, and thus has the form (5.1).
The Kerr–Schild ansatz (5.2) has been generalised in higher dimensions in Lorentzian signature (1, 2m − 1) in [5]. The

background metric g̃ is now allowed to be a pure (A)dS 2m-dimensional metric. The vector field k is again isotropic and
geodesic with respect to both g and g̃ . However, as shown in [46], it fails to retain its shear-free property in dimensions
greater than four. There does, however, remain the question ofwhetherk arises fromone of our integrablemaximal isotropic
distributions (i.e., pure spinors). For the Kerr–NUT-(A)dS metric one can follow the various coordinates transformations
leading from the Kerr–Schild ansatz to the Kerr–NUT-(A)dS metric in [5,18], and we find that the real vector k of the former
is the same (up to factor) as one of the complex basis vectors {θµ, θµ} of the latter. By Theorem 3.1, the eigenspinors of the
closed conformal Killing–Yano tensor (1.1) on the Kerr–NUT-(A)dS metric are integrable, so that each θµ (and each θµ) will
belong to (an intersection of) some integrable maximal isotropic distributions, and we can write

θµ = 〈η, θaγ
aζ〉,

for some integrable (pure) basis spinors ζ and η. Again, there is some freedom in the choice of spinors. Since there is
no fundamental difference between the complexified Kerr–Schild metric and Kerr–NUT-(A)dS metric, it follows that by
imposing a suitable reality condition, k will have the form (5.1) in all (even) dimensions.
Further, from the fact that the Kerr–NUT-(A)dS metric is of type D, it follows that k will also be a WAND for the

Kerr–Schild metric. This corroborates the recent findings of [60,61] on the status of higher-dimensional Kerr–Schild metrics
as algebraically special spacetimes.

Remark 5.1. It is shown in [6] how one can obtain an m-Kerr–Schild ansatz in split signature (m,m) from the Kerr–NUT-
(A)dS metric by Wick rotating the coordinates ψk. After some work, we have

g = g̃ −
m∑
µ=1

2bµxµ
Uµ

(
k(µ)

)2
,

where g̃ is the background pure (A)dS metric, the bµ are the mass and the NUT parameters, and the functions Uµ and
coordinates xµ are as for the Kerr–NUT-(A)dS metric. Them real vectors k(µ) are linearly independent, mutually orthogonal,
isotropic and geodesic with respect to both g and g̃ . Thus, they span a real maximal isotropic distribution. In fact, all 2m
maximal isotopic distributions arising from the closed conformal Killing–Yano tensors are real. The spin bundles overM are
also real, and, using the same argument as above, each k(µ) can be expressed as

k(µ) = 〈η(µ), eaγ
aζ(µ)〉,

for some appropriate choice of spinors ζ(µ) and η(µ).

The odd-dimensional versions of the above metrics are similar and share the same properties as their even-dimensional
counterparts.

5.3. The Kerr Theorem

The Kerr Theorem provides a systematic method of finding shear-free null geodesic vector fields arising from an
integrable almost complex structure in complexified Minkowski spacetime. The original theorem consists in solving F = 0
where F is a certain holomorphic function of the complexified isotropic flat coordinates [1,62]. Penrose gave the Kerr Theorem
a new and more geometric formulation by realizing F as a function on twistor space in his original paper on twistor
geometry [63]. A generalisation to higher dimensions was given in [7]. Essentially, it states that a pure spinor field on
a (complexified) flat 2m-dimensional manifold M equipped with a conformal metric is integrable if and only if it can be
determined by the intersection of anm-dimensional analytic surface and the set of projective pure spinor spaces in twistor
space representing a region of M . This surface is defined by m(m − 1)/2 homogeneous holomorphic functions on twistor
space. In the context of the four-dimensional type D, e.g., the Lorentzian Kerr–NUT metric, the integrable spinor field is
determined by a single quadratic function constructed from the angular momentum twistor. In higher dimensions, the co-
dimension and hence the number of such functions increases quadratically with the dimension (being the dimension of the
space of pure spinors), and a characterisation of the structure has yet to emerge.
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5.4. Degenerate conformal Killing–Yano tensors and conformal Killing spinors

As pointed out above, a degenerate conformal Killing–Yano tensor on a four-dimensional Lorentzian manifold implies
that the Weyl tensor is of Petrov type N . For a vacuum metric, by the Goldberg–Sachs Theorem, this spinor is integrable. In
fact, on an n-dimensional Riemannian manifold, such a conformal Killing–Yano tensor arises as the ‘squaring’ of a conformal
Killing spinor or twistor spinor, i.e. a spinor ζ which satisfies the twistor equation

∇Xζ +
1
n
X · 6Dζ = 0,

for all vector fields X , where 6D is the Dirac operator [64,50]. When ζ satisfies the Dirac equation 6Dζ = λζ for some function
λ, ζ is called a Killing spinor. In the special case where λ ≡ 0, ζ is a parallel spinor. Clearly, a pure Killing spinor automatically
satisfies the integrability condition (4.5). A conformal Killing spinor must also satisfy the integrability condition

C(X, Y ) · ζ = 0, (5.3)

for all vector fields X , Y .
One can show [50,17] that given two conformal Killing spinors ζ and η, the 2-form defined by

φ = 〈η, θabγabζ〉

is a conformal Killing–Yano tensor.4 Conformal Killing spinors have been extensively studied, and we refer the reader to the
literature (e.g. [64] and the references therein) for details.
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