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Abstract
We describe a class of decomposable eleven-dimensional supergravity 
backgrounds (M10,1 = M̃3,1 × M7, gM = g̃ + g) which are products of a 
four-dimensional Lorentzian manifold and a seven-dimensional Riemannian 
manifold, endowed with a flux form given in terms of the volume form on 
M̃3,1 and a closed 4-form F4 on M7. We show that the Maxwell equation for 
such a flux form can be read in terms of the co-closed 3-form φ = �7F4. 
Moreover, the supergravity equation  reduces to the condition that (M̃3,1, g̃) 
is an Einstein manifold with negative Einstein constant and (M7,g,F) is a 
Riemannian manifold which satisfies the Einstein equation  with a stress-
energy tensor associated to the 3-form φ. Whenever this 3-form is generic, 
we show that the Maxwell equation induces a weak G2-structure on M7 and 
obtain decomposable supergravity backgrounds given by the product of a weak 
G2-manifold (M7,φ, g) with a Lorentzian Einstein manifold (M̃3,1, g̃). We 
also construct examples of compact homogeneous Riemannian 7-manifolds 
endowed with non-generic invariant 3-forms which satisfy the Maxwell 
equation, but the construction of decomposable homogeneous supergravity 
backgrounds of this type remains an open problem.

Keywords: supergravity, M-theory, supergravity backgrounds, homogeneous 
supergravity backgrounds, special geometric structures, G2-structures, 
Einstein metrics
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1. Introduction

Ten-dimensional supersymmetric string theories and their eleven-dimensional unified ana-
logue, called M-theory, are some of the most promising approaches to a consistent model 
for the unification of fundamental forces of nature. Supergravity theories merge the theory 
of general relativity with supersymmetry and provide low-energy descriptions of superstring 
theories. They have thus proved crucial for understanding the dynamics of massless fields 
in string theories, since they determine the appropriate backgrounds in which strings prop-
agate, see [BBJ07] for a comprehensive survey. Nowadays there are several known consistent 
supergravity theories in different dimensions. For example, in dimension ten there are at least 
five different types of string theories, namely Type I, Type IIA and IIB and some heterotic 
E8 × E8 and SO32 theories. In dimension eleven physicists are concerned with the strong cou-
pling limits of these theories via T-duality and other kinds of dualities which yield a unique 
eleven-dimensional M-theory. In these terms, eleven-dimensional supergravity arises as the 
low-energy effective theory of M-theory.

It is remarkable that over the past few years studies in eleven dimensional supergravity 
have led to a reconsideration of results in the theory of Kaluza–Klein compactifications (a 
review of Kaluza–Klein supergravity is given in [DNP86], while the lectures notes [A02] 
analyse developments in M-theory). From the physics perspective understanding compac-
tification of eleven-dimensional supergravity is of high importance and in particular com-
pactifications based on G2- or weak G2-manifolds have been a constant source of interest 
(see [CR84, CRW84, PT95, AW01, BDS02, D02, AG04, HM05]). From a bosonic super-
gravity perspective there are two parts required for a solution, first finding manifolds that 
admit the required flux form obeying Bianchi and Maxwell equations and second (potentially 
significantly harder) is to determine a metric solving a generalized Einstein equation. On the 
other hand, a supergravity action consists both of bosonic and fermionic fields. The fermi-
onic data is related with matter degrees of freedom, e.g. gravitino, while the supersymmetries 
transformations relate the bosonic and fermionic fields each other. The supersymmetries for 
a given bosonic supergravity background are determined by (generalized) Killing spinors in 
the background Lorentzian manifold and the number of preserved supersymmetries is a key 
tool towards a classification of supergravity backgrounds. For instance, nowadays classifica-
tion results of supersymmetric bosonic supergravity backgrounds can be read in terms of 
the so-called Killing superalgebras, see [F01, FP03]. Hence, all maximally supersymmetric 
Lorentzian backgrounds in four or eleven dimensions are known [MFS16, FS16, FS17], while 
the same time all symmetric backgrounds in eleven-dimensional supergravity have been clas-
sified in [F07, F13]. From another perspective notice that the supergravity Einstein equation in 
eleven dimensions is a generalization of the classical Einstein field equation, given in terms 
of an energy momentum tensor depending on the flux form (see below). Needless to say 
that from a mathematical point of view the classification of non-symmetric, not necessarily 
supersymmetric, supergravity backgrounds can be a hard topic in differential geometry, where 
influences from both Lorentzian and Riemannian geometries, and topology are mixed in a 
natural way.

Recall that the eleven-dimensional supergravity theory has as bosonic fields some 
Lorentzian metric gM and a 3-form potential A with 4-form field strength F = dA, the so-
called flux form, satisfying the supergravity field equations (with zero gravitino):



dF = 0, Closure (C ),
d � F = (1/2)F ∧ F , Maxwell (M ),

RicgM(X, Y) = (1/2)〈X�F , Y�F〉 − (1/6)gM(X, Y)‖F‖2, Einstein (E ).
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Here, d ≡ dgM is the exterior derivative of differential forms on the Lorentzian manifold 
(M10,1, gM), RicgM is the Ricci tensor of the Levi-Civita connection on M, and

〈X�F , Y�F〉 = 1
3!

gM(X�F , Y�F), ‖F‖2 =
1
4!

gM(F ,F).

The second equation  is referred to as the Maxwell-like equation and the third one as the 
supergravity Einstein equation. Note that usually one asks from M10,1 to be also spin, but in 
this work we are not interested in the supersymmetries of the model, so we do not pay much 
attention to this condition.

The construction of supergravity backgrounds, i.e. eleven-dimensional Lorentzian mani-
folds (M10,1, gM,F4) solving the above system of partial differential equations, can be con-
sidered in several different contexts. For example, besides the notion of Killing superalgebras, 
there are also methods based on (reduced weak) holonomy theory and G-structures, see for 
example [CR84, DNP86, BDS02, BJ03, AG04, GPR05, PT95, MC05, Wt06]. In this paper we 
are concerned with eleven-dimensional oriented Lorentzian manifolds

M ≡ M10,1 := M̃3,1 × M7

given by a product of a four-dimensional oriented Lorentzian manifold (M̃ ≡ M̃3,1, g̃) and 
a seven-dimensional (compact) oriented Riemannian manifold (M ≡ M7, g) and analyse the 
bosonic supergravity equations from a purely geometric perspective. Of course, the most tradi-
tional route to possible M-theory phenomenology is to consider compactifications on eleven-
dimensional spaces M̃3,1 × M7 with trivial flux 4-form, where (M̃3,1, g̃) is a flat Minkowski 
space and (M7,g) has holonomy G2 (due to the existence of parallel spinors, see [A02, p 9] or 
[PT95, HM05]). In particular, in this case the supergravity background M̃3,1 × M7 is a vacuum 
solution of Einstein’s equation  and the parallel spinor on M7 leads to an effective theory 
with N  =  1 supersymmetry in dimension four. Here we generalize this background Ansatz 
by considering non-zero flux (one can allow even a warped product metric on M̃3,1 × M7). 
In this case, and in the presence of a non-trivial flux, we will show that one has to replace the 
condition ‘G2-holonomy’, which cannot anymore produce supergravity backgrounds, with the 
condition ‘weak G2-holonomy’.

In particular, we consider the following type of flux forms on M

F4 = f · volM̃ + F4, (∗)

where F4 is a closed 4-form on M and f ∈ R is assumed to be a constant. Solutions of eleven-
dimensional supergravity for such 4-forms and with respect to the product metric gM = g̃ + g, 
will be called (4, 7)-decomposable supergravity backgrounds.

For this specific Ansatz the core observation (see proposition 2.2) is that the Maxwell equa-
tion (M ) is equivalent to the equation

d �7 F4 = f · F4,

which by setting φ := �7F4 can be rewritten as

dφ = f �7 φ. (∗∗)

Moreover, the closure condition (C ) of F  can be rephrased as d �7 φ = 0. For brevity, 3-forms 
on M7 satisfying the last two conditions for some constant f ∈ R, will be referred to as special 
3-forms. In these terms one has the specific flux F  as a solution of the closure condition (C ) 
and the supergravity Maxwell equation (M ), if and only if the associated 3-form φ := �7F4 
on M7 is special.

D Alekseevsky et alClass. Quantum Grav. 36 (2019) 075002
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Turning now to the corresponding supergravity Einstein equation (E ), we conclude that the 
four-dimensional Lorentzian manifold (M̃, g̃) must be Einstein with negative Einstein constant 
Λ := − 1

6

(
2f 2 + ‖φ‖2

)
 (proposition 2.7). Moreover, we see that the Ricci tensor of (M, g) 

must satisfy the equation

Ricg(X, Y) =
1
6

g(X, Y)
(

f 2 + 2‖φ‖2
M

)
+ qφ(X, Y), (∗ ∗ ∗)

where qφ(X, Y) is the symmetric bilinear form defined by qφ(X, Y) := − 1
2 〈X�φ, Y�φ〉M . We 

then proceed with a description of some special situations arising by focussing on (∗ ∗ ∗). In 
particular, we examine the following basic classes of special 3-forms on (M, g):

 •  F4  =  0 but f �= 0,
 •  non-zero harmonic 3-forms, i.e. φ �= 0, f   =  0,
 •  non-harmonic 3-forms, i.e. φ �= 0, f �= 0.

In each case we analyse the supergravity equations  and show that the construction of 
(4, 7)-decomposable supergravity backgrounds can be expressed nicely in terms of special 
3-forms and in particular G2-structures (see also [PT95, AW01, BDS02, D02, BJ03, AF03, 
GPR05, HM05] for the role of G2-structures in M-theory). For example, for the first type 
our results generalize the usual supersymmetric Freund–Rubin Ansatz [FR80], where the 
four-dimensional Lorentzian manifold and the seven-dimensional Riemannian manifold are 
both Einstein with Killing spinors and the flux is non-vanishing only along the four space-
time directions. In fact, in this case the space-time is considered to be maximally symmetric 
hence solutions are given in terms of anti-de Sitter spaces with standard example the product 
AdS4 × S7. In our case we can relax this condition and for bosonic supergravity backgrounds 
it is sufficient to fix some Lorentzian Einstein manifold M̃1,3 with negative Einstein constant 
and some Riemannian Einstein manifold M7 with positive Einstein constant (corollary 2.11).

On the other hand, whenever φ := �7F4 is a co-closed generic 3-form on M7 satisfying 
equation (∗∗) for f �= 0, i.e. a generic special 3-form with f �= 0, which is equivalent to say 
that φ induces a weak G2-structure on M, we show that the pair

(M = M̃ × M, gM = g̃ + g),

where g is the Einstein metric induced by φ, provides (4, 7)-decomposable supergravity 
solutions.

Theorem A. Assume that the product (M = M̃ × M, gM = g̃ + g) is endowed with 
the 4-form F4 := f · volM̃ + F4, for some constant 0 �= f ∈ R and some closed 4-form 
F4 ∈ Ω4

cl(M) on M, such that φ := �7F4 is a generic 3-form on M. Then (M, gM,F4) gives 
rise to a (4, 7)-decomposable supergravity background if and only if (M, g,φ := �7F4) 
is a weak G2-manifold and (M̃, g̃) is Lorentz–Einstein with negative Einstein constant. In  
par ticular, f  takes the values f = ±2.

Weak G2-structures are spin 7-manifolds (M, g,φ) endowed with a generic 3-form φ satis-
fying the differential equation dφ = λ �7 φ, for some non-zero constant λ. Such G2-structures 
are extremely interesting in theoretical and mathematical physics, since they are manifolds 
admitting non-trivial solutions of the Killing spinor equation (see [CR84, DNP86, FKMS97]). 
We should emphasize that our approach to theorem A does not take into account the theory 
of Killing spinors or Killing superalgebras, i.e. we reach theorem A by solving only the zero 
gravitino supergravity equations, independently of the supersymmetries that preserves the 
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corresponding model M. The geometric constraints induced by the spinorial equation which 
determines the supersymmetries adapted to our flux, will be examined in a forthcoming paper.

Our Ansatz serves well also the purpose of finding obstructions to the existence of 
(4, 7)-decomposable supergravity backgrounds. For example, whenever φ = �7F4 is a generic 
special 3-form with f  =  0, which means that it induces a parallel G2-structure on M, we obtain 
the following non-existence result.

Theorem B. If f   =  0 and φ := �7F4 is a generic 3-form on M7, where F4 ∈ Ω4
cl(M

7), then 
the closure condition (C ) and the Maxwell equation (M ) for our Ansatz (∗), imply that φ is 
∇g-parallel, i.e. φ induces a parallel G2-structures and hence (M, g) is Ricci flat. In this case 
the eleven-dimensional Lorentzian manifold (M = M̃ × M, gM = g̃ + g,F4) does not give 
rise to a (4, 7)-decomposable supergravity background.

The rest of the article is devoted to the homogeneous case, where the calculations related 
to the supergravity equations become more attractive, since the tensor fields gM and F4 are 
invariant under the action of a Lie group. In this case we obtain a series of examples serv-
ing theorem A, and these are based on the the classification of compact homogeneous weak 
G2-manifolds and homogeneous Lorentz Einstein 4-manifolds, given in [FKMS97] and [K01, 
FeR06], respectively. Then we examine the supergravity equations for invariant non-generic 
3-forms φ := �7F4. To this end, we classify all almost effective seven-dimensional homogene-
ous manifolds M7  =  G/H of a compact Lie group G (see table 2 and theorem 4.5). This extends 
the classification of simply-connected homogeneous 7-manifolds M7  =  G/H of a semisimple 
compact group G, which was used for classifying homogeneous Einstein 7-manifolds, see 
[CRW84, N04]. In combination with the classification of compact homogeneous 7-manifolds 
admitting invariant G2-structures given in [LM12, R10], we obtain the complete list of all com-
pact (almost) effective homogeneous 7-manifolds which admit a G2-structure but no invariant 
G2-structure (and hence no invariant spin structure, see theorem 4.6). We then describe all 
invariant special 3-forms φ (i.e. solutions of Maxwell equation) on the non-spin manifold 
CP2 × S3 = SU3/U2 × SU2. We also discuss the case of the Lie group S3 × T4 = SU2 × T4. 
In both cases we show that there are invariant special 3-forms which are not generic.

2. 11D supergravity backgrounds of the form M10,1 = M̃3,1 × M7

We begin by fixing some conventions, relevant to our subsequent computations.
Conventions. Consider an n-dimensional pseudo-Riemannian manifold (N, h) of signature 
( p, q). At any point x ∈ N, the tangent space V := TxN = R p,q (n = p + q) is a pseudo-
Euclidean vector space endowed with a non-degenerate inner product of signature

( p, q) = (n − q, q) = (+ · · ·+,− · · · −).

When the signature is (n, 0) (resp. (n − 1, 1)), then we say that (N, h) is a Riemannian 
(resp. Lorentzian) manifold. We shall denote by so(V) the Lie algebra of skew-sym-
metric endomorphisms of V ; for any u, v ∈ V  let w ∧ u the skew-symmetric endomor-
phism on V , given by (u ∧ v)(z) = h(v, z)u − h(u, z)v. Hence, here we take the convention 
ω1 ∧ ω2 := ω1 ⊗ ω2 − ω1 ⊗ ω2 for any two elements ω1,ω2 ∈

∧1 T∗
x N . The metric tensor h 

induces a metric in 
∧• TN  and its dual, namely

〈φ,ψ〉 := det(〈φi,ψj〉) =
1
k!

h(φ,ψ),

D Alekseevsky et alClass. Quantum Grav. 36 (2019) 075002
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for any decomposable k-vector φ = φ1 ∧ . . . ∧ φk  and ψ = ψ1 ∧ . . . ∧ ψk . We choose a volume 
form vol(n) normalised as 〈vol(n), vol(n)〉 = (−1)q. Equivalently, if {e1, . . . , ep, ep+1, . . . ep+q} 
is a pseudo-orthonormal frame with

h(ei, ej) = δij, h(ek, e�) = −δk�, h(ei, ek) = 0, for 1 � i, j � p, p + 1 � k, � � p + q,

then vol(n)(e1, e2, . . . , en) = 1. The Hodge star operator is defined by φ ∧ �ψ = 〈φ,ψ〉 vol(n) 
for any k-form φ and ψ. In particular, for any φ ∈

∧k T∗
x N we have the identities

�1 = vol(n), �vol(n) = (−1)q, � � φ = (−1)k(n−k)+qφ,

and hence φ ∧ ψ = (−1)k(n−k)+q〈φ, �ψ〉vol(n), for any φ ∈
∧k T∗

x N and ψ ∈
∧n−k T∗

x N .

2.1. Supergravity backgrounds of the form M10,1 = M̃3,1 × M7

Let us consider an eleven-dimensional Lorentzian manifold (M ≡ M10,1, gM) given by the 
product of a four-dimensional Lorentzian manifold (M̃ ≡ M̃3,1, g̃) and a seven-dimensional 
Riemannian manifold (M ≡ M7, g),

(M, gM) = (M̃ × M, gM := g̃ + g). (2.1)

We assume that both (M̃, g̃) and (M, g) are oriented with volume forms volM̃ and volM, respec-
tively. Then, the volume form on M is given by volM := volM̃ + volM  and M is oriented as 
well. Since dim M̃ = 4, notice that any 4-form on M̃4 is closed. We mention that we do not 
assume any homogeneity condition for the Lorentzian manifold M = M̃ × M . However, we 
will assume that M7 is compact and that the flux 4-form is given by

F4 := f · volM̃ + F4, (2.2)

for some closed 4-form F4 on M and a constant f ∈ R. Note that the last condition is equiva-
lent to say that F̃4 is co-closed, i.e. d �4 F̃4 = 0, where �4 : Ωk(M̃) → Ω4−k(M̃) is the Hodge 
star operator on M̃. Indeed, �2

4

∣∣
Ωk = (−1)k(4−k)+1IdΩk, with �4volM̃4 = (−1)q = −1 (since 

q  =  1), and hence the relation F̃4 := f · volM̃ yields �4F̃4 = −f . Next we shall call 4-forms of 
type (2.2) decomposable.

On the closure condition (C ) and the Maxwell equation (M ). Let us focus now on the 
closure condition (C ) and the Maxwell equation (M ). We denote the Hodge star operators 
on M and M as �11 : Ωk(M) → Ω11−k(M) and �7 : Ωk(M) → Ω7−k(M), respectively. We 
need the following elementary result (which makes sense, appropriately reformulated, for any 
pseudo-Riemannian metric).

Lemma 2.1. Consider the Lorentzian manifold (M10,1 = M̃3,1 × M7, gM = g̃ + g) and let 
α̃ ∈ Ωk(M̃) and α ∈ Ω�(M) be some differential forms of M̃ and M, respectively. Then, since 
TM = TM̃ ⊕ TM defines a decomposition of the tangent bundle of M, the following holds:

 (1)  

gM(α̃ ∧ α, α̃ ∧ α) =
(k + �)!

k!�!
g̃(α̃, α̃) · g(α,α)

  and consequently,

〈α̃ ∧ α, α̃ ∧ α〉M = 〈α̃, α̃〉M̃ · 〈α,α〉M , ‖α̃k ∧ α�‖M = ‖α̃k‖M̃ · ‖α�‖M .

D Alekseevsky et alClass. Quantum Grav. 36 (2019) 075002
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 (2)  The action of the Hodge star operator �11 : Ωr(M) → Ω11−r(M) on α̃k ∧ α� reads as

�11(α̃ ∧ α) = (−1)�( p−k) �p α̃ ∧ �11−pα.

Based on this basic result a short computation shows that

Proposition 2.2. For the 4-form on M = M̃ × M given by the Ansatz (2.2) with f ∈ R, 
the closure condition (C ) and the Maxwell equation (M ) are simultaneously satisfied, if and 
only if

dF4 = 0, and d �7 F4 = f · F4. (2.3)

In the case where f   =  0, then the equations (C ) and (M ) are simultaneously satisfied if and 
only if the 4-form F4 on M7 is closed and co-closed, dF4 = d�7F4 = 0.

For the following, let us denote the 3-form �7F4 by φ := �7F4, with �7φ = F4. By proposi-
tion 2.2 we deduce that the Maxwell equation (M ) for the 4-form F  given by (2.2), i.e. the 
second relation in (2.3), is equivalent to the equation

dφ = f �7 φ, (2.4)

for the 3-form φ := �7F4. Moreover, the closure condition (C ) is equivalent to the relation

d �7 φ = 0. (2.5)

This motivates us to introduce the following definition.

Definition 2.3. A 3-form φ ∈ Ω3(M) on a Riemannian 7-manifold (M, g) is called special 
if it is co-closed (d �7 φ = 0) and satisfies the relation dφ = f �7 φ for some constant f ∈ R.

In terms of special 3-forms, we obtain

Corollary 2.4. The 4-form F = f · volM̃ + F4 ∈ Ω4
cl(M) for some constant f  and closed 

4-form F4 ∈ Ω4
cl(M

7), is a solution of Maxwell equation (M ) if and only if φ := �7F  is a 
special 3-form on M7.

On the Einstein supergravity equation (E ). For the computations related to the right hand 
side of the Einstein supergravity equation (E ) we use the following basic lemma.

Lemma 2.5. Let φ be a k-form on a smooth pseudo-Riemannian manifold (Mp ,q,g) of  
signature ( p, q) with p   +  q  =  n. When 1 � k � n − 1, we have

(−1)q〈X� � φ, Y� � φ〉 = 〈φ,φ〉〈X, Y〉 − 〈X�φ, Y�φ〉 , for all vector fields X and Y . (2.6)

When k  =  n, we have

〈X�φ, Y�φ〉 = 〈φ,φ〉〈X, Y〉 , for all vector fields X and Y . (2.7)

Proof. It suffices to prove (2.6) and (2.7) by taking X and Y to be basis elements at a point. 
Let us fix an orthonormal basis {ei}i=1,...,n with 〈ei, ej〉 = δij  for 1 � i, j � p, and 〈ei, ej〉 = −δij 
for p + 1 � i, j � p + q. Denote by {ei}i=1,...,n the corresponding dual basis such that the vol-
ume form is given by vol = e1 ∧ . . . ∧ en. For any 1 � k � n, the k-forms {ei1 ∧ . . . ∧ eik} 
constitute a basis for 

∧k TM orthonormal with respect to the natural extension 〈·, ·〉 of the 
metric , i.e.

〈ei1 ∧ . . . ∧ eik , ei1 ∧ . . . ∧ eik〉 = (−1)u ,

D Alekseevsky et alClass. Quantum Grav. 36 (2019) 075002
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where u is the number of timelike 1-forms among the {ei}. In the following discussion, 
{i1, . . . , in} will denote an even permutation of {1 . . . n}. For any 1 � k � n, set I = {i1, . . . , ik} 
and J = {ik+1, . . . , in} so that I ∩ J = ∅. Then

�(ei1 ∧ . . . ∧ eik) = (−1)ueik+1 ∧ . . . ∧ ein .

Let us deal with the case 1 � k � n − 1 first. By invariance, we may assume that

〈X� � φ, Y� � φ〉 = a〈φ,φ〉〈X, Y〉+ b〈X�φ, Y�φ〉

for some a, b ∈ R. To determine a and b we choose φ be a basis element, i.e. φ = ei1 ∧ . . . ∧ eik. 
It is also clear that if X and Y are linearly independent, then each term of this expression van-
ishes. Hence, we may take X  =  Y  =  er for any 1 � r � n. Then, it is easy to check the follow-
ing:

 •  If r ∈ I , then we have 0 = (−1)ua + (−1)ub when er is spacelike, and 
0 = a(−1)u(−1) + b(−1)u−1 when er is timelike, so we must deduce a  =  −b in both 
cases.

 •  If r ∈ J , then we have (−1)q−u = a(−1)u + 0 when er is spacelike, and 
(−1)q−u−1 = a(−1)u(−1) + 0 when er is timelike. Hence, in both cases, a  =  (−1)q.

Therefore, a  =  (−1)q and b  =  −(−1)q, which proves the claim. We leave it to the reader to 
check (2.7), which is completely analogous (here, one takes φ to be e1 ∧ . . . ∧ en). □ 

Applying lemma 2.5 in our case, we obtain the following useful corollary.

Corollary 2.6. The 4-forms F̃4 = f · volM̃ ∈ Ω4(M̃) and F4 = �7φ ∈ Ω4
cl(M) satisfy the 

following relations

〈X�F̃, Y�F̃〉M̃ = f 2‖volM̃‖
2
M̃g̃(X, Y) = −f 2g̃(X, Y), ∀ X, Y ∈ Γ(TM̃),

〈X�F, Y�F〉M = g(X, Y)‖φ‖2
M − 〈X�φ, Y�φ〉M , ∀ X, Y ∈ Γ(TM).

Moreover, ‖F‖2
M = ‖ �7 φ‖2

M = ‖φ‖2
M  and

‖F‖2
M = 〈F ,F〉M = 〈 f · volM̃ + F4, f · volM̃ + F4〉M = −f 2 + ‖F4‖2

M .

Now, for the Lorentzian manifold (M = M̃ × M, gM = g̃ + g) the Levi-Civita connection 
∇gM splits as ∇gM = ∇g̃ +∇g, where ∇g̃  and ∇g are the Levi-Civita connections on (M̃, g̃) 
and (M, g), respectively. This effects on the Ricci tensor RicgM of ∇gM, which splits accord-
ingly, i.e.

RicgM(X, Y) = 0 , for any vector field X on M̃ and Y on M,

RicgM(X, Y) = Ricg̃(X, Y) , for any vector field X, Y on M̃,
RicgM(X, Y) = Ricg(X, Y) , for any vector field X, Y on M.

Initially we examine the Einstein supergravity equation (E ) for some vector fields X, Y on M̃. 
In this case for the Lorentzian 4-manifold (M̃, g̃) we deduce that

Proposition 2.7. Let (M̃, g̃, F̃4 = f · volM̃) be the four-dimensional Lorentzian manifold 
of an eleven-dimensional supergravity background of the form (M = M̃ × M, gM = g̃ + g), 
where the flux 4-form F  is given by (2.2), with f ∈ R. Then, (M̃, g̃) is Einstein with negative 
Einstein constant Λ := − 1

6

(
2f 2 + ‖φ‖2

)
. In particular, ‖φ‖ is constant.

D Alekseevsky et alClass. Quantum Grav. 36 (2019) 075002



9

Proof. Since we can always write F = �7φ for some (co-closed) 3-form φ on M7, the proof 
is based on the previous observations. In particular, a direct computation in combination with 
corollary 2.6, shows that

Ricg̃(X, Y) =
1
2
〈 f · X�volM̃ , f · Y�volM̃〉M̃ − 1

6
g̃(X, Y)

(
‖f · volM̃‖

2
M̃ + ‖F‖2

M

)

= −1
2

f 2g̃(X, Y) +
1
6

g̃(X, Y)
(

f 2 − ‖F‖2
M

)

=
1
6
(
−2f 2 − ‖F‖2

M

)
g̃(X, Y) =

1
6
(
−2f 2 − ‖φ‖2) g̃(X, Y).

Now, the constancy of ‖φ‖ follows. □ 

Therefore, the supergravity Einstein equation (E ) for the specific flux form F4 given by 
(2.2), forces the Lorentzian 4-manifold (M̃, g̃) to be Einstein. We mention that this occurs 
independently of the closure condition (C ) for F , or the Maxwell equation (M ), so it is inde-
pendent of the notion of special 3-forms. However, it yields the constraint ‖φ‖ = constant.

Let us restrict now the supergravity Einstein equation (E ) on vector fields X, Y ∈ Γ(TM7). 
Since F = �7φ, by corollary 2.6 it follows that

Ricg(X, Y) =
1
2
〈X�F, Y�F〉M − 1

6
g(X, Y)

(
−f 2 + ‖F‖2

M

)

=
1
2
〈X� �7 φ, Y� �7 φ〉M +

1
6

g(X, Y)
(

f 2 − ‖F‖2
M

)

=
1
2
(
g(X, Y) · 〈φ,φ〉M − 〈X�φ, Y�φ〉M

)
+

1
6

g(X, Y)
(

f 2 − ‖F‖2
M

)

=
1
2

g(X, Y)‖φ‖2
M − 1

2
〈X�φ, Y�φ〉M +

1
6

g(X, Y)
(

f 2 − ‖φ‖2
M

)

= −1
2
〈X�φ, Y�φ〉M +

1
6

g(X, Y)
(

f 2 + 2‖φ‖2
M

)
.

Thus, one can write

Ricg(X, Y) =
1
6

g(X, Y)
(

f 2 + 2‖φ‖2
M

)
+ qφ(X, Y), (2.8)

where qφ(X, Y) is the symmetric bilinear form qφ(X, Y) := − 1
2 〈X�φ, Y�φ〉M .

Hence, motivated by the results in this paragraph, we introduce the following definition:

Definition 2.8. A Riemannian 7-manifold (M7, g,φ) with a special 3-form φ is called a 
special gravitational Einstein manifold if the pair (g,φ) is a solution of the supergravity Ein-
stein equation (2.8).

Remark 2.9. Note that a special gravitational Einstein 7-manifold is not necessarily an Ein-
stein manifold, since qφ is not necessarily a multiple of the metric tensor g. In particular, (2.8) 
is an extension of the Einstein equation by a stress-energy tensor associated to the 3-form φ.

By proposition 2.2 (or corollary 2.4) and proposition 2.7, it is obvious that the pair

(gM = g̃ + g,F4 = f · volM̃ + F4),

where the closed 4-form F4 is given by F4 = �7φ for some special 3-form φ on M7, g is a gravita-
tional special Einstein metric and g̃  a Lorentzian Einstein metric, induces solutions of eleven-
dimensional supergravity on M10,1 = M̃3,1 × M7, which we shall call (4, 7)-decomposable 
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solutions of eleven-dimensional supergravity. In this case, M10,1 = M̃3,1 × M7 will be referred 
by the term (4, 7)-decomposable supergravity background. We conclude that

Corollary 2.10. Any (4, 7)-decomposable solution (M10,1, gM,F) of  eleven-dimensional 
supergravity, is a product of Lorentzian Einstein 4-manifold (M̃3,1, g̃) with negative  
Einstein constant and a gravitational special Einstein 7-manifold (M7,g) with special 3-form 
φ ∈ Ω3(M7). In particular, the flux 4-form is given by F = f · volM̃ + F4 for some closed 
4-form F4 := �7φ ∈ Ω4

cl(M
7) and some constant f ∈ R.

2.2. Three basic types of (4, 7)-decomposable supergravity backgrounds

As explained in the introduction we focus only on non-trivial fluxes. Hence, we shall consider 
the following three classes of flux 4-forms for our form F = f · volM̃ + F4 (depending on the 
type of the special 3-form).

 (I)  F4  =  0 but f �= 0.
 (II)  non-zero harmonic 3-form, i.e. φ �= 0, f   =  0.
 (III)  non-harmonic 3-form, i.e. φ �= 0, f �= 0.

Our purpose is to analyse the construction of solutions of the supergravity Einstein equa-
tion (2.8) for any of these three types. We begin with the first type, i.e. F = f · volM̃ .

Corollary 2.11. The equation (2.8) for special 3-forms of Type I reduces to the standard 
Einstein equation, i.e. Ricg = ( f 2/6)g. Consequently, using the flux 4-form F = f · volM̃  
we obtain a (4, 7)-decomposable supergravity background, given by a product of a Lorentz-
ian Einstein 4-manifold (M̃3,1, g̃) with Einstein constant  −f 2/3, and a Riemannian Einstein 
 7-manifold (M7,g) with Einstein constant f 2/6.

Therefore, flux forms of type F = f · volM̃  with f ∈ R∗, induce (4, 7)-decomposable super-
gravity backgrounds by choosing a Lorentzian Einstein 4-manifold (M̃3,1, g̃) and a compact 
Einstein 7-manifold (M7,g). In this way we obtain a generalization of the Freund–Rubin con-
struction [FR80], where the four-dimensional Lorentzian manifold and the seven-dimensional 
Riemannian manifold share a common property: They both admit Killing spinors, imaginary 
in the first case and real for the second. In this Ansatz the flux is non-vanishing, and con-
stant, only along the four space-time directions, and the space-time is considered to be maxi-
mally symmetric. This implies that in general the ground state of such a theory is no longer 
Minkowski, but anti-de Sitter—for more details, see [HM05, F07, F13] and the references 
therein. On the other hand, we can still view M7 as a weak G2-manifold (M7, g,ω), although 
its generic 3-form ω  does not come into the definition of the flux F , i.e. even F4  =  0 for M7, 
and hence an Einstein manifold with Killing spinors and cone with holonomy contained in 
Spin7. In fact, as long as φ is generic, one faces a similar situation even when special 3-forms 
of Type III are treated; indeed this case implies again that both manifolds must be Einstein 
(see next section).

Let us proceed with special 3-forms of Type II. In this case the flux form F  is given by 
F = �7φ =: F4.

Corollary 2.12. The equation (2.8) for a special harmonic 3-form φ �= 0 on M7 of Type II, 
reduces to the equation
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Ricg =
1
3
‖φ‖2

Mg − 1
2

qφ, qφ(X, X) = ||X�φ||2M .

Moreover, (M̃3,1, g̃) is Einstein with Einstein constant −‖φ‖2/6.

Remark 2.13. Apriori, we may consider a generic Type II special 3-form φ. However, 
such a 3-form it turns out to be parallel and in section 3 we will show that it does not induce 
(4, 7)-decomposable supergravity backgrounds.

Example 2.14. Consider the Riemannian product (M7 := Q3 × P4, g = gQ + gP) between 
a 3-dimensional Riemannian manifold (Q3, gQ) and a 4-dimensional Riemannian manifold 
(P4, gP). Assume that M7 admits a special 3-form φ, given by φ := volQ, where volQ is the is vol-
ume 3-form on the first factor, with ‖φ‖2 = ‖volQ‖2 = 1. Then 〈X�volQ, Y�volQ〉 = gQ(X, Y) 
for any X, Y ∈ Γ(TM7). Hence the supergravity Einstein equation becomes

Ricg =
1
3

g − 1
2

gQ,

and we conclude that RicgQ = − 1
6 gQ and RicgP = 1

3 gP. Therefore, the manifolds Q, P must be 
Einstein manifolds with Einstein constant − 1

6 and 13, respectively. Assume now that our initial 
metric g is complete. Then, Q is a complete space of constant negative curvature (i.e. a  quotient 
RH3/Γ of the Lobachevski space RH3 by a lattice) and P is a compact Einstein 4-manifold. 
Note that the manifold M7 is compact if Γ is a co-compact lattice. So we get an example of 
decomposable supergravity background of Type II, with internal space M7 = Q3 × P4 and 
space-time any Lorentzian Einstein 4-manifold M̃3,1 with Einstein constant  −1/6.

3. (4, 7)-decomposable supergravity backgrounds of Type III associated 
to G2-geometries

The supergravity Einstein equation  (2.8) for a 7-manifold (M7, g,φ) where φ is a special 
3-form of Type III, i.e. a non-harmonic 3-form, remains unchanged. Here we shall study this 
case under the assumption that the special 3-form φ is generic and hence induces a G2-struc-
ture on M7, see also the works [BDS02, HM05, AE16]. To this end, it will be useful to refresh 
some notions of G2-structures (see also [Br87, Br05, FKMS97, J00]).

3.1. The Lie group G2 and G2-structures

Recall that the Lie group G2 ⊂ SO7 has dimension 14 and traditionally is defined as the 
automorphism group of the octonion algebra O. It is also defined as the stabilizer Gω of a 
generic 3-form ω  on R7 = ImO, with respect to the natural action of the linear group GL7(R) 
on 

∧3
(R7). In particular, let {ei}i=1,...,7 denote the standard basis of R7 with dual basis 

{ei}i=1,...,7. Then, a representative of ω  is given by

ω := e127 + e347 + e567 + e135 − e245 − e146 − e236, (3.1)

where eijk = ei ∧ e j ∧ ek  denotes the wedge product of ei, e j, ek , and the GL7(R)-orbit of 
ω  is open. We shall denote this orbit by Ω3

+ while elements in Ω3
+ will be referred by the 

term G2-generic, or just generic where there is no danger of confusion. Indeed, one needs 
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to mention that there is another open GL7(R)-orbit which is the orbit Ω3
− of a 3-form with 

stabilizer the normal real form G∗
2 of G2 (the Lie group G∗

2 is defined in terms of splittable 
octonions, see [K98, L06]).

A differential 3-form ω  on a smooth 7-manifold M is generic if its value ωp ∈
∧3

(TpM) 
is generic for any p ∈ M. Let Ω3

+(M) be the set of G2-generic 3-forms on M7. Any 3-form 
ω ∈ Ω3

+(M
7) induces a G2-structure, i.e. a subbundle of the linear frame bundle which is 

defined by frames {ei} with respect to which ω  is given by (3.1). Conversely, any G2-structure 
defines a generic 3-form and so we may identify a G2-structure with some ω ∈ Ω3

+(M). Since 
G2 ⊂ SO7, any G2-structure ω ∈ Ω3

+(M) determines an orientation (Hodge star operator) and 
a Riemannian metric g with respect to which the basis {ei} used above is orthonormal and 
positive oriented (see [Br05]). Note that on R7 this metric coincides with the Euclidean metric.

Proposition 3.1 ([FKMS97]). The existence of a G2-structure on a connected 7-dimen-
sional manifold M7 is equivalent to the vanishing of the first and the second Stiefel–Whitney 
classes of M7 and hence equivalent to the existence of a spin structure.

Definition 3.2. A G2-manifold (M7, g,ω) is called

 •  parallel, if dω = 0 = d �7 ω ,
 •  weak G2, if there exists λ ∈ R\{0} such that dω = λ �7 ω (and thus d �7 ω = 0),
 •  co-callibrated, if d �7 ω = 0.

When (M7, g,ω3) is a parallel G2-manifold, then there exists a ∇g-parallel spinor and hence 
(M7,g) is Ricg-flat [W98]. On the other hand, the existence of a weak G2-structure on a com-
pact 7-manifold (M7,g) is equivalent to the existence of a spin structure carrying a real Killing 
spinor [FKMS97], i.e. a non-trivial section ϕ ∈ Γ(ΣgM) of the spinor bundle ΣgM over M 
satisfying the equation ∇g

Xϕ = λX · ϕ, for any X ∈ Γ(TM) and some 0 �= λ ∈ R, where here 
∇g represents the spinorial Levi-Civita connection. Thus, compact weak G2-manifolds are 
singled out by the fact that admit Killing spinors and hence are Einstein manifolds with posi-
tive scalar curvature, i.e. (see [FKMS97]),

Ricg(X, Y) =
3
8
λ2g(X, Y), ∀ X, Y ∈ Γ(TM7). (3.2)

Remark 3.3. Compact weak G2-manifolds (M7,ϕ, g) admit an equivalent description in 
terms of the metric cone (M̂ = R× M7, ĝ = dr2 + r2g) over M7. Since (M7,ϕ, g) admits Kill-
ing spinors, (M̂, ĝ) admits parallel spinors and hence has holonomy group Hol(M̂) ⊂ Spin7. In 
particular, if (M7,ϕ, g) is simply-connected and not isometric to the standard sphere, then the 
inclusions Sp2 ⊂ SU4 ⊂ Spin7 yield the following three natural classes of weak G2-manifolds:

 •  If Hol(M̂) = Sp2, then M7 is called 3-Sasakian and it has a 3-dimensional space of Killing 
spinors.

 •  If Hol(M̂) = SU4, then M7 is called Sasaki–Einstein manifold and it has a 2-dimensional 
space of Killing spinors.

 •  If Hol(M̂) = Spin7, then M7 is called proper weak G2-manifold, with 1-dimensional 
space of Killing spinors.
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3.2. (4, 7)-decomposable supergravity solutions induced by weak G2-structures

Let us explain now how the above theory applies in supergravity equations  and gives 
rise to special (4, 7)-decomposable supergravity backgrounds. Let φ ≡ φ3 be a generic 
3-form on M7, i.e. assume that (M7,φ) is a G2-manifold. We will normalise φ such that 
‖φ‖2

M = 〈φ,φ〉M = 7. Then the identity 〈X�φ, Y�φ〉 = 3g(X, Y) holds, see [Br05] . Therefore, 
equation (2.8) reduces to

Ricg(X, Y) =
1
6
(

f 2 + 5
)

g(X, Y), (3.3)

for any X, Y ∈ Γ(TM7). Based on the previous description of weak G2-structures, proposition 
2.2 (or corollary 2.4) and the relations (3.2) and (3.3), we check that when the associated flux 
4-form F = f · volM̃ + �7φ is a solution of the supergravity Einstein equations (E ), then it 
needs to hold f = ±2. Thus we obtain the following

Theorem 3.4. Let M10,1 be the oriented Lorentzian manifold given by the product of a 
four-dimensional oriented Lorentzian manifold (M̃3,1, g̃) with volume form volM̃ and a seven-
dimensional oriented manifold M7 admitting a G2-structure φ ∈ Ω3

+(M), such that ‖φ‖2 = 7. 
Define

F4
± := ±2volM̃ + �7φ.

Then (M, gM = g̃ + g,F4
±), where g is the Riemannian metric on M corresponding to φ, gives 

rise to a pair of (4, 7)-decomposable supergravity backgrounds if and only if (M7,φ) is a weak 
G2-manifold and (M̃3,1, g̃) is Lorentz Einstein with negative Einstein constant Λ := −15/6.

Let us also discuss the case where the special 3-form φ is generic and of Type II, i.e. f   =  0. 
Then, the closure condition and the Maxwell equation imply that φ is both closed and co-closed, 
so it induces a parallel G2-structure. Therefore (M7,g) must be Ricci-flat, and by (3.3) we obtain

Theorem 3.5. The 4-form F = F = �7φ, where φ is a parallel G2-structure on (M7,g), 
i.e. φ is a generic special 3-form of Type II, cannot satisfy the supergravity equations for the 
Lorentzian manifold M10,1 = M̃3,1 × M7, endowed with the induced product metric.

4. Classification of 7-dimensional homogeneous manifolds of a compact  
Lie group

In this section we classify all compact almost effective homogeneous 7-manifolds M7  =  G/H 
of a compact connected Lie group G (up to a covering). We apply this to the description of 
invariant generic (special) 3-forms, and some invariant non-generic special 3-forms that solve 
the Maxwell equation. In particular, one can separate the examination of Type III invariant 
special 3-forms into the following two subclasses:

 •  Type IIIα, i.e. φ := �7F4 is an invariant generic special 3-form and thus it induces a 
homogeneous co-callibrated weak G2-structure on M7  =  G/H.

 •  Type IIIβ, i.e. φ := �7F4 is an invariant non-generic special 3-form on M7  =  G/H.

4.1. Classification of subalgebras of so7

So, consider a seven-dimensional compact connected homogeneous Riemannian manifold 
(M7  =  G/H,g). We will always assume that the action of G is almost effective, that is the 
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kernel of effectivity C = {g ∈ G : gx = x, ∀x ∈ M} is finite. Let g = h+m be a reduc-
tive decomposition of g and identify m ∼= ToM7, where o := eH . The isotropy representa-
tion χ : H → SO(m) ∼= SO7 is given by χ(h)X = AdhX , for any h ∈ H and X ∈ m. Almost 
effectivity means that the differential χ∗ : h → so(m) of the isotropy representation is 
exact, i.e. ker(χ∗) = {0} (cf. [Bs86]). Hence, h is isomorphic to the isotropy subalgebra 
χ∗(h) ⊂ so(m) = so7.

The classification of almost effective homogeneous 7-manifolds of a compact Lie group 
G reduces to the description of all compact Lie algebras g with a reductive decomposition 
g = h+m, m = ToM7, whose isotropy representation χ∗ is exact and such that h = χ∗(h) 
generates a compact subgroup H of a compact Lie group G with the Lie algebra g. This pro-
cedure splits into two simple steps:

 •  Description of all subalgebras h of the orthogonal Lie algebra so7.
 •  Description of all compact Lie algebras g which contain h as a codimension seven Lie 

subalgebra.

Since so7 = b3 is a rank three simple Lie algebra, any subalgebra h ⊆ so7 is a compact 
Lie algebra of rank r := rnk h � 3. The list of simple Lie algebras of rank � 3 is given 
below (here the lower indices denote the rank, the upper indices denote the dimension): 
a3

1 = b3
1 = c3

1, a8
2, a15

3 = d15
3 , b10

2 = c10
2 , g14

2 , b21
3 , c21

3 . Using it, we write down the list of 
proper semisimple subalgebras of so7: so3, 2so3, 3so3 = so4 + so3, so5, su4 = so6, su3. 
Calculating the centralizer of these subalgebras, we get the following non-semisimple 
proper subalgebras of so7: u1, 2u1, 3u1, so3 + u1, so3 + 2u1, so5 + u1, u3. Now, the several 
 non-conjugate subalgebras of type so3 can be described as follows. Let us denote by Vk  the 
irreducible submodule of real dimension k and by �R the trivial �-dimensional module. Let 
V3 := R3 be the standard representation of so3 and V4 := C2 the standard representation of 
su2. Recall that there are two injective homomorphisms so3 → so5 of so3 into so5, the stan-
dard one A �→ diag(A, 0, 0) and the embedding which corresponds to the unique  5-dimensional 
representation V5 := R5 ∼= Sym2

0(R3). Similarly, we shall write V7 := R7 ∼= Sym3
0(R3) for 

the unique 7-dimensional irreducible representation of so3.
Any so3 subalgebra of so7 is given by a 7-dimensional representation ρ : so3 → so7 ⊂ gl(R7) 

of so3, which must be a direct sum of the irreducible representations R, V3, V4, V5, V7. As 
before, we use upper indices to indicate dimension of irreducible representations of dimen-
sion  >1. Then, up to conjugation in SO7, we get the following description of subalgebras of 
so7 isomorphic to so3.

Lemma 4.1. A subalgebra of so3 type inside so7 coincides with one of the following:

(α1) su2 = so4
3, such that R7 = V4 + 3R, (α4) so

(3,3)
3 , such that R7 = V3 + V3 + R,

(α2) su
c
2 = so

(4,3)
3 , such that R7 = V4 + V3, (α5) so

5
3, such that R7 = V5 + 2R,

(α3) so
3
3, such that V3 + 4R, (α6) so

7
3, such that R7 = V7.

Since so4
3 = su2 = sp1 ⊂ so5 = sp2, the splitting of R7 in case α1) coincides with the isot-

ropy representation of the 7-sphere S7 = Sp2/Sp1 (see [Z82, LM12]). On the other hand, the 
isotropy representation of the Stiefel manifold V5,2 = SO5/SOst

3 , where SO3 is embedded in 
SO5 diagonally, decomposes as R7 = V3 + V3 + R and V7 coincides with the isotropy repre-
sentation of the 7-dimensional Berger sphere B7 = SO5/SOir

3  (see [Br87]). Finally notice that 
V5 coincides with the isotropy representation of the symmetric space SU3/SO3.

We treat now subalgebras of rank 2. Up to conjugation in SO7 there are two subalgebras 
of type so4 inside so7. The first corresponds to the standard embedding A → diag(A, 0, 0, 0) 
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and we write so4 = su2 + su′2, with decomposition R7 = V4 + 3R. Notice that su2 and su′2 

are conjugate in SO7. The second subalgebra of this type is denoted by so(4,3)
4 = su2 + suc

2 
with R7 = V4 + V3. We proceed with non-conjugate subalgebras of type so3 + u1 inside so7.

Lemma 4.2. A subalgebra of so3 + u1 type inside so7 coincides with one of the following:

(β1) so4
3 + u2

1 = su2 + u2
1, R7 = V4 + V2 + R, (β5) so3

3 + u2
1, R7 = V3 + V2 + 2R,

(β2) so4
3 + u2,2

1 = su2 + u2,2
1 =: u2, R7 = V4 + 3R, (β6) so3

3 + u2,2
1 , R7 = V3 + V2 + V2,

(β3) so4
3 + u2,2,2

1 = su2 + u2,2,2
1 , R7 = V4 + V2 + R, (β7) so

(3,3)
3 + u2,2,2

1 , R7 = V3 ⊗ V2 + R,

(β4) so
(4,3)
3 + u2,2

1 = suc
2 + u2,2

1 =: uc
2, R7 = V4 + V3, (β8) so5

3 + u2
1, R7 = V5 + V2.

Here V2 := C1 states for the standard representation of u1. Notice that in the third case β3) 
the Lie algebra u1 acts both on V4 and V2, in the second case β2) it acts on V4 and in the first 
case β1) it acts only on V2.

Proof. We are based on lemma 4.1 and compute the centralizers of all subalgebras inside 

so7 of type so3. We see that Cso7(so
3
3) = so4, Cso7(so

(3,3)
3 ) = u2,2,2

1 , Cso7(su2) = su′2 + so3, 
Cso7(so

5
3) = u2

1, Cso7(su
c
2) = su′2 and Cso7(so

7
3) = {0}. Hence we need to exclude so7

3 + u1 
and our claim follows by considering the several possible actions of u1 (the case arising by the 
decomposition R7 = V5 + 2R cannot exist due to the u1-action). □ 

Concerning subalgebras of rank 3, we remark that so4 + so2 = su2 + su′2 + u1 belongs 

to so7, but this is not true for the direct sum so(4,3)
4 + so2 = su2 + suc

2 + u1. Indeed, in 
the first case one computes Cso7(so4) = su2, while the centralizer of so(4,3)

4  is trivial, i.e. 
Cso7(so

(4,3)
4 ) = {0}. Let us summarise all the results (including lemmas 4.1, 4.2) with some 

more information in table 1.

4.2. Classification of almost-effective compact homogeneous 7-manifolds

Now, the classification of almost effective homogeneous 7-manifolds M7  =  G/H of a compact 
Lie group G, reduces to an enumeration of all compact Lie algebras g = gd+7 of dimension 
d  +  7, which contain a subalgebra h = hd  from table 1 and have as reductive decomposition 
gd+7 = hd +m, one of the indicated isotropy representations. We present all such homoge-
neous 7-manifolds in table 2, but initially it is convenient to use lemma 4.2 and present a 
proof for the almost effective cosets M7 = Gd+7/Hd  whose isotropy subalgebra hd ⊂ so7 
is of type so3 + u1 (and hence d  =  4). We mention that in table 2 we omit the details for 
most of the embeddings h ⊂ so7 which do not give rise to some almost effective coset and 
use the following notation: For a given direct product M = G/H × Tk  of a homogeneous 
space G/H (whose isotropy subgroup is given by H = H′ × T�) with a torus Tk , we shall 
denote by Mψ = G/H×̃Tk the twisted product Mψ = G/Hψ, defined by a homomorphism 
ψ : H = H′ × T� → Tk, where Hψ := {(h,ψ(h)) : h ∈ H} ⊂ H × Tk. It is remarkable that 
several cosets M7  =  G/H is of this type.

Proposition 4.3. Let M7 = G11/H4 be an almost effective homogeneous 7-manifold of 
an eleven-dimensional compact Lie group G, whose stability subalgebra h ≡ h4 is of type 
so3 + u1. Then M is diffeomorphic to one of the cosets appearing in table 2, case d  =  4.

Proof. It is useful to split the examination of compact Lie algebras g11 into two main cases:

 Case A: g11 is semisimple. Let us assume that g11 is semisimple, i.e. g11 = [g11, g11]. The 
only semisimple eleven-dimensional Lie algebra is the direct sum a1 + a2, hence we set 
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g11 = so3 + su3 = su2 + su3. The only subalgebras of type so3 inside su3 are the subalgebras 
su2 = so4

3 and so5
3, whose centralizer in su3 is u1 and {0}, respectively. Therefore, the fol-

lowing cases appear:

 (1)  If su2 ⊂ su3, then h = so4
3 + u2,2

1 = u2 . This gives rise to the homogeneous space 
M = CP2 × S3 = (SU3/U2)× SU2 with isotropy representation R7 = V4 + 3R.

 (2)  If so3 ⊂ su3 and u1 ⊂ so3 ⊂ su2 + su3, then we deduce that there are two desired sub-
algebras of type so3 + u1. The first one is given by h = so4

3 + u2
1 and induces the coset 

Table 1. Lie subalgebras of so7 = b3.

r = rnk h h = hd gd+7 h-decomposition of R7

r  =  0 h = trivial g7

r  =  1 u1 g8 R7 = V2 + 5R
u1 g8 R7 = 2V2 + 3R
u1 g8 R7 = 3V2 + R
su2 = so4

3 g10 R7 = V4 + 3R

suc
2 = so

(4,3)
3

g10 R7 = V4 + V3

so3
3 g10 R7 = V3 + 4R

so5
3 g10 R7 = V5 + 2R

so
(3,3)
3

g10 R7 = V3 + V3 + R

so7
3, g10 R7 = V7

r  =  2 2u1 = diag(u1 + u1) + u′1 g9 R7 = V2 ⊗ R2 + (V ′)2 + R
so4

3 + u2
1 = su2 + u2

1 g11 R7 = V4 + V2 + R
u2 := so4

3 + u2,2
1 = su2 + u2,2

1 g11 R7 = V4 + 3R
so4

3 + u2,2,2
1 g11 R7 = V4 + V2 + R

uc
2 := so

(4,3)
3 + u2,2

1 = suc
2 + u2,2

1
g11 R7 = V4 + V3

so3
3 + u2

1 g11 R7 = V3 + V2 + 2R
so3

3 + u2,2
1 g11 R7 = V3 + V2 + V2

so
(3,3)
3 + u2,2,2

1
g11 R7 = V3 ⊗ V2 + R

so5
3 + u2

1 g11 R7 = V5 + V2

so4 = su2 + su′2 g13 R7 = V4 + 3R

so
(4,3)
4 = su2 + suc

2
g13 R7 = V4 + V3

su3 g15 R7 = V6 + R
so5 = sp2 g17 R7 = V5 + 2R
g2 g21 R7 = V7

r  =  3 3u1 g10 R7 = 3V2 + R
2u1 + su2 = u2 + u1 g12 R7 = V4 + V2 + R
so4 + so2 = su2 + su′2 + u1 g14 R7 = V4 + V2 + R
u3 g16 R7 = V6 + R
su2 + su′2 + so3 = so4 + so3 g16 R7 = V4 + V3

so5 + u1 = sp2 + so2 g18 R7 = V5 + V2

so6 g22 R7 = V6 + R
so7 g28 = d4 R7 = V7
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M = S2 × S5 = (SU2/U1)× (SU3/SU2), whose isotropy representation decomposes as 
R7 = V2 + V4 + R. The second one coincides with h = so5

3 + u2
1 with corresponding 

coset M = (SU2/U1)× (SU3/SO3). Here, the isotropy representation is given by 
R7 = V2 + V5.

 (3)  If so3 ⊂ su3 but u1 � so3, then h = su2 + u2,2,2
1  where su2 = so4

3 is the standard subgroup 
of su3 and u2,2,2

1 = ∆u1 is the diagonal subgroup of u1 + u1 ⊂ su2 + su3. Then we get 
the homogeneous space M = (SU3 × SU2)/(SU2 × U1) =

(
(SU3/SU2)× SU2

)
/∆U1, 

whose isotropy representation decomposes as follows: R7 = V4 + V2 + R. Usually, the 
embedding of ∆u1 in u1 + u1 is indicated by two parameters a, b and it is classical to 
denote these manifolds by Na,b.

 (4)  If su2 � su3, then h = so
(4,3)
3 + u2,2

1 = suc
2 + u2,2

1 = uc
2, where we identify suc

2 with the 
diagonal subalgebra ∆su2 of su2 ⊕ su2

′ ⊂ su2 ⊕ su3, and u1 = u2,2
1  with the central-

izer of su′2 in su3. This gives rise to the so-called exceptional Allof–Wallach spaces 
W1,1 = (SU3 × SU2)/(SUc

2 × U1), with isotropy representation R7 = V4 + V3. Note that 
here the Lie group SUc

2 can be viewed as the normalizer of ∆SU2 inside SU3 × SU2.In order 
to complete Case A, we need to show that the subalgebra h = so3

3 + u2,2
1  does not induce 

some almost effective homogeneous 7-manifold. Indeed, since R7 = V3 + V2 + V2, the 
eleven-dimensional Lie algebra g11 must be without center, and thus we get g11 = su3 + su2. 
However, it must be so3

3 ⊂ su3 but only su2, so5
3 have non-trivial centralizer inside su3 

and our claim follows.

 Case B: g11 is non-semisimple. Assume now that g11 is non-semisimple. Then the dimension 
of the center Z(g11) must satisfy 1 � dimZ(g11) � 3. Hence we need to consider three cases:

 (1)  dimZ(g11) = 1. The unique candidate of a Lie algebra of type g11 = s+ u1 with s 
simple, is the Lie algebra g11 = so5 + u1 = sp2 + u1. Inside so5 the so3-subalgebras 
so

(3,3)
3  and su2 ⊂ u2 have non trivial centralizer and the same holds for suc

2 = so
(4,3)
3  

inside sp2. Hence, in this case we find the following subalgebras of type so3 + u1 which 
induce almost effective homogeneous 7-manifolds:

 •  h = so4
3 + u2

1, with corresponding coset M = (SO5/U2)×̃S1 = CP3×̃S1 and 
R7 = V4 + V2 + R.

 •  h = so
(4,3)
3 + u2,2

1 = uc
2, which defines the squashed 7-sphere S7 = (Sp2 × U1)/(Sp1 ×∆U1).  

Here, the isotropy representation is such that R7 = V4 + V3.

 •  h = so
(3,3)
3 + u2,2,2

1 , which induces the twisted product Gr2(R5)×̃S1 = (SO5/SO3 × SO2)×̃S1,  
where Gr2(R5) is a Grassmann manifold. In this case the isotropy representation decom-
poses by R7 = (V3 ⊗ V2) + R, where we identify the irreducible representation V3 ⊗ V2 
with the isotropy representation of the six-dimensional symmetric space Gr2(R5).

 (2)  dimZ(g11) = 2. Then g11 = 3so3 + 2u1 = 3su2 + 2u1 and h = so3
3 + u2

1. In this 
case we obtain the space M = (SO4/SO3)× (SU2/U1)×̃T2 = S3 × S2×̃T2, with 
R7 = V3 + V2 + 2R.

 (3)  dimZ(g11) = 3. Then g11 = su3 + 3u1 and the isotropy subalgebra h must be 
so4

3 + u2,2
1 = u2. Thus we get the coset M = CP2×̃T3, with R7 = V4 + 3R. □

Remark 4.4 (Remarks on table 2.). For the homogeneous spheres S5, S6 and S7 in ta-
ble 2 we use a subscript with the decomposition of the associated tangent space into irreduci-
ble submodules, in particular the subscript ‘irr’ characterises an irreducible isotropy represen-
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Table 2. Compact almost effective homogeneous 7-manifolds M7  =  G/H.

d h g ≡ gd+7 M7 = Gd+7/Hd Ginv
2 npGinv

2 Einv

d  =  0 {0} 7u1 T7 � × ×
su2 + 4u1 SU2 × T4 = S3 × T4 � × ×
2su2 + u1 SU2 × SU2 × T1 = S3 × S3 × S1 � × ×

d  =  1 u1 su3 Wk,l := SU3

Uk,l
1

� � 2

(k, l ∈ Z�0, k � l � 0, kl > 1)

W1,0 := SU3

U1,0
1

� � 1

2su2 + 2u1 V4,2×̃T2 = SU2×SU2
U1

×̃T2 = SO4
SO2

×̃T2 � × ×
su2 + 5u1 CP1×̃T5 = S2×̃T5 = SU2

U1
×̃T5 × × ×

d  =  2 2u1 su2 + 6u1 no almost effective coset × × ×
2su2 + 3u1 SU2

U1
× SU2

U1
×̃T3 = S2 × S2×̃T3 × × ×

3su2 Ma,b,c =
SU2×SU2×SU2

U1×U1
� � 1 or 2,

(a � b � c � 0, a  >  0, gcd(a, b, c) = 1) a = b = c = 1 simil. see [N04]
su3 + u1 F1,2×̃S1 = SU3

Tmax
×̃S1 � × ×

Wk,l := SU3

Uk,l
1

 (k, l arbitary) � � 2

d  =  3 α1) su2 = so4
3

su2 + 7u1 no almost effective coset × × ×
sp2 S7

V4+3R =
Sp2
Sp1

� � 2

su3 + 2u1 S5
V4+R × T2 = SU3

SU2
× T2 � × ×

α2) suc
2 = so

(4,3)
3

g10 ⊃ suc
2 no almost effective coset × × ×

α3) so3
3

2su2 + 4u1 S3 × T4 = SO4
SO3

× T4 = SU2×SU2
∆SU2

× T4 � × ×

α4) so
(3,3)
3

3su2 + u1 SO3×SO3×SO3
∆SO3

× S1 = S3 × S3 × S1 � × ×
so5 V5,3 = SO5/SOst

3 � � 1

α5) so5
3

su3 + 2u1 Q7
1 = SU3

SO3
× T2 × × ×

(Continued)
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so7
3

so5 B7 = SO5/SOir
3

� � 1 girr

3u1 3su2 + u1 S2 × S2 × S2×̃S1 × × ×

d  =  4 β1) so4
3 + u2

1
su3 + su2 S5

V4+R × S2 = SU3
SU2

× SU2
U1

× × 1 gsym

so5 + u1 CP3×̃S1 = SO5
U2

×̃S1 =
Sp2

Sp1×U1
×̃S1 � × ×

β2) so4
3 + u2,2

1 = u2
su3 + su2 CP2 × S3 = SU3

U2
× SU2

× × 1 gsym

su3 + 3u1 CP2×̃T3 = SU3
U2

×̃T3 × × ×

β3) so4
3 + u2,2,2

1
su3 + su2 Na,b = SU3×SU2

SU2×U1
=

(
SU3
SU2

× SU2

)
/∆U1

� � 1

β4) suc
2 + u2,2

1 = uc
2

su3 + su2 W1,1 = SU3×SU2
SUc

2×U1
� � 2

sp2 + u1 S7
V4+V3 =

Sp2×U1

Sp1×∆U1
� � 2

β5) so3
3 + u2

1
3su2 + 2u1 SO4

SO3
× SU2

U1
×̃T2 = S3 × S2×̃T2 × × ×

β6) so3
3 + u2,2

1
so5 + u1 no almost effective coset × × ×

β7) so
(3,3)
3 + u2,2,2

1
so5 + u1 Gr2(R5)×̃S1 = SO5

SO3×SO2
×̃S1 × × ×

β8) so5
3 + u2

1
su3 + su2 Q7

2 = SU3
SO3

× SU2
U1

= SU3
SO3

× S2 × × 1 gsym

4u1 g11 ⊃ 4u1 no almost effective coset × × ×

d h g ≡ gd+7 M7 = Gd+7/Hd Ginv
2 npGinv

2 Einv

d  >  4 Then r = 2, 3
Case (I) : r = 2

d  =  6 so4 = su2 + su′2 3su2 + 4u1 no almost effective coset × × ×
4su2 + u1 SU2×SU2

∆SU2
× SU2×SU2

∆SU2
× S1 � × ×

su3 + 5u1 no almost effective coset × × ×
so5 + 3u1 S4 × T3 = SO5

SO4
× T3 × × ×

(Continued)
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so5 + su2 S4 × S3 = SO5
SO4

× SU2
× × 1 gsym

so
(4,3)
4 = su2 + suc

2
sp2 + sp1 S7

V4+R3 =
Sp2×Sp1

Sp1×∆Sp1

� � 1

d  =  8 su3 su4 ⊃ su3 S7
V6+R = SU4

SU3
� � 1 gstn

g2 + u1 S6
irr × S1 = G2

SU3
× S1 � × ×

d  =  10 so5 so6 + 2u1 S5
sym × T2 = SO6

SO5
× T2 � × ×

d  =  14 g2 so7 ⊃ g2 S7
irr =

Spin7
G2

� � 1 girr

Case (II) : r = 3

d  =  5 su2 + 2u1 g12 = su3 + su2 + u1
SU3
U2

× SU2
U1

×̃U1 = CP2 × S2×̃S1 × × ×

d  =  7 so4 + u1 so5 + su2 + u1 S1×̃ SU2
U1

× SO5
SO4

= S1×̃S2 × S4 × × ×

d  =  9 u3 su4 + u1 SU4
U3

×̃S1 = CP3×̃S1 × × ×
3su2 = so4 + su2 so5 + so4 SO5

SO4
× SU2×SU2

∆SU2
= S4 × S3 × × 1 gsym

d  =  11 so5 + u1 so6 + so3 SO6
SO5

× SO3
SO2

= S5
sym × S2 × × 1 gsym

d  =  15 su4 = so6 g22 ⊃ su4 no almost effective coset × × ×

d  =  28 so7 so8 ⊃ so7 S7
sym = SO8

SO7
× × 1 gsym

Table 2. (Continued)
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tation (but not symmetric), while ‘sym’ means that the corresponding sphere is a symmetric 
space (and similarly for the metrics). The space Ma,b,c = (SU2 × SU2 × SU2)/(U1 × U1) 
is diffeomorphic to S2 × S2 × S3 and is a circle bundle over the six-dimensional product 
of spheres S2 × S2 × S2. According to [R10], it admits a homogeneous G2-structure if and 
only if a, b, c ∈ {−1, 1} and one can assume without loss of generality that a  =  b  =  c  =  1. 
Details about the number of invariant Einstein metrics on Ma,b,c, which depends on the 
parameters (a, b, c), are described in [N04]. Note that for a  =  b  =  1 and c  =  0 this fam-
ily induces the product (SO4/SO2)× (SU2/U1) = V4,2 × S2. The Berger sphere B7 and 
the 7-spheres Spin7/G2 or (Sp2 × Sp1)/(Sp1 ×∆Sp1) admit a unique invariant proper 
weak G2-structure, see [Br87, FKMS97, B93] and a unique invariant Einstein metric. In 
fact, this structure on the squashed sphere (Sp2 × Sp1)/(Sp1 ×∆Sp1) is also invariant un-
der the Lie group Sp2 × U1. Consider now that the Allof–Wallach spaces Wk,l = SU3/Uk,l

1 , 
where Uk,l

1 = diag(zl, zk, z̄l+k) ⊂ U2 ⊂ SU3 with z ∈ S1 = Z(U2), and k, � are integers such 
that k � 1, l � 1, gcd(k, l) = 1. The 2-parameter family Wk,l admits (up to homothety) two 
SU3-invariant weak G2-structures and two invariant Einstein metrics, see [CR84, CRW84, 
FKMS97, N04]. For the special case of W1,0 (i.e. k · l = 0), these Einstein metrics are iso-
metric each other, in particular the weak G2-structures on W1,0 coincide. By [BG94] it is 
also known that the exceptional Allof–Wallach space W1,1 = (SU3 × SU2)/(SUc

2 × U1) and 
the 7-sphere S7 = Sp2/Sp1 exhaust all compact homogenous 3-Sasakian spaces in dimension 
seven. Note that a 7-dimensional 3-Sasakian manifold admits a second weak G2-structure 
which is proper, with the corresponding Einstein metric to be a member of the canonical vari-
ation of the invariant 3-Sasakian Einstein metric, see [FKMS97]. Recall also that the Stiefel 
manifold V5,3 = SO5/SOst

3  is an Einstein–Sasakian manifold and the unique SU4-invariant 

Einstein metric on the sphere S7
V6+R = SU4/SU3 is the standard one, gstn , see [Jn73]. Finally, 

the homogeneous spaces Q7
1 = (SU3/SO3)× T2 and Q7

2 = (SU3/SO3)× S2 are products of 
the symmetric space SU3/SO3 with the 2-torus T2 and the 2-sphere S2, respectively. The 
coset SU3/SO3 belongs to the family SUn/SOn, which according to [CG88] is spin only for 
n = even. Consequently, neither Q7

1 nor Q7
2 is spin or admits a G2-structure (see proposition 

3.1). The difference between Q7
1 and Q7

2 is that Q7
1 is neither simply-connected nor Einstein, 

in contrast to Q7
2, which is a symmetric space and satisfies both these properties (it admits a 

unique invariant Einstein metric given by the product of the Killing metrics).

Table 2 implies the following classification theorem.

Theorem 4.5. A 7-dimensional compact connected almost effective homogeneous mani-
fold M7  =  G/H of a compact Lie group G, is diffeomorphic either to the flat tours T7 or to a 
homogeneous manifold of the following list (up to covering)

S7 = SO8
SO7

= SU4
SU3

= SO7
G2

=
Sp2
Sp1

S3 × T4 CP2 × S3 V4,2×̃T2

=
Sp2×U1

Sp1×∆U1
=

Sp2×Sp1
Sp1×∆Sp1

S4 × T3 CP1×̃T5 Gr2(R5)×̃S1

S2 × S2 × S2×̃S1 S5 × T2 CP2×̃T3 Ma,b,c =
S3×S3×S3

U1×U1

S3 × S3 × S1 S5 × S2 CP3×̃S1 B7 = SO5/SOir
3

S4 × S2×̃S1 S3 × S4 F1,2×̃S1 V5,2 ∼= T1S3 = SO5/SOst
3

S3 × S2 × S2 S6 × S1 Wk,l =
SU3

Uk,l
1

Na,b = SU2×SU3
SU2×U1

S3 × S2×̃T2 Q7
1 = SU3

SO3
× T2 Q7

2 = SU3
SO3

× S2 W1,1 = SU3×SU2
SUc

2×U1

S2 × S2×̃T3 CP2 × S2×̃S1.
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Notice that several manifolds in this list admit several presentations as homogeneous spaces, 
e.g. S3, S5, S7, CP3, CP3×̃S1, S5 × S2, V4,2×̃T2, S3 × S3 × S1 and other (for details see ta-
ble 2).

4.3. (4, 7)-decomposable homogeneous supergravity backgrounds of Type IIIα

The classification of compact simply-connected homogeneous weak G2-manifolds [FKMS97] 
and that of homogeneous Lorentzian Einstein 4-manifolds [K01, FeR06], together with theo-
rem 3.4 yield a large list of (4, 7)-decomposable homogeneous supergravity backgrounds of 
type IIIα. Recall that a G2-manifold (M7,ω) is called homogeneous if there is a transitive Lie 
group G which leaves ω  invariant. A classical result of Dynkin states that the Lie algebras 

so7
3, so(4,3)

4 = su2 + suc
2 and su3 exhaust (up to conjugation) all maximal subalgebras of g2. 

Hence, a homogeneous manifold M7  =  G/H admits an invariant G2-structure φ if and only if 

M7 = Spin7/G2 or χ∗(h) belongs to one of the subalgebras so7
3, so(4,3)

4  and su3. Following 
the papers [LM12, R10] and [FKMS97] in table 2 we also indicate which of the compact 
almost effective homogeneous 7-manifolds M7  =  G/H admit an invariant G2-structure and an 
invariant weak G2-structure. To track this information we use the notations ‘Ginv

2 ’ and ‘npGinv
2 ’,  

respectively. For convenience, in the last column we also include the number Einv of non-
isometric invariant Einstein metrics, see remark 4.4. By ‘×’ we mean that the corresponding 
coset does not admit some of the aforementioned invariant objects.

4.4. Non existence of invariant G2-structures and invariant G∗
2-structures

Let us describe now all compact almost effective homogeneous spaces M7  =  G/H which admit 
no G-invariant G2-structure and moreover no G2-structure. This task is based on our classifica-
tion theorem 4.5, the column ‘Ginv

2 ’ of table 2 and proposition 3.1. We conclude the following

Theorem 4.6. 

 (1)  Let M7  =  G/H be a compact connected almost effective homogeneous 7-manifold of a 
compact Lie group G. The manifold M7 admits no G-invariant G2-structure (or equiva-
lently, no G-invariant spin structure) if and only if it is diffeomorphic (up to covering) to 
one of the following cosets:

spin non-spin
S3 × S4 = (SU2 × SU2/∆SU2)× (SO5/SO4) CP2 × S3 = (SU3/U2)× SU2

S4 × T3 = (SO5/SO4)× T3 CP2×̃T3 = (SU3/U2)×̃T3

S2 × S2 × S2 × S1 = (SU2/U1)
3 × S1 Q7

1 = (SU3/SO3)× T2

S2 × S5 = (SO3/SO2)× (SO6/SO5) Q7
2 = (SU3/SO3)× S2

CP1×̃T5 = (SU2/U1)×̃T5 Gr2(R5)×̃S1

S2 × S2×̃T3 = (SU2 × SU2/U1 × U1)×̃T3 CP2 × S2×̃S1

S3 × S2×̃T2 = (SU2 × SU2/∆SU2)× (SU2/U1)×̃T2

S4 × S2×̃S1 = (SO5/SO4)× (SO3/SO2)×̃S1

CP3 × S1 = (SU4/U3)×̃S1

S7 = SO8/SO7

.

 (2)  Manifolds from the left column admit a G2-structure which is not invariant, or in other 
words, admit a generic 3-form which is not invariant. Inside the class of compact con-
nected almost effective homogeneous 7-manifolds M7  =  G/H only the manifolds from the 
right column doest not admit a G2-structure.
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Theorem 4.6 gives rise to the following natural questions for further research.

Question 1. What is the explicit form of the non-invariant spin structure, or equivalent, 
non-invariant G2-structure assigned in theorem 4.6? 

Question 2. What is the symmetry group corresponding to such a structure? 

These type of questions are in general difficult. To our knowledge, they have been exam-
ined for example in [L06] for the coset S3 × S4 and for G∗

2-structures. Below we also describe 
our conclusions for non-existence of G∗

2-structures. But firstly, let us analyse some example 
and enlighten the details of theorem 4.6.

Example 4.7. The space S3 × S4 is a spin manifold and by proposition 3.1, also a   
G2-manifold. However, this G2-structure is not invariant with respect to G = SO5 × SU2, 
where we identify S3 × S4 ∼= SU2 × (SO5/SO4). Indeed, a spin structure on a seven-dimen-
sional oriented connected homogeneous Riemannian manifold (M7  =  G/H,g) with a reductive 
decomposition g = h+m is invariant if the isotropy representation χ : H → SO(m) lifts to 
Spin(m) ∼= Spin7, i.e. there exists a homomorphism χ̂ : H → Spin(m) which makes the fol-
lowing diagram commutative

Here, Ad : Spin7 → SO7 is the double covering. Conversely, if G is simply-connected and 
(M7  =  G/H,g) has a spin structure, then χ lifts to Spin(m), i.e. the spin structure is G-invariant 
(see [CGT93, thmeorem 1, p 146]). Hence in this case there is a bijective correspondence 
between the set of spin structures on (M7  =  G/H,g) and the set of lifts of χ onto Spin(m). If 
in addition M  =  G/K is simply-connected and such a lift exists, then it will be unique. For the 
product S3 × S4 = SU2 × (SO5/SO4) the full isometry group G = SO5 × SU2 is not simply-
connected, so the spin structure which admits S3 × S4 does not lift to a G-invariant spin struc-
ture, or in other words the corresponding G2-structure is not G-invariant. All the spaces in 
theorem 4.6 which are spin can be justified in a similar way.

Results about G∗
2-structures. Recall that in a line with a G2-structure, a compact manifold 

M7 admits a G∗
2-structure if and only if M7 is orientable and spin, see [L07, main theorem]. On 

the other hand, recall that SO4 is the unique maximal compact subgroup of G∗
2, but also a max-

imal subgroup G2. Therefore, in the homogeneous setting we see that a G-invariant G∗
2-struc-

ture on a compact homogeneous space M7  =  G/H induces also a G-invariant G2 structure. 
However, the converse is not always true, since given a compact connected coset M7  =  G/H 
with isotopy group χ(H) ⊂ G2, then we may have χ(H) � G∗

2. In fact, this is the case for the 
invariant G2-structures on the cosets

B7 =
SO5

SOir
3

,
Spin7

G2
,

SU4

SU3
,

G2

SU3
× S1. (4.1)

In [L06] one obtains the non-existence of invariant G∗
2-structures on the product S3 × S4. Next 

we classify all compact almost effective homogeneous spaces M7  =  G/H which can be char-
acterised by the same non-existence.
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Corollary 4.8. 

 (1)  A seven-dimensional compact connected almost effective homogenous manifold 
(M7  =  G/H,g) of a connected compact Lie group G which admits no G-invariant  
G∗

2-structure is diffeomorphic (up to covering) to one of the cosets given in theorem 4.6, 
(1), or one of the cosets given in (4.1).

 (2)  Inside the class of compact connected almost effective homogeneous 7-manifolds 
M7  =  G/H only the manifolds CP2 × S3, CP2×̃T3, Gr2(R5)×̃S1, CP2 × S2×̃S1 and 
Q7

1, Q7
2 do not admit a G∗

2-structure.

5. Some solutions of the Maxwell equation for non generic 3-forms

Next we present examples of compact homogeneous Riemannian manifolds (M7  =  G/H,g) 
which admit non-generic invariant special 3-forms, that means 3-forms φ which satisfy the 
Maxwell equation dφ = f �7 φ and are of type IIIβ.

5.1. Solutions of Type IIIβ for the Maxwell equation on M7 = CP2 × S3

The simply-connected homogeneous manifold M7 = CP2 × S3 = (SU3/U2)× SU2 has no 
spin structure. Hence there are not exist generic 3-forms. However, here we will show that it 
is endowed with invariant (non-generic) special 3-forms.

The Lie algebra g = su3 + su2 admits the reductive decomposition

g = h+m, h = u2, m = m1 +m2 = R4 + su2.

The tangent space at the identity of M7 coincides with m. Dually, we have g∗ = m∗
1 +m∗

2 + h∗ 
where we identify m∗ = m∗

1 +m∗
2  with the cotangent space at the identity. One can choose 

a basis adapted to this decomposition such that m∗
1 = span(αi)i=1,...,4, m∗

2 = {βi}i=1,...,3, 
h∗ = {γi}i=1,...,4. Note that Ann(m1) = m∗

2 + h∗, Ann(m2) = m∗
1 + h∗ and Ann(h) = m∗

1 +m∗
2. 

The structure equations then read

dα1 = −α2 ∧ γ3 − α3 ∧
(
3 γ1 − γ2)− α4 ∧ γ4 , dγ1 = −α1 ∧ α3 − α2 ∧ α4 ,

dα2 = α1 ∧ γ3 − α3 ∧ γ4 − α1 ∧
(
3 γ1 + γ2) , dγ2 = α1 ∧ α3 − α2 ∧ α4 − 2 γ3 ∧ γ4 ,

dα3 = α1 ∧
(
3 γ1 − γ2)+ α2 ∧ γ4 − α4 ∧ γ2 , dγ3 = −α1 ∧ α2 − α3 ∧ α4 − 2 γ4 ∧ γ2 ,

dα4 = α1 ∧ γ4 + α2 ∧
(
3 γ1 + γ2)− α3 ∧ γ3 , dγ4 = −α1 ∧ α4 − α2 ∧ α3 − 2 γ2 ∧ γ3 ,

dβ1 = −β2 ∧ β3 , dβ2 = −β3 ∧ β1 , dβ3 = −β1 ∧ β2 .

Any U2-invariant metric on M7 has the form g = g4 + g3 where g4 = a
∑4

i=1 α
i ⊗ αi  is pro-

portional to the Fubini–Study metric and g3 is any Euclidean metric on su3. Without loss 
of generality, we may assume that g3 =

∑3
i=1 ci β

i ⊗ βi, for some positive constants ci (see 
[M76]). Denote by vol4 = a2 · (α1 ∧ α2 ∧ α3 ∧ α4) the volume form induced from g4 on CP2 
and by vol3 =

√
c1c2c3 · (β1 ∧ β2 ∧ β3) the volume form on S3 induced from g3. Then, the 

metric-compatible volume form is given by vol7 = vol4 ∧ vol3.
Now, the most general U2-invariant 3-form on M7 is given by

φ = ω ∧ θ + b · vol3, (5.1)

where ω = a ·
(
α1 ∧ α3 + α2 ∧ α4

)
 is the Kähler form on CP2, θ is an arbitrary SU2-invariant 

1-form on S3 and b a constant. It is straightforward to check that ω is anti-self-dual, i.e. �4ω = −ω. 
In particular, we have �7φ = −ω ∧ �3θ + b · vol4. Computing the exterior derivatives, we find
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d �7 φ = −ω ∧ d �3 θ, dφ = ω ∧ dθ .

From the structure equations we also see that any 2-form on SU2 is closed and thus θ must 
be co-closed, i.e. d �3 θ = 0. Hence, the equation  d �7 φ = 0 is always satisfied. Now, the 
Maxwell equation dφ = f �7 φ reads as ω ∧ dθ = f · (−ω ∧ �3θ + b · vol4). Matching each 
side of the equation yields the following conditions: dθ = −f �3 θ and f · b · vol4 = 0 . Taking 
the components of the first of these equations leads to

(
−
√

c1

c2c3
+ f

)
θ1 = 0,

(
−
√

c2

c3c1
+ f

)
θ2 = 0,

(
−
√

c3

c1c2
+ f

)
θ3 = 0.

 (5.2)
Thus, there are two non-trivial cases to examine:

 •  If f   =  0, then we automatically get dθ = 0, which implies θ = 0 by the last system of 
equations. Thus, (5.1) reduces to φ = b · vol3.

 •  If f �= 0, then we obtain b  =  0 so that (5.1) reduces to φ = ω ∧ θ .

Proposition 5.1. The only invariant solutions of the Maxwell equation on M7 = CP2 × S3 
are the following:

 •  if f   =  0, φ = b · vol3, b = const,
 •  if f �= 0, φ = ω ∧ θ where ω  is the Kähler form of CP2 and the components of the 1-form 

θ and of the metric are subject to (5.2).

In both cases, one can check that these special 3-forms do not satisfy the supergravity 
Einstein equation with respect to the metric g, hence M7 does not provide us with a special 
gravitational 7-manifold.

5.2. Solutions of Type IIIβ for the Maxwell equation on the Lie group G = S3 × T4

We choose a left invariant metric g on G such that the decomposition g = su2 + t is orthogo-
nal, where we indentify the tangent space of S3 = SU2 with the Lie algebra su2 and similarly 
for the 4-torus T4, i.e. t = TeT4. Then we may choose and orthogonal basis ωα of 1-forms on 
su2 such that dωα = ωβ ∧ ωγ, where (α,β, γ) is a cyclic permutation of (1, 2, 3), and more-
over an orthonormal basis ρi, i = 1, 2, 3, 4 of t such that dρi = 0. Set

p,q∧
=

p∧
(su∗2) ∧

q∧
(t∗).

Then d
∧ p,q ⊂

∧ p+1,q and �7
∧ p,q ⊂

∧3−p,4−q. This show that any solution of Maxwell 
equation belongs to 

∧1,2
= su∗2 ∧

∧2
(t∗). Now, the space 

∧2
(t∗) =

∧+
+
∧− is the direct 

sum of self-dual forms 
∧+ and anti-self-dual forms 

∧−, which are the ± eigenspaces of the 
Hodge operator �4. Set φ = ω ∧ σ ∈

∧1,2, where ω  is a left-invariant 1-form on SU2 and 
σ ∈

∧2
(t∗) is a left-invariant 2-form on the torus T4. Then we get

dφ = dω ∧ σ, �7φ = �3ω ∧ �4σ.

Now, we may assume that g(ωα,ωβ) = (λα)−2δα,β. In this case it is easy to see that ω̃α = λαω  
is an orthonormal basis and moreover

�3ω
α =

λβλγ

λα
ωβ ∧ ωγ .

Therefore, φ = ωα ∧ σ  satisfies the Maxwell equation if and only if
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�4σ = ±σ, and λβλγ = ±λα.

This implies that λα = ±1. More precisely, (λ1,λ2,λ3) = (±1,±1,±1). Note that if σ is 
self-dual the number of units in this triple must be odd and if σ is an anti-self-dual the corre-
sponding number is even. For example, assume that λα = 1, α = 1, 2, 3. Then, any self-dual 
2 form σ ∈

∧+ defines a solution of Type IIIβ for the Maxwell, given by φ = ω ∧ σ, where 
ω  is any unit 1-form in su∗2 .
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