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Flavour-changing processes that we are interested in at the LHCb occur at low energies, at scales y < Myy.
It is then convenient to pass from the full theory of electroweak interactions to an effective theory by
removing the high-energy degrees of freedom, i.e. integrating out the -boson and all the other particles
with m ~ Myy.
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Qn — local interaction terms (operators), (,, — coupling constants (Wilson coefficients)

Information on the electroweak-scale physics is encoded in the values of CL(/L> , €.8.,
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This is a modern version of the Fermi theory for weak interactions. It is “nonrenormalizable” in the
traditional sense but actually renormalizable. It is also predictive because all the C; are calculable, and
only a finite number of them is necessary at each given order in the (external momenta) /My expansion.
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Advantages: Resummation of (Oé s In 7}%) using renormalization group, easier account for symmetries.



The leading flavour-changing effects originate from the lowest dimension operators QZ', i.e. dim-5 and
dim-6 ones. Higher-dimensional ones are suppressed by powers of ,LL2 / MT%V’ where [l < myp, which

corresponds to permile-level corrections — an accuracy hardly accessible in flavour physics.

Quark-flavour-violating dim-5 and dim-6 operators:

(10" Prrgy) Fop, (@0’ PrpT ) Goy _ dipole-type, the only dim-5 ones,

chirality-suppressed,
(@ 7Py q2) (1 7av) _ charged-current quark-lepton,
(Y Pr @) (l_ Yo Pr R l), (G Y Pr @) (D) — neutral-current quark-lepton,
(Y Prqe) (G Prqy), (@y*PLT,) (gsv* P, T%,) — charged-current four-quark,
(Y Pray) (G Prrq), (v“PoT%) (GY*PrrT"G) - neutral-current four-quark AF = 1,
(Y Prqs) (@Y Pr qy) — neutral-current four-quark AF = 2,

We have not listed:

e operators with four down-type quarks of three different flavours, like (gfy&P Lb) (5’}/&P Ld),
e four-fermion operators that get chirality-suppressed in the SM,

e lepton-flavour-violating four-fermion operators



Our ability to observe or constrain new physics depends on the accuracy of determining

the SM “background”. Thus, precise evaluation of CZ( ,LL) in the SM is particularly important.
Two steps of the WC calculation:

Matching: Evaluating CZ'(ILL0> at [y MW by requiring equality of the SM and

the effective theory Green’s functions.

Mixing: Deriving the effective theory Renormalization Group Equations (RGE) from the
renormalization constant matrices (the operators mix under renormalization).

Next, using the RGE to evolve Cz' from [l to [t ~(external momenta).

Example — Four-quark charged-current operator mixing:

Gaillard, Lee, 1974,
Altarelli, Maiani, 1974

Altarelli et al, 1981,
Buras, Weisz, 1990

Gorbahn, Haisch, 2004



The matching conditions are most easily found by requiring equality of the
full SM and the effective theory 1PI off-shell Green’s functions that are
expanded in external momenta and light masses prior to loop-momentum
integration.
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The EL” poles cancel in the matching equation.

The only Feynman integrals to calculate: partly-massive tadpoles.

Calculation of 3-loop single-scale partly-massive tadpoles has been fully automatized long time ago
(the code MATAD by M. Steinhauser).

Differences among the simultaneously decoupled heavy particle masses can be taken into account

by Taylor expanding around the equal-mass point.



Renormalization constant calculation using masses as IR regulators

MM, Minz, 1995 2-loop dipole operator mixing
van Ritbergen, Vermaseren, Larin, 1997  4-loop [Bqcp
Chetyrkin, MM, Miinz, 1997 3-loop (4-quark) — dipole
Gambino, Gorbahn, Haisch, 2003 3-loop (4-quark) — (quark-lepton)
Gorbahn, Haisch, 2004 3-loop four-quark operator mixing
Czakon, 2004 4-loop [Bqcp
Gorbahn, Haisch, MM, 2005 3-loop dipole operator mixing
Czakon, Haisch, MM, 2006 4-loop (4-quark) — dipole
Exact decomposition of a propagator denominator:
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—_———
AD = -2 AD = -2 AD = -3

(— linear combination of loop momenta, P— linear combination of external momenta,
M — mass of the considered particle, ™ — IR regulator mass (arbitrary)

After applying this identity sufficiently many times, the last term can be dropped in each propagator.
The only Feynman integrals to perform then are single-scale massive tadpoles.

Up to three loops, explicit expressions for pole parts of all the single-scale massive tadpoles are available
in terms of solved recurrences

At four loops:

T. van Ritbergen — 77

M. Czakon — The integration-by-parts method and the Laporta algorithm
are used for reduction to 19 master integrals [hep-ph/0411261].



Current status of the WC evaluation:

(q_l UaﬁPL,R Q2) Fug, <q_1 O-OéﬁPL,R Tan) o
O(Ckz, Ckem) known

(VP ge) (l_’YaV)
O(Ckem> known, O(@?) =0

<Q_1 Py QQ) (l_%zPL,R l)7 (q_l v Py Q2> (D ”YaV>
O(Ozs, ozem) known, O(&g) would be possible

(Y Prg) (Y Pray), (v PrT) (v PrTq)
O(Ckg, Ckem) known, O(Ozi) would be possible

(@Y Prg) (q Y PLg q), (G Y"P.T)(q Y Pp g T“q)
O(Oz?, Oéem) known, O(&g) would be possible

(q_l v Py Q2) (q_l v Py C]2)
O(&z, Ckem) known, O(Oz?) would be possible

— dipole-type, the only dim-5 ones,
chirality-suppressed

— charged-current quark-lepton

— neutral-current quark-lepton

— charged-current four-quark

— neutral-current four-quark AF =1

— neutral-current four-quark AF =2



Concluding question:

Do we need more precise Wilson coefficients
for the LHCb or SuperB?



BACKUP SLIDES



Calculation of the bare 4-loop penguins (M. Czakon)

0
Tk There are 21986 diagrams like this (both for b — S7 and b — S5Q).

Their degree of divergence D = 2, so they must be expanded to the second
order in external momenta and masses. However, momentum-independent
terms can be neglected.

—

p

Each of the diagrams, when evaluated off-shell, gives a linear combination of:

,Y,up% Y (p k)) fY,up27 /Y,uk27 P/km P/pm %p/m %k,ua Mb%/%ua MWM%, Mbp/fy,u; Mb’m]?/-

Coefficients at these structures are linear combinations of scalar Feynman integrals, i.e. fully massive
single-scale 4-loop tadpoles. Computing these coefficients (while keeping the integrals as symbols) was
the most computer time consuming part of the calculation (FORM programs):

~5 months running on ~10 processors (Wiirzburg)
+ ~1 month running on ~100 processors (FNAL and DESY Zeuthen).

The final result turns out to contain no new scalar integrals with respect to the 4-loop [qgcp calculation
M. Czakon, hep-ph/0411261] that took ~2 weeks on ~10 processors, including the reduction to master
integrals. In that calculation, the reduction of ~ 2 x 10° integrals required resolving ~ 2 x 10° ones.



Master integrals
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Sample analytical expressions for the pole parts of the master integrals:
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The quantities S2, Tlep and D6 cancel out in the pole parts after adding
lower-loop diagrams with counterterms. Consequently, the anomalous
dimensions depend only on rationals and (; with £ < 5.



Subtraction of subdivergences

Examples of diagrams with operator counterterms (Wilson coefficient renormalization):

3-loop diagrams with 1-loop counterterms ii
2-loop diagrams with 2-loop counterterms ﬁii
1-loop diagrams with 3-loop counterterms @

Types of off-shell operator counterterms (apart from the physical operators 01,...,08)
e gauge-invariant EOM-vanishing operators, e.g., (EL’}//’LTabL> [DVGZ + g Z ( ’}//’LTCL )]

LiBd & — M)

e BRS-exact operator 5BRS [(EL’Y’UTabL>auﬁa] — (glﬂﬂuTabL) [a,uang fabc( _b> ]

br

e gauge-variant EOM-vanishing operators, e.g.,

e evanescent operators, e.g., (§L’Y[M1’}/M2’YM3’Y’LL4”Y’LL5]CL) (EL/Y[MVMQ/YMS/YWL/YME)]bL)

e so-called m?-operators (due to propagator numerator simplification) e.g., m2§ L@(b L



Cross-checks of the calculation

The sum of n-loop diagrams (with counterterms for 17 < 4) has the form

4

SUM, = ;ﬂ”‘fk:l E%Xnk (D =4 — 2)

Since the tree-level counterterm must be local (= polynomial in external momenta), no logarithms of [/

can remain in the pole part of SUM{+SUMy+SUM3+SUM,. Consequently, the following

relations must be satisfied:
Xiy= — X0y = X3y = —4Xy
X934+ 3X33+6Xy3=20
X113 —3X33 —8Xyu3 =0
X194+ 2X99+3X390+4Xy90 =0

Additional cross-checks are possible thanks to the fact that all the 12 structures

/Yﬂp% Y (p k)v fY,up27 ’}/Mk’Z, P/km p/p,ua k/p,lm %kuv Mbk//%ua Mb%ﬂﬂ/» Mbﬂ%m Mb/}/up/-

are calculated for the counterterm diagrams. Since the number of available b — S7 operators is only 5,

ELO“V[?RFMV, ELﬁﬁbR, ELﬁﬁﬁbL,

St |1 ﬁ O"LWFMV — ILWO"LW(’L'ﬁ — Mb) br, EL%bL(?VFW,

we get 7 relations between the 12 coefficients at the considered structures (after summing up the bare

diagrams and all the counterterms). The number of relations for reduces to 3 due to the
relevance of gauge-variant operators in that case.



Numerical effect of the 4-loop mixing at the NNLO
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Numerical effect of the 3-loop mixing at the NLO
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