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Abstract

In the present work we match the biased hierarchical continuous-time random flight

(HCTRF) on a regular lattice (based on hierarchical waiting-time distribution) and the extreme

event theory (EVT). This approach extends the understanding of the anomalous transport and

diffusion (for example, found in some amorphous, vitreous solids as well as in conducting and

light-emitting organic polymers). Both independent approaches were developed in terms of

random-trap or valley model where the disorder of energy landscape is exponentially distributed

while the corresponding mean residence times in traps obey the power-law. This type of disorder

characterizes several amorphous (even used commercially) materials which makes it possible to

apply the HCTRF formalism. By using the EVT we additionally show that the rare (stochastic)

events are indeed responsible for the transport and diffusion in these materials.
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1. Introduction and motivation

The variety of observed relaxation phenomena in condensed and soft matter are
related to transport and/or diffusion of atoms, particles, carriers, defects, excitons
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and complexes [1] (and references therein). In fact, the transport and diffusion are
regarded as a paradigm of irreversible behaviour of many ordered and disordered
systems. A universal feature of a disordered system is the temporal complex pattern,
where the Debye-relaxation is no longer obeyed. The sentence which we quote after
Scher and Montroll [2] characterizes well the straightforward link between physics of
anomalous transient-time dispersion in an amorphous substance and its application.
The development of modern photocopying machines has motivated experimental work

on amorphous materials, some of which display anomalous transport properties.

The theory of carrier transport in some amorphous insulators (such as the
commercially used vitreous As2Se3) and in some amorphous charge-transfer
complexes of organic polymers (as the commercially used trinitrofluorenone mixed
with polyvinylcarbazole, TNF-PVK) provides canonical examples of
(i)
1W

need
continuous-time random flights and walks, and

(ii)
 broad- or long-tailed waiting-time distribution between steps.
More precisely, the generic description of the dispersive transport and diffusion [3]
found in the canonical experiments on transient current in an amorphous medium
(induced by flash light [4–6,2,7] or voltage pulse [8] and references therein) is given
indeed by the hierarchical continuous-time random flight (HCTRF) formalism1

[9–15]. The principal aim of my lecture is to express this description in terms of the
extreme value theory (EVT) [16–18]. Such an approach shows that rare (stochastic)
events are indeed responsible for the transport and diffusion in these materials.
The paper consists of two parts. The first part (Section 2) includes remarks

considering the basic elements of HCTRF and particularly, the averaged over
disorder, hierarchical waiting-time distribution and its scale-invariance as the main
property. In the second part (Section 3) we develop the EVT in the context of the
random-trap or valley model where disorder is due to the energetic depth of the traps
(which are exponentially distributed) and by the corresponding mean residence times
(which obey then the power-law).
2. Basic elements of the biased hierarchical continuous-time random flight

The most spread models describing transport and diffusion in disordered
substrates are based on the continuous-time random walk formalism. The major
simplification in these models is that the disordered energetic landscape of the
substrate can be described by an exponential distribution and incorporated into a
regular lattice. In this work we consider single particle random instantaneous hops
(flights) between regularly displaced valleys which have, however, different depths;
the mountain peaks have all at the same energy level (which justifies the name of the
model).
e distinguish between particle flights and walks as the former are instantaneous while the latter ones

some time to move between the traps.
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Waiting-time distribution. The pausing or residence time t in a given trap (between
the successive hops) is a stochastic variable whose statistics is defined by the
normalized waiting-time distribution c�ðtÞ. This basic quantity here is the sharp
probability density that the particle will perform its next hop exactly at time t after
having waited until this instant in a trap of depth �. The simplest but realistic
example is provided by the exponential waiting-time distribution of a local in space
Poisson process

c�ðtÞ ¼
1

tð�Þ
exp �

t

tð�Þ

� �
, (1)

where the factor 1=tð�Þ is the probability density per unit time or rate of transition to
a neigbouring site; the second factor is the probability that no hop has occurs until
time t.
As we consider here only thermally activated over-barrier hops in the pre-

sence of a constant external bias, we can use asymmetric transition rates in the
form

G�ð�Þ ¼ G0 expð�b0ð�� 1
2

FaÞÞ , (2)

where

b0 ¼
ðkBTÞ

�1 for the Hopf2Arrhenius (HA) law ;

ðkBYÞ
�1 for the Vogel2Tamm2Vulcher (VTF) law ;

(
(3)

where kB is the Boltzmann constant, T is the absolute temperature, and
Y ¼ T � Tg40, where Tg is the transition temperature to the glass phase. Note
that in expression (2) the external force is denoted by F, the lattice constant by a and
Gþ is the transition rate along the direction of external force while G� is the one in
the opposite direction. Hence, the approximate equality (in the second line) in
expression

1

tð�Þ
¼ G�ð�Þ þ Gþð�Þ ¼ 2G0 expð�b0�Þ coshðb0FaÞ

	 2G0 expð�b0�Þ½1þ 1
8
ðb0FaÞ2� , ð4Þ

gives the second-order effect in the applied field, i.e., quadratically depends on the
small quantity b0Fa. Fortunately, in all our discussions we have b0Fa51 as this is an
obvious experimental constraint justifying the restriction only to the first-order effect
in the applied field in all our considerations.

Sojourn probability. It is useful to introduce the sojourn probability C�ðtÞ that the
particle remains at a lattice site at least until time t without any hop; and is defined
by using the waiting-time distribution

C�ðtÞ ¼

Z1
t

dt0c�ðt
0Þ (5)
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which in the case of a local Poisson process described by (1) assumes the simple
exponential form

C�ðtÞ ¼ exp �
t

tð�Þ

� �
. (6)

In our model the averaging of this distribution over disorder is required to calculate
the full propagator. How to perform this averaging is the essential problem
considered below.

The structure factor of the biased random walk. Before we calculate the propagator
we need to define the structure factor of the biased random walk. This definition
requires the knowledge of the (stationary) spatial (single hop) transition
probabilities, p�, along and against the applied force, respectively, and includes
here (for simplicity) the transitions only to the nearest neighbours. Then

p� ¼
G�ð�Þ

G�ð�Þ þ Gþð�Þ
	 1
2
ð1� 1

2
b0FaÞ , (7)

and the corresponding spatial probability density

pðxÞ ¼ pþdðx � aÞ þ p�dðx þ aÞ . (8)

Hence, the structure factor of the biased random walk is defined as the Fourier
transform of pðxÞ

~pðkÞ ¼ cosðakÞ � iðpþ � p�Þ sinðakÞ 	 cosðakÞ �
i

2
b0Fa sinðakÞ ; (9)

here again only the first-order effect in the applied field was taken into account.
The propagator. The waiting-time distribution and sojourn probability averaged

over disorder are, together with the structure factor, the relevant quantities to
construct the full propagator considered in this paragraph.
The motion of the particle consists of a sequence of alternative events defined by

the waiting in a given trap and next the hop to the neighbouring one.
Correspondingly, the propagator consists of an unrestricted superposition of the
n-step partial propagators

P�0;�1;�2;...;�ðX ; tÞ ¼ P�¼�0 ðX ; t; n ¼ 0Þ þ
X1
n¼1

P�0;�1;�2;...;�n�1;�ðX ; t; nÞ , (10)

where the multi-step propagators (defined as the probability density of finding a
particle at position X at time t within n steps over a sequence of traps which have
depths �0; �1; �2; . . . ; �n�1; �) can be expressed as follows:

P�0¼�ðX ; t; n ¼ 0Þ ¼ dðX ÞC�0¼�ðtÞ ,
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P�0;�1;�2;...;�n�1;�ðX ; t; nÞ ¼

Z t

0

dtn

Ztn

0

dtn�1 . . .

Zt3

0

dt2

Zt2

0

dt1




Z1
�1

dxn

Z1
�1

dxn�1 . . .

Z1
�1

dx2

Z1
�1

dx1


c�0 ðx1; t1Þc�1 ðx2 � x1; t2 � t1Þ . . .


c�n�1
ðxn � xn�1; tn � tn�1ÞdðX � xnÞC�ðt � tnÞ ,

n ¼ 1; 2; 3; . . . . ð11Þ

where the full waiting-time distribution, c�ðx; tÞ ¼
def :

pðxÞc�ðtÞ, means the sharp
probability density of a single displacement x just at time t when the particle stayed
whole the time (from 0 to t) at a given trap. As it is seen, the terms with nX1 are n-
fold convolutions. That is, for the n-step partial propagator the walker performs
exactly n single steps while the last nth one is just under way (in general it is not
finished). It should be admitted that the initial condition is not visible here because it
is the same for each partial propagator. This condition has a non-stationary
character and says that initially the particle was surely at the origin.

The average propagator. Now, to obtain the average propagator we should average
the above expression by using the distribution r�0;�1;�2;...;�n�1;� in the factorized form,
i.e., rð�0; �1; �2; . . . ; �n�1; �Þ ¼ rð�0Þrð�1Þ . . . rð�n�1Þrð�Þ, as the depths of traps are, by
definition, statistically independent. The key point of our consideration is given by
the exponential form of the single-trap distribution

rð�Þ ¼
1

h�i
exp �

�

h�i

� �
. (12)

By applying waiting-time distribution c� and r�0;�1;�2;...;�n�1;� in the factorized form
together with expression (12) into (11) we get the average propagator in the form

PðX ; tÞ ¼
X1
n¼0

PðX ; t; nÞ , (13)

where the partial, average n-step propagators are

PðX ; t; n ¼ 0Þ ¼ dðX ÞCðtÞ ,

PðX ; t; nÞ ¼

Z t

0

dtn

Ztn

0

dtn�1 . . .

Zt3

0

dt2

Zt2

0

dt1




Z1
�1

dxn

Z1
�1

dxn�1 . . .

Z1
�1

dx2

Z1
�1

dx1


cðx1; t1Þcðx2 � x1; t2 � t1Þ . . .


cðxn � xn�1; tn � tn�1ÞdðX � xnÞCðt � tnÞ ,

n ¼ 1; 2; 3; . . . ð14Þ
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and the average waiting-time distributions and sojourn probability are given by

cðx; tÞ ¼ pðxÞcðtÞ; cðtÞ ¼
Z1
0

d�rð�Þc�ðtÞ ,

CðtÞ ¼

Z1
0

d�rð�ÞC�ðtÞ . (15)

After the Fourier and Laplace transformations of the convolutions (14) we get the
geometric series which can be written in a simple, closed form

~Pðk; sÞ ¼
~CðsÞ

1� ~cðk; sÞ
,

~cðk; sÞ ¼ ~pðkÞ ~cðsÞ; ~CðsÞ ¼
1� ~cðsÞ

s
, (16)

where ~f ð. . .Þ means the Fourier and/or Laplace transform of function f ð. . .Þ. We
should find now an explicit asymptotic form of the waiting-time distribution.

2.1. Scaling relation obeyed by the waiting-time distribution

It can be easily found that the average waiting-time distribution, given by the
second relation in (15) combined with (1), has an approximate form

cðtÞ 	 1�
1

N

� �Z1
0

dx
1

Nx

1

t0ðt0Þ
x exp �

t

t0ðt0Þ
x

� �
(17)

or

~cðsÞ 	 1�
1

N

� �Z1
0

dx
1

Nx

1

1þ t0ðt0Þ
xs
, (18)

where we introduced a convenient notation

x ¼
def : �

D
; N ¼

def :
exp

D
h�i

� �
; 1�

1

N
	

D
h�i

; t0 ¼ expðb0DÞ , (19)

and assumed (for simplicity) D5h�i.
Expression (18) obeys the convenient scaling relation

~cðt0sÞ ¼ N ~cðsÞ � ðN � 1Þ

Z1
0

dx
1

Nx

1

1þ t0ðt0Þ
xs

	 N ~cðsÞ � ðN � 1Þð1� t0sÞ , ð20Þ

which can be solved by assuming, as usual for an equation of this type, that the
solution is composed of the sum of two essentially different terms, i.e.,
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~cðsÞ ¼ ~csðsÞ þ
~crðsÞ, where the singular (general) term

~csðsÞ obeys the homogeneous
part of Eq. (20), and the regular (particular) one ~crðsÞ obeys the (full) homogeneous
Eq. (20).
2.2. Explicit asymptotic form of the waiting-time distribution

For jsj51 we obtain the singular term

~csðsÞ 	 �Q
lnðsÞ

lnðt0Þ

� �
ðt0sÞ

a , (21)

where the exponent a ¼ lnðNÞ= lnðt0Þ ¼ ðb0h�iÞ�1 and the log-periodic function (whose
period is equal to 1) reduces, in the lowest approximation (or zero-order in s-
variable), to the form2

Q
lnðsÞ

lnðt0Þ

� �
	 C0s ¼

1�
1

N
lnðNÞ

pa
sinðpaÞ

. (22)

The regular term (controlled by an approximate form of the inhomogeneouity in
Eq. (20)) reduces, within the linear approximation in s-variable, into the form

~crðsÞ 	 1� C1rt0s; C1r ¼

1�
1

N

1�
t0

N

. (23)

Finally, we obtain the seeked waiting-time distribution in the Laplace domain for
jsj51

~cðsÞ 	 1� C0s ðt0sÞ
a
� C1r t0 s

	
1� C0s ðt0sÞ

a for ao1 ;

1� C1rt0s for a41

8<
: ð24Þ

and in the asymptotic-time domain

cðtÞ 	

1

t0

1�
1

N
lnðNÞ

aCEulerð1þ aÞ
t

t0

� ��1�a

for ao1 ;

hti�1 exp �
t

hti

� �
for a41

8>>>>><
>>>>>:

(25)

(here hti ¼ t0C1r ) which makes it possible to consider the propagator and hence the
asymptotic mean- as well as mean-square displacement in an explicit form.3 (Note
2The derivation of the detailed form of coefficient C0s by using the Mellin transformation, is given, e.g.,

in Ref. [12].
3In the paper we do not consider the marginal case defined by the threshold a ¼ 1.
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that for the derivation of the first expression in (25) for ao1 we used relations (16),
(15), (5) and (22).)
2.3. Asymptotic form of the propagator

For jt0sj51 and jkaj51 the propagator (given by (16)) can assume the following
explicit form:

~Pðk; sÞ ¼
1

s þ ½1� ~pðkÞ�
s ~cðsÞ

1� ~cðsÞ

	

1

s þ ½1� pðkÞ�
s

C0s ðt0sÞ
a

for ao1 ;

1

s þ ½1� pðkÞ�
1

hti

for a41 ;

8>>>>>>><
>>>>>>>:

ð26Þ

where we used the explicit asymptotic form of the waiting-time distribution (24). In
the Fourier and time domain the above relation transforms still into the relatively
simple form

~Pðk; tÞ 	

Ea �
½1� pðkÞ�

C0s

t

t0

� �a
 !

for ao1 ;

exp �½1� pðkÞ�
t

hti

� �
for a41 ;

8>>>><
>>>>:

(27)

where Eað. . .Þ is the well-known Mittag–Leffler function [3]. The Fourier
transformation of the second relation in (27) into the real space gives the well-
known shifted Gaussian. The analogous transformation for ao1 is unknown in a
closed form although it can be expressed in the integral form in terms of the (non-
shifted) Gaussian and the weight given by the corresponding Fox H-function as the
integrand (for details see Ref. [3] and references therein).
2.4. Explicit asymptotic form of the first and second moments

The mean displacement. Now, we are able to obtain the general formula for the
average time-dependent displacement of the particle along the direction of the
external field. This is the essential quantity which characterizes the drift of each
particle. From (16) we obtain in the Laplace domain

~hXiðsÞ ¼ i
d

dk
~Pðk; sÞjk¼0 ¼ hxi

1

s

~cðsÞ

1� ~cðsÞ
, (28)
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where the single-hop mean displacement hxi ¼ aðpþ � p�Þ. From (28) and (24) we
obtain for jsj51

~hXiðsÞ 	 hxi
1

s

1

C0s ðt0sÞ
a
þ C1r t0s

	

hxi

C0s

1

ta0

1

saþ1
for ao1 ;

hxi

C1r

1

t0

1

s2
for a41 :

8>>>><
>>>>:

ð29Þ

From the above relation we easily obtain for the asymptotic time, i.e., for t0bt0,

hX iðtÞ 	

hxi

C0s

1

CEulerð1þ aÞ
t

t0

� �a

for ao1 ;

hxi

hti
t for a41 :

8>>><
>>>:

(30)

where CEulerð. . .Þ denotes the well-known Gamma–Euler function. Although the
time-dependence of the drift below and above the threshold a ¼ 1 differ essentially
the transition between both cases is smooth; nevertheless, we obtain for these cases
essentially different drift velocities

V ðtÞ ¼
d

dt
hX iðtÞ 	

hxi

C0s

1

CEulerðaÞ
1

t0

1

ðt=t0Þ
1�a for ao1 ;

hxi

hti
for a41 :

8>>><
>>>:

(31)

Indeed, this quantity is proportional to the transient photocurrent measured in
experiments made on amorphous materials mentioned in Section 1.

The mean-square displacement. The mean-square displacement, involving infintely
many steps of the walker or a time-dependent variance of displacement, is the main
stochastic characteristics of the diffusion process. At first, we derive this quantity in
the Laplace domain

h ~X
2
iðsÞ ¼ �

d2 ~Pðk; sÞ

dk2

����
k¼0

¼
1

s

~cðsÞ

1� ~cðsÞ
hx2i þ hxi2

~cðsÞ

1� ~cðsÞ

 !

	 hx2i
1

s

1

C0s ðt0sÞ
a
þ C1rt0s

þ hxi2
2

s

1

C0s ðt0sÞ
a
þ C1r t0s

 !2

	

hx2i

C0s

1

ta0

1

saþ1
þ

hxi

C0s

 !2
2

t2a0

1

s2aþ1
for ao1 ;

hx2i

C1r

1

t0

1

s2
þ

hxi

C1r

 !2
2

t0

1

s3
for a41 :

8>>>>>><
>>>>>>:

ð32Þ
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Next, from (32) and (30) we obtain for the asymptotic time (i.e., for t0bt0)

h ~X
2
iðtÞ � ½hX iðtÞ�2 	

hx2i

C0s

1

a
1

CEulerðaÞ
t

t0

� �a

þ
hxi

C0s

 !2
1

a
2

CEulerð2aÞ
�

1

a½CEulerðaÞ�2


 �
t

t0

� �2a
for ao1 ;

hx2i

hti
t for a41 :

8>>>>>>>>>><
>>>>>>>>>>:

(33)

As it is seen, the time-dependence of the mean-square displacement below and above
the threshold a ¼ 1 differ essentially. For ao1 the diffusion is controlled by the drift
while for the opposite case it is not.
3. Statistics of extremes

The central values and typical fluctuations are not sufficient to characterize
natural systems which exhibit rare but extreme events often dominating the long-
term behaviour. Therefore, the statistics of extrema is a classical subject of great
interest in mathematics, physics and economical and social sciences [16–18]. In
physics, extreme events have been studied in a number of fields [19] (and references
therein) including self-organized fluctuations and critical phenomena, material
fracture, disordered systems at low temperatures, and turbulence. Knowledge of
extreme event statistics is of fundamental importance to predict and estimate the risk
in a variety of natural and man-made phenomena such as earthquakes, changes in
climate conditions, floods and large movement in financial markets. A new field
where extreme statistics is of interest are complex networks [19].
3.1. General derivation

If one observes a series of L independent realizations of the same random
phenomenon (or its stochastic replica), the central question of the EVT imposes
how to characterize the maximum observed value of random variables4

xmax ¼
def :

maxfxlgl¼1;...;L. For example, the maximum value could be the deepest trap
encountered by the walker in a disordered medium (then we would have x � �, where
� is the energetic depth of the trap) or the longest mean residence time (called also the
sojourn time of the walker) in such a trap (then we would have x � t, where t is the
mean residence time).
The main goal of the EVT is to characterize xmax by determination of the

probability distribution, Pðxmax ¼ LÞ, of the maximal value xmax, where L is an
4We developed the EVT by considering continuous variables.
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arbitrary threshold. In the case of dispersive transport and diffusion we apply the
EVT to characterize, the two above-mentioned related, stochastic variables (� and t).
First, we calculate the cumulative probability distribution PðxmaxoLÞ of the

random variable xmax by noting that if the maximum xmax is smaller than L then all
xl ’s are also smaller than this threshold and vice versa. As these random variables are
independent and identically distributed (iid), we can put

PðxmaxoLÞ ¼ ½roðLÞ�L ¼ ½1� r4ðLÞ�L , (34)

by assuming the cumulative probability distribution of random variable x

roðLÞ ¼
ZL

xdown

rðxÞdx , (35)

where rðxÞdx is the probability that the random variable x can be found in the
interval x;x þ dx, and xdown is the lowest value which this variable can assume. Of
course, the second equality in expression (34) comes from the normalization of the
probability density (or distribution) rð. . .Þ where

r4ðLÞ ¼
Zxup

L

rðxÞdx , (36)

here xup is the largest value which the variable x can assume. We set here
xdown5Lpxup so that the strong inequality r4ðLÞ51 is obeyed. Therefore, the
second equality in expression (34) takes, with a good approximation, the useful form

PðxmaxoLÞ 	 expð�Lr4ðLÞÞ . (37)

In this way, we reached our second step, namely the intermediate formula useful for
further transformations

Pðxmax ¼ LÞ ¼
dPðxmaxoLÞ

dL
	 LrðLÞ expð�Lr4ðLÞÞ , (38)

where the notation rðLÞ ¼ rðx ¼ LÞ and definition (36) have been introduced.
In the third step, we relate the number of observations (L) to the rare event. The

law of large numbers tells us that one can expect to observe (typically) such events
which have a probability at least equal to 1=L. Hence, it would be surprising to
encounter an event which has a probability much smaller than 1=L. The largest event
Lmax, observed in a series of Lb1 iid random variables (which we call indeed the rare
one), is thus given by relation

r
X
ðLmaxÞ ¼

1

L
. (39)

We can call the above definition of the rare event the weak one; the stronger
definition (which seems to be even easier to interpret) could have the form

rðLmaxÞ ¼
1

L
, (40)
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which is, however, less convenient (from the technical point of view of the general
approach).5 Since now we operate with two types of max-variables our aim is to find
the probabilistic relation between them.
By combining Eqs. (37), (38) and (39) we finally find the general formula for the

searched distribution

Pðxmax ¼ LÞ 	
rðLÞ

r
X
ðLmaxÞ

exp �
r4ðLÞ

r
X
ðLmaxÞ

� �
. (41)

It is just the above formula that we use to get the Gumbel and Fréchet distributions
as well as to find a relation between them.

3.2. The Gumbel distribution versus the Fréchet one

We assume that disordered substrate (medium) is characterized by the random-
trap or valley model defined on a regular lattice. Therefore, all valleys are equally
spaced but have different (energetic) depths, f�40g, while the mountain peaks are all
at the same energy level. It is assumed that the distribution of depths is exponential

rð�Þ ¼
1

h�i
exp �

�

h�i

� �
(42)

which was done by many authors. The visible aspect of the random-trap model is its
symmetry where (in absence of a bias) there is no tendency for the carrier to drift
from any configuration of traps. Hence, the carrier hops in any possible direction
have an equal probability and the different hops between valleys are, of course,
uncorrelated. We use the above-given distribution as a basis for further
considerations.

The Gumbel distribution. As we already mentioned in Section 3.1, we can identify
the random variables x � �. Moreover, from expression (42) we find

rðLÞ ¼
1

h�i
exp �

L
h�i

� �
,

r4ðLÞ ¼ exp �
L
h�i

� �
; r

X
ðLmaxÞ ¼ exp �

Lmax

h�i

� �
, (43)

required to express formula (41) in an explicit form. Note that the third expression
(43) together with (40) gives an explicit, unique relation between the value of the rare
event Lmax and the number of observations L

Lmax

h�i
¼ lnðLÞ , (44)

which points to a slow (logarithmic) growth6 with increasing L.
5Note that for most cases analytically solvable both definitions give identical shapes of distributions of

random variables which require only rescaling by additive and/or multiplicative constants.
6For the stronger definition of the rare event (40) we obtain Lmax=h�i ¼ lnðL=h�iÞ while the Gumbel

distribution (47) of variable u defined by (46) is unaffected.



ARTICLE IN PRESS

M. Koz!owska, R. Kutner / Physica A 357 (2005) 282–304294
By using (43), formula (41) takes an intermediate form

Pð�max ¼ LÞ 	
1

h�i
exp �

L� Lmax

h�i

� �
exp � exp �

L� Lmax

h�i

� �� �
. (45)

To obtain the searched distribution in a closed, explicit form the following
transformation of variable �max or L should be made:

u ¼
def : �max � Lmax

h�i
¼

L� Lmax

h�i
) du ¼

L
h�i
. (46)

Hence, and by expression (45), we finally obtain the well-known Gumbel distribution

PðuÞ ¼ expð�uÞ expð� expð�uÞÞ (47)

of the u random variable, where we tacitly use the invariance of the probability under
the monotonic transformation of random variable (invariant measure); thus we used
the equality

Pð�max ¼ LÞdL ¼ PðuÞdu . (48)

Note that the most probable value of this distribution is u ¼ 0 which shows that,
paradoxally, the rare event Lmax is the most probable value among �max’s. On the
other hand, when u ! 1 the Gumbel distribution Pðu ! 1Þ ! expð�uÞ. Hence,
the distribution of random variable � and the analogous (although asymptotic) one
of variable �max are exponential. We can say that the exponential distribution is
asymptotically stable with respect to the ‘max’ operation.

The Fréchet distribution. Now, we are ready to answer the question concerning the
distribution of sojourn times of the walker in traps and find (by using formula (41))
the distribution of its longest values present within a given series of observations.
Then (as we mentioned at the beginning of Section 3.1) we assume that the random
variable x � t.
Accordingly, we perform as the first step the transformation

� ) tð�Þ ¼ t0ðt0Þ
�=D ,

rð�Þ ) r0ðtð�ÞÞ ¼
1

t0

a

ðt=t0Þ
aþ1 , (49)

where we set t0 ¼ expðb0DÞ, as we consider over-barrier jumps of a carrier (here D
denotes the energy unit), and the exponent

a ¼
lnðNÞ

lnðt0Þ
¼
1

b0h�i
. (50)

To derive of the second equality in (49) we used again the invariance of the
probability under the monotonic transformation of random variable (as given by the
first equation of (49)), i.e., we used the equality

r0ðtÞdt ¼ rð�Þd� . (51)

Note that the exponential transformation of the random variable leads to the

transformation of its (invariant) probability distribution from the exponential one to the
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power-law. Conversely, the logarithmic transformation of random variable leads to the

transformation of its probability distribution from the power-law to exponential ones.
From the second relation in (49) and definition (36) we can easily calculate the

probability

r04ðLÞ ¼
1

ðL=t0Þ
a . (52)

and hence

r0
X
ðLmaxÞ ¼

1

ðLmax=t0Þ
a . (53)

necessary to obtain probability distribution (41) in an explicit form.7 Note that by
using Eq. (39) we obtain Lmax as a power-law function of L8

Lmax

t0
¼ L1=a . (54)

It should be noted that the same result is obtained if we use the rare event of energy
depth of traps (44) as a power (divided by D) of t0 which gives self-consistency of the
approach.
By introducing formulae (52) and (53) into (41) we obtain after straightforward

calculations

Pðtmax ¼ LÞ ¼
1

Lmax

a

ðL=LmaxÞ
aþ1 expð�1=ðL=LmaxÞ

a
Þ . (55)

Hence, we finally obtain the Fréchet distribution

PðuÞ ¼
a

uaþ1 exp �
1

ua

� �
(56)

of u ¼
def :L=Lmax variable, where as usual we used the invariance of the probability

under the monotonic transformation of random variable, i.e., we used the equality

Pðtmax ¼ LÞdL ¼ PðuÞdu . (57)

It can be easily found that the most probable value of tmax is proportional to the
value of the rare event Lmax.

9

As it is seen, for ub1 the Fréchet distribution is the power-law of exponent 1þ a
with the power-law correction to the scaling of exponent a since

PðuÞ 	
a

uaþ1 1�
1

ua

� �
. (58)

Analogously to the Gumbel distribution, we can again say that the power-law tail is
asymptotically stable with respect to the ‘max’ operation.
7The L variable used here relates to t and not � one.
8By using the stronger definition (40) of the rare event one gets a related scaling law

Lmax=t0 ¼ ðL=ðt0aÞÞ
1=ðaþ1Þ.

9More precisely, tmax ¼ ða=ð1þ aÞÞ1=aLmax and only for a ! 1 variable tmax ¼ Lmax.
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Relation between the Gumbel and Fréchet distributions. The above cosiderations
show that, when we made the transformation from the random variable � to its
exponential representation tð�Þ (cf. the first relation in (49)) as a result we
transformed the Gumbel to the Fréchet distributions. In other words, the Gumbel
distribution characterizes an additive stochastic process while the multiplicative one
is characterized by the Fréchet distribution (where relation between both processes is
given by the log operation).
3.3. Pictorial analysis of rank ordering

The main goal of this section is to show the decisive role of rare events in
hierarchical continuous-time random walk (HCTRW) for asymptotic many time
steps. To make our analysis more convenient we treat variable �=D as a discrete one
which is possible as D can be always assumed to be sufficiently small (i.e., by
assuming D5h�i). Again, we assume that x � t is our random variable distributed
according to the power-law defined by the second expression in (49). Now, we
introduce the discrete notation j ¼ �=D; j ¼ 0; 1; 2; . . . ; and define N ¼ expðD=h�iÞ;
hence, with a good approximation, D=h�i 	 1� ð1=NÞ, which makes the transforma-
tion to the discrete distribution

rð�Þ ) r00ðjÞ ¼ 1�
1

N

� �
1

Nj
; j ¼ 0; 1; 2; . . . , (59)

and the definition of the rare event

r00ðjmaxÞ ¼ 1�
1

N

� �
1

Njmax
, (60)

clear.10

Hierarchical waiting-time distribution in a discrete representation. Note that our
hierarchical waiting-time distribution, cðtÞ (which is the basic function of the
HCTRW) assumes, within the above-introduced discrete representation, the
following useful form:

cðtÞ ¼
X1
j¼0

r00ðjÞcjðtÞ , (61)

where the conditional Poisson waiting-time distribution

cjðtÞ ¼
1

t0ðt0Þ
j
exp �

t

t0ðt0Þ
j

� �
, (62)

and r00ðjÞ is the weight which plays a fundamental role in these considerations. (Of
course, this discretized cðtÞ conserves the normalization and scaling). For example,
10In the above derivation we simply exchanged dð�=DÞ for 1. Note that the distribution has still an
exponential form and its normalization is conserved, as it should be.
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the sojourn time can be easily calculated by using the weight

hti ¼
X1
j¼0

r00ðjÞhtij ; htij ¼ tðjÞ ¼
Z1
0

tcjðtÞdt ¼ t0ðt0Þ
j . (63)

Note that the partial residence time htij ; j ¼ 0; 1; 2; . . ., is always finite but the total
residence time is finite only when a41 and equal to

hti ¼ t0
1�
1

N

1�
t
N

; (64)

otherwise it diverges which fully agrees with the result shown in Section 2.2. Hence,
to obtain hti finite the weight r00ðjÞ must converge sufficiently quickly with the
increase of variable j.
It is decisive for our present considerations that the ratio of successive weights

r00ðj þ 1Þ
r00ðjÞ

¼
1

N
, (65)

be already j independent. This means that in each single step the residence of a carrier
in a trap with sojourn time t0ðt0Þ

j or in state (or hierarchy level) j isN times more likely
than those of the next larger order j þ 1. Hence, one expects (on the average) that the
walker will visit Nj traps having the shortest sojourn time t0 before he encounters a
sufficiently deep trap with a mean residence time tðjÞ ¼ t0ðt0Þ

j ; j ¼ 1; 2; . . . :
Practical aims. In Fig. 1 the schematic illustration of this essential observation is

given in the form of one-dimensional hierarchically ordered time-intervals or mean
residence (sojourn) times in the corresponding traps. Here,
(i)
 we neglect (due to the Bernoulli law of large numbers) the fluctuation of the
number of hierarchy levels as well as their succession (as we calculate the
summarized quantities), and
(ii)
 plot only the length of the average time-intervals htij ; j ¼ 0; 1; 2; . . . :
As it is seen, we made the transformation from the stochastic hierarchy to its
deterministic representation. This makes it easier to realize our practical aims,
namely, to discuss
(1)
 the rank ordering of residence times, and

(2)
 the finite-size effect as scaling of characteristic quantities with the size of the
hierarchy.
From Fig. 1 one gets the useful relation between the size of hierarchy L and the
number of its levels jðb1 and t0; N41Þ,

LðjÞ ¼ Nj þ Nj�1 þ � � � þ N1 þ N0 	
1

1� 1=N
Nj . (66)
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Hierarchical ordering of mean residence times

Fig. 1. The part of the stochastic hierarchy of the carrier residence times in random traps presented in the

form of ordered two-dimensional zig-zag intervals (the art-view) where the length of each interval is given

by tðjÞ ¼ t0ðt0Þ
j ; j ¼ 0; 1; 2; . . . :

M. Koz!owska, R. Kutner / Physica A 357 (2005) 282–304298
The quantity LðjÞ is also the total number of steps after which the walker
encountered the trap with sojourn time t0ðt0Þ

j .
Now, we can set the rank n ¼ LðjÞ and look for the corresponding sojourn time as

a function of n ranked according to its decreasing amplitude. Hence, we can write the
one-to-one correspondence in the form: n ¼ LðjÞ3ðt0Þjmax�j , where jmax is related to
the total number of observations L; by using relation (66) we can write

L ¼ LðjmaxÞ 	
1

1� 1=N
Njmax . (67)

From expressions (66) and (67) we calculate exponent jmax � j and by introducing it
into the formula for n given the above, we finally find the searched rank dependence

tðnÞ ¼ t0ðt0Þ
jmax�j

¼ t0
L

n

� �1=a
, (68)

which is (for large L) the power-law with exponent �1=a. In Fig. 2 we presented this
dependence, for example, for a ¼ 0:792 (or N ¼ 3 and t0 ¼ 4) and L ¼ 9841. Eq. (68)
shows that hierarchically organized encountered random variables lead to the
power-law rank of their amplitudes. Speaking more precisely, we obtained a kind
of descending devil’s staircase whose average slope is asymptotically given by
exponent �1=a.
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Fig. 2. The rank ordering of residence times and depths of traps described by the power-law (function F 1,

where L%

n is given by Eq. (83)) and logarithmic (F2, where L%

n is given by Eq. (82)) dependences,

respectively.
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Empirical verification of the tail. The rank relation (68) is very useful in identifying
the nature of the tails of probability distributions. The single-step procedure is as
follows: one sorts in decreasing order the series of observed random variables (for
example, t’s) and one simply draws Ln (here equil to tðnÞ) as a function of n. If
variables are power-law distributed, this graph should be a straight line in a log–log
plot, with a slope given by exponent �1=a (as shown, e.g., by expression (68)).

Decisive role of rare events. Our second aim is realized in connection with rare
events. Now, we can prove that the (average) total time for which carrier stays in the
traps encountered during L steps obeys the same scaling law with L as a rare event.
First, from (59) and (60) we easily obtain

r00
X
ðLÞ ¼

X1
j¼L

r00ðjÞ ¼
1

NL ) r00
X
ðLmaxÞ ¼

1

NLmax
¼
1

L

� Lmax ¼
lnðLÞ

lnðNÞ
, ð69Þ

where the second relation defines the rare event in agreement with weaker definition
(40). Hence, we have

ðt0ÞLmax ¼ L1=a . (70)



ARTICLE IN PRESS

M. Koz!owska, R. Kutner / Physica A 357 (2005) 282–304300
By using relations (67) and (60), we find that just jmax is the rare event in the stronger
sense given by (40); thus,

ðt0Þjmax ¼ 1�
1

N

� �
L

� �1=a
, (71)

which means that the difference Lmax � jmax ¼ lnN= lnð1� 1=NÞ is an unimportant
constant.
The total time mentioned above is given by the following sum:

t

t0
	 N0ðt0Þjmax þ N1ðt0Þjmax�1 þ � � � þ Njmax�1ðt0Þ1 þ Njmax ðt0Þ0

¼ Njmax

t0

N

� �jmaxþ1

� 1

t0

N
� 1

	

1

1�
N

t0

ðt0Þjmax for ao1 ;

1

1�
t0

N

Njmax for a41 :

8>>>>>>><
>>>>>>>:

ð72Þ

By introducing Eqs. (71) and (67) into (72) we obtain the important relations

t

t0
	

1�
1

N

� �1=a
1�

N

t0

L1=a for ao1 ;

1�
1

N

1�
t0

N

L for a41 :

8>>>>>>>>>>><
>>>>>>>>>>>:

(73)

Note that both relations (72) and (73) distinguish two essentially different ranges of
exponent a (the marginal case a ¼ 1 is not considered here). For the first range (ao1)
we found t proportional to the rare event, i.e., it scales with the number of steps L in
the same manner as the rare event; this is the main result of this section. The
proportionality coefficient is called the (dimensionless) fractional residence time. For
the opposite, regular case the analogous coefficient is simply the residence time given
above (cf. Eq. (64) and second relation (33)).
Now, it is easy to calculate the dependence of the mean-time, hti, used by the

walker for a single step, on L. For the asymptotic long L one can write the following
average calculated along the L-step trajectory:

hti

t0
	

Njmax

L
ðt0Þ0 þ

Njmax�1

L
ðt0Þ1 þ � � � þ

N0

L
ðt0Þjmax
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ð1�
1

N
Þ
1=a

1�
N

t0

Lð1=aÞ�1 for ao1 ;

1�
1

N

1�
t0

N

for a41 :

8>>>>>>>>>><
>>>>>>>>>>:

ð74Þ

Of course, this result can be obtained straightforward from expression (73) by
deviding it simply by L.

Additional properties of rare events. It is useful to have a list of several
simple properties of the rare events. The first question which we can easily
answer is: how many potential rare events, lmax, typically appear within Lðb1Þ
events?11 From (66) we immediately get (exchanging simply j for lmax):
lmax 	

lnðLðlmaxÞÞ

lnðNÞ
.

The second question is: how the distance between the successive rare events
increases with L? Again from (66) we obtain

DLðjÞ ¼ Lðj þ 1Þ � LðjÞ ¼ Njþ1 	 ðN � 1ÞLðjÞ ; (75)

i.e., this distance increases linearly with L.
The third question concerns the ratio of the value of the potential rare events and

their difference. Directly from Fig. 1 we find that this ratio is simply equal to t0

independent of L while their difference

t0½ðt0Þ
lmaxþ1 � ðt0Þlmax � 	 t0ðt0 � 1ÞL1=a , (76)

scales with L as a single rare event.

3.4. Rank ordering of random variables: general approach

In this section we ask a more general question than in Section 3.1 although we
consider again a series of L independent observations of random, identically
distributed phenomena. We can rank variables xl ; l ¼ 1; 2; . . . ;L, in decreasing
order of their amplitude. We denote by Ln the nth encountered value among these
random variables. Hence, for example, L1 ¼ xmax and LL ¼ xmin (i.e., the minimal
value of the variables xl).
As the first step we are interested in the probability distribution PnðLnÞ of the

random variable Ln. We can write the exact formula

PnðLnÞ ¼ LCn�1
L�1rðx ¼ LnÞ½r4ðLnÞ�

n�1½roðLnÞ�
L�n , (77)
11The potential rare event is such an event which is the maximal one but within the given number of

steps smaller than L.
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where Cn�1
L�1 denotes the combinatorial (or Newton binomial) factor. The product

LCn�1
L�1 gives the total number of ways to set Ln within all possible configurations of

L � 1 which remain random variables of the series. Note that for n ¼ 1 the above
formula simplifies to expression (38), as it is expected to be.
In the second step we find the most probable value of L%

n (for a given rank n). By
differentiating probability distribution (77) and setting it equal to zero we obtain the
formula

1

L

drðLnÞ

dLn

r4ðLnÞroðLnÞ �
n � 1

L
½rðLnÞ�

2roðLnÞ

þ 1�
n

L

� �
½rðLnÞ�

2r4ðLnÞ ¼ 0 ð78Þ

useful for further considerations particularly when n; L ! 1 with fixed ratio n=L.
Then the first term in (78) vanishes and we obtain the formula

r4ðL%

n Þ 	
n

L
(79)

which generalizes (39).12

To complete information about distribution PnðLnÞ in the vicinity of L
%

n we
calculate, as our third step, its width sn. We find sn by using the saddle-point (or
Gaussian) approximation from the second derivative of lnPnðLnÞ calculated at L

%

n

since in this approximation one can use

d2

dL2n
lnPnðLnÞ

�����
L%

n

¼ �
1

s2n
. (80)

Hence, and from (77), we obtain immediately the width of the probability
distribution PnðLnÞ in the form

sn 	
1ffiffiffiffi
L

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

L
1�

n

L

� �r
rðL%

n Þ
, (81)

which is more and more sharply peaked around its most probable value L%

n as L

tends to infinity (with fixed ratio n=L).
Two useful cases. Let us assume the case of exponential tail (given in Section 3.2

by Eq. (42)). By applying the second relation of Eq. (43) to Eq. (78) we obtain
that

L%

n 	 h�i ln
L

n

� �
. (82)
12We used here the normalization condition roðLnÞ ¼ 1� r4ðLnÞ which is valid for the continuous

random variable.
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In the case of the power-law tail (given again in Section 3.2 by the second equation
in (49)) we obtain

L%

n 	 t0
L

n

� �1=a
, (83)

which was already derived in Section 3.3 by the simplified approach (of course, L%

n

present in the above formula is equivalent to tðnÞ in formula (68)).
In Fig. 2 we compare both the above-derived results in the log–log plot (where we

used L ¼ 9841 and a ¼ 0:792). For the exponential distribution we observe an
effective slope which is smaller and smaller as the rank variable n increases, i.e., the
remarkable difference between both rank plots is well seen.

3.5. Concluding remarks

In the paper we present, in the context of amorphous materials, two essentially
different types of transport and diffusion: above the temperature threshold 1=b0 ¼
h�i they are regular (normal) while below they are anomalous (i.e., non-Gaussian).
We discuss, for these two regions, the asymptotic form of the spatial–temporal
propagator, the time-dependent drift and the variance emphasizing their subdiffusive
character. Moreover, we were able to show the decisive role of rare events in these
anomalous types of transport and diffusion by matching the biased hierarchical
continuous-time random flight model and the extreme value theory. We hope that
this approach makes possible a deeper understanding of the transport and diffusion
phenomena.
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