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a b s t r a c t

Herein, we applied statistical physics to study incomes of three (low-, medium- and high-
income) society classes instead of the two (low- and medium-income) classes studied
so far. In the frame of the threshold nonlinear Langevin dynamics and its threshold
Fokker–Planck counterpart, we derived a unified formula for description of income of all
society classes, by way of example, of those of the European Union in years 2006 and 2008.
Hence, the formula is more general than the well known formula of Yakovenko et al.. That
is, our formula well describes not only two regions but simultaneously the third region in
the plot of the complementary cumulative distribution function vs. an annual household
income. Furthermore, the known stylised facts concerning this income are well described
by our formula. Namely, the formula provides the Boltzmann–Gibbs income distribution
function for the low-income society class and the weak Pareto law for themedium-income
society class, as expected. Importantly, it predicts (to satisfactory approximation) the Zipf
law for the high-income society class. Moreover, the region of medium-income society
class is nowdistinctly reduced because the bottomof high-income society class is distinctly
lowered. This reduction made, in fact, the medium-income society class an intermediate-
income society class.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

For over two decades, physics oriented approaches have widely been developed to explain different economic processes
[1–7] (and Refs. therein). Those approaches aim at formulating well fitted unbiased indicators of social and economic
phenomena. One of their key issues is the income of society analysis using methods of statistical physics. The main goal
of this economic issue is to unravel and describe mechanisms of societies’ enrichment or impoverishment.

The first successful attempt in this socio-economic field was made by the legendary economist and sociologist Vilfredo
Pareto [7–9]. He demonstrated that the distribution functions of individual incomes in different countries within stable
economy are universal beingmanifested by a power law. This law is called theweak Pareto law. He emphasised that this law
could not resemble the distribution functions obtained if the gain and accumulation of income were random. As a possible
origin of this law, Pareto indicated a self-similarity structure of societies.

Pareto’s economic discoveries initiated attempts of analytical descriptions of incomes of the societies and inspired an
avalanche of related researchworks [2,3,5–7,10–24]. Among them, particularly significant are those of the economist Robert
Gibrat [7,10,11]. He found that the complementary cumulative distribution function of the Pareto distribution is insufficient
to describe empirical data within the whole range of the income. Trying to find a functional form that could account for
these data, he proposed a rule called the Rule of Proportionate Growth [10,11] (see below for details).
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Furthermore, the income of societies was analysed by David Champernowne, who constructed a stochastic model
simulating the Pareto power law [12] and also by Benoit Mandelbrot who described several useful properties of random
variables subject to the Pareto distribution [8,9].

In the recent decade, a large number of studies were performed aiming at construction ofmodels, which (to some extent)
would well replicate the observed complementary cumulative distribution functions of individual incomes. Among them,
the most significant seems to be the Clementi–Matteo–Gallegati–Kaniadakis approach [17], the Generalised Lotka–Volterra
Model [5–7], the Boltzmann–Gibbs law [13–16], and the Yakovenko et al. model [2,3]. Very recently, a mathematical model
similar to that of Yakovenko et al. has been developed [21]. It involves complex economic justification for microscopic
stochastic dynamics ofwealth. However, none of the above attempts to find an analytical description of the income structure
solves the principal challenges, which concern:

(i) the description of the annual household incomes of all society classes (i.e. the low-, medium-, and high-income society
classes) by a single unified formula and

(ii) the problem regarding corresponding complete microscopic (microeconomic) mechanism responsible for the income
structure and dynamics.
In our considerations presented herein, we used Boltzmann–Gibbs law and Yakovenko et al. model to derive a uniform
analytical formula describing income of all three society classes.

2. Extended Yakovenko et al. model

In accordwith an effort outlined above,we compared the empirical data of the annual household incomes in the European
Union (EU), including Norway and Iceland, with predictions of our theoretical approach proposed herein. This approach is
directly inspired by the Yakovenko et al. model. By using the same assumptions, however, we generalised this model to
solve the principal challenges (i) and (ii) indicated above.

We used data records from the Eurostat Survey on Income and Living Conditions (EU-SILC) [25], by way of example for
years 2006 and 2008 [26,27] (containing around 150 and 200 thousand empirical data points, respectively). However, these
records contain (as all other records) only few data points concerning the high-income society class, i.e. the third region in
the plot of the complementary cumulative probability distribution function vs. annual household income. To consider the
high-income society class systematically, we additionally analysed the effective income of billionaires in the EU by using
the Forbes ‘The World’s Billionaires’ rank [28]. The term ‘billionaire’ used herein is equivalent (as in the US terminology) to
the term ‘multimillionaire’ used in the European terminology. Since we consider wealth and income of billionaires in euros,
we recalculated US dollars to euros by using the mean exchange rate at the day of construction of the Forbes ‘The World’s
Billionaires’ rank.

We were able to consider incomes of three society classes thanks to the following procedure.

(i) Firstly, we selected EU billionaires’ wealth from the Forbes ‘The World’s Billionaires’ rank, for instance, for four
successive years 2005–2008.

(ii) Secondly, we calculated the corresponding differences between billionaires’ wealth for the successive years. We
assumed that their incomes are, in fact, proportional to these differences. For instance, we calculated the billionaire
incomes for year 2006 by taking the difference between their wealth in years 2006 and 2005. We made it analogously
for year 2008. However, we took into account only billionaires who gained effective incomes (neglecting those, who
suffered from income losses).

(iii) Subsequently, having so calculated incomes for the high-income society class, we joined them (separately for years
2006 and 2008) with the corresponding EU-SILC datasets. By using so completed datasets, we then constructed the
initial empirical complementary cumulative distribution function for years 2006 and 2008. For that, we used the well
known Weibull recipe (see below for details). However, this direct approach shows a wide gap of incomes inside the
high-income society class resulting in a horizontal line of the complementary cumulative distribution function. This
gap separates the first segment belonging to the high-income society class, consisting of all data points taken from the
EU-SILC dataset (only 8 for 2006 and 6 for 2008), from the second segment, consisting of remaining data points (76 for
2006 and 96 for 2008), which also belong to the high-income society class but are taken from the Forbes dataset.

(iv) In the final step, we eliminated this gap by adopting the assumption that the empirical complementary cumulative
distribution functions (concerning the whole society) have no horizontal segments. That is, we assumed that statistics
of incomes is a continuous function of income. Hence, we were forced to multiply the billionaire incomes from Forbes
dataset by the properly chosen common proportionality factor. This factor was equal to 1.0 × 10−2 for both years,
as we assumed the requirement of full overlap of the first (above mentioned) segment by the second segment. This
assumption leads to a unique solution (up to some negligible statistical error) for this proportionality factor. We found
that this factor was only a slowly-varying function of time (or years).

Hence, we received the data record containing already a sufficient number of data points for all society classes, including
the high-income society class. Although the Forbes empirical data only roughly estimate the wealth of billionaires, they
quite well establish the billionaires’ rank, thus sufficiently justifying our approach. This is because our purpose is to classify
billionaires to concrete universality class rather than finding their total incomes. Our procedure of linking data from two
different bases does not violate this universality class.
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The basic tool of our analysis is an empirical complementary cumulative distribution function being typical in this
context. We calculated it according to the standard two-step procedure. For that, first, the income empirical data were
ordered according to their rank, i.e. from incomes of the richest households to those of the poorest. Next, in accordance
with the well known Weibull formula [29,30], we calculated the ratio l

n+1 where l is the position of the household in the
rank and n is the size of the empirical data record. This ratio directly determines the required fraction of households of the
income higher than that related to a given household position l in the rank. The complementary cumulative distribution
function obtained that way is sufficiently stable. Furthermore, it does not reduce the size of the output compared to that of
the original empirical data record.

2.1. Hint to the Yakovenko et al. model

Let m be an influx of income per unit time to a given household. We treat m as a variable obeying stochastic dynamics.
Then, we can describe its time evolution by using the nonlinear Langevin equation [2,3,33]:

dm
dt

= −A(m) + C(m) η(t). (1)

Here, A(m) is a drift term and η(t) is a white noise, where the coefficient C(m) is its m-dependent amplitude. As we prove
below, already white noise is herein sufficient to produce two different power-laws. Obviously, generalisation with respect
to power-law noise is also possible and very promising [31,32]. Noteworthy, jump effects are important in the financial and
social phenomena because they naturally produce power-law tails. However, correspondence between Itô and Stratonovich
representations is then no longer trivial.

Notably, the above nonlinear stochastic dynamics equation is equivalent to the following Fokker–Planck (continuity)
equation for the probability distribution function [33]:

∂

∂t
P(m, t) = −

∂

∂m
J(m, t), (2)

where the flux density of probability (in the Itô representation [33]) is

J(m, t) = −A(m)P(m, t) −
∂

∂m
[B(m)P(m, t)] . (3)

Here, B(m) = C2(m)/2 while P(m, t) is the temporal income distribution function. In general, functions A(m) and B(m) can
be additionally determined by the first and second moment of the income change per unit time, respectively, only if these
moments exist.

The equilibrium solution of Eq. (2), Peq, defined by vanishing of J(m, t) [33], takes the form:

Peq(m) =
const
B(m)

exp


−

 m

minit

A(m′)

B(m′)
dm′


(4)

whereminit is the lowest household income and const is a normalisation factor. Fortunately, both Itô and Stratonovich
representations [33] give almost the same equilibrium distribution function. These representations differ only by some

preexponential factor.
Following the Yakovenko et al. model [2,3], we can assume that changes of income of the low-income society class are

independent of the previous income gained. This assumption is justified because the income of households belonging to
this class mainly takes the form of wages and salaries. The stochastic process associated with the mechanism of this kind is
called the additive stochastic process. In this case, coefficients A(m) and B(m) take, obviously, the form of positive constants

A(m) = A0, B(m) = B0. (5)

This choice of coefficients leads to the Boltzmann–Gibbs law with the exponential complementary cumulative distribution
function [2,3,13–16]:

Π(m) =


∞

m
Peq(m′) dm′

= exp


−
m − minit

T


. (6)

In Eq. (6), distribution function is characterised by a single parameter, i.e. an income temperature T = B0/A0, which can be
interpreted in this case as an average income per household.

For the medium- and high-income society classes, we can assume (again following Yakovenko et al. [2,3]) that changes
of income are proportional to the income gained so far. This assumption is also justified because profits go to the medium-
and high-income society classes mainly through investments and capital gains. This type of stochastic process is called the
multiplicative stochastic process. Hence, coefficients A(m) and B(m) obey the proportionality principle of Gibrat [10,11]:

A(m) = am, B(m) = bm2
⇔ C(m) =

√
2 bm, (7)
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where a and b are positive parameters. By using the equilibrium distribution function, Eq. (4), we arrive in this case to the
weak Pareto law with the complementary cumulative distribution function [2,3,7]:

Π(m) =


∞

m
Peq(m′) dm′

=


m
msp

−α

. (8)

Here,msp is a scaling factor (depending on a, b, and const) while α = 1 + a/b is the Pareto exponent. The ratio of the a to b
parameters can directly be determined from the empirical data expressed in the log–log plot (by using their slopes).

As Yakovenko et al. have already found [2,3], the coexistence of additive and multiplicative stochastic processes is
allowed. By assuming that these processes are uncorrelated, we get

A(m) = A0 + am,

B(m) = B0 + bm2
= b(m2

0 + m2), (9)

wherem2
0 = B0/b. This consideration leads (togetherwith Eq. (4)) to a significant Yakovenko et al.modelwith the probability

distribution function given by

Peq(m) = const
e−(m0/T ) arctan(m/m0)

[1 + (m/m0)2](α+1)/2
(10)

where parameters α and T are defined above. For m ≪ m0, Eq. (10) becomes the Boltzmann–Gibbs law while for m ≫ m0
it becomes the weak Pareto law. Notably, the m0 parameter is the crossover income between ranges of additive and
multiplicative processes.

2.2. Our extension

Based on the Yakovenko et al. Eq. (10), the complementary cumulative distribution function can be used to describe
income of only low- and medium-income society classes. However, it does not capture that of the most intriguing high-
income society class. Therefore, the goal of our present work is to derive from Eq. (4) such a distribution function, which
would cover all three ranges of the empirical data records, i.e. low-, medium-, and high-income classes of the society
(including also two short intermediate regions between them).

The high-income society class is mainly that composed of the company owners. Hence, besides the weak Pareto law, we
expect that their household incomes obey (to a good approximation) the Zipf law [34–36] (the Zipf law is the Pareto law
with the exponent α = 1). In order to derive the Zipf law from Eq. (4), we have to provide, therefore, functions A(m) and
B(m) in the threshold form:

A(m) =


A<(m) = A0 + am, ifm < m1
A≥(m) = A′

0 + a′m, ifm ≥ m1
(11)

B(m) =


B<(m) = B0 + bm2

= b(m2
0 + m2) ifm < m1

B≥(m) = B′

0 + b′m2
= b′(m′2

0 + m2) ifm ≥ m1
(12)

where m2
0 = B0/b and m′2

0 = B′

0/b
′. The threshold parameter m1 can be interpreted as a crossover income between

the medium- and high-income society classes. Remarkably, both income crossovers m0 and m1(≥ m0) are exogenous
parameters. They should be determined from the dependence of the empirical complementary cumulative distribution
function on variablem because both crossovers are sufficiently distinct (see below for details).

Apparently, we assumed above that the formalism of the income change is the same for thewhole society. This formalism
is expressed by the threshold nonlinear Langevin equation where particular dynamics distinguishes the range of the high-
income society class from those of the others.

For protection of the equilibrium distribution function against discontinuity at the thresholdm1 (which means adoption
of the continuity principle of the equilibrium distribution function of household incomes being a kind of Ockham’s razor
principle), the following requirement should be satisfied:

P<
eq(m = m1) = P≥

eq(m = m1) (13)

where

P<
eq(m) =

const
B<(m)

exp


−

 m(<m1)

minit

A<(m′)

B<(m′)
dm′


, (14)

and

P≥

eq(m) =
const
B≥(m)

exp


−

 m(≥m1)

minit

A(m′)

B(m′)
dm′


=

const
B≥(m)

exp


−

 m1

minit

A<(m′)

B<(m′)
dm′


exp


−

 m(≥m1)

m1

A≥(m′)

B≥(m′)
dm′


. (15)
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By substituting Eqs. (14) and (15) into Eq. (13), we directly obtain

B<(m = m1) = B≥(m = m1)

⇔ B0 + bm2
1 = B′

0 + b′m2
1. (16)

To assure that the interpretation of the parameterm′

0 is consistent with the income crossoverm0, we further put

m′

0 = m0 ⇔
B0

b
=

B′

0

b′
. (17)

Moreover, in accordance with Eq. (17), we make even more rigorous assumptions

B′

0 = B0 and b′
= b. (18)

Subsequently, by substituting Eqs. (11) and (12) into Eqs. (14) and (15), we finally get

Peq(m) =


c ′

exp (−(m0/T ) arctan(m/m0))

[1 + (m/m0)2](α+1)/2
, ifm < m1

c ′′
exp (−(m0/T1) arctan(m/m0))

[1 + (m/m0)2](α1+1)/2
, ifm ≥ m1

(19)

where α1 = 1+a′/b and T1 = B0/A′

0 while c ′ and c ′′ are mutually related constants. These constants are proportional to the
normalisation factor const . Besides, constant c ′ depends onminit, m0, T , and α while c ′′ additionally depends on T1, m1, and
α1. Apparently, the number of free (effective) parameters driving the two-branch distribution function, Eq. (19), is reduced
because this function depends only on the ratio of the initial parameters defining the Langevin dynamics (1).

For m1 ≫ m0, the interpretation of the distribution function, Eq. (19), is self-consistent, as required, because the two
power-law regimes are well defined. Then, for instance form ≫ m0, the second branch in Eq. (19) becomes the power-law
dependence driven by the Pareto exponent α1 different (in general) from α.

Importantly, our analysis indicates that the existence of the third income region is already allowed by theory. We are
following this indication below.

3. Results and discussion

In principle, we are ready to compare the theoretical complementary cumulative distribution function based on our
probability distribution function Peq(m), given by Eq. (19), with the empirical data for the whole income range. However,
the analytical form of this theoretical complementary cumulative distribution function is unknown in the closed explicit
form. Therefore, we calculate it numerically. The key technical question arises on how to fit this complicated theoretical
function to the empirical data. The fitting procedure consists of three steps as, fortunately, all parameters are to be found
(in principle) by using independent fitting routines, as follows.

In the initial step, we found rough (more or less) approximated values of crossovers m0 and m1 directly from the plot
of the empirical complementary cumulative distribution function (or empirical data). Thus, uncertainty of the m0 and m1
parameters did not exceed 10%, which was sufficiently accurate. Moreover, we took the exact value of the parameter minit
as the first point in the record of the empirical data.

Secondly, we determined the temperature T value by fitting the Boltzmann–Gibbs formula, Eq. (6), to the corresponding
empirical data in the range extending from minit to m0 (both found in the initial step). Notably, we assumed that this
formula could be characterised by a single temperature value since the society as a whole was considered to be in (partial)
equilibrium during the whole fiscal year. That is, we further put T1 = T ⇔ A′

0 = A0.
At the third step, we determined exponents α and α1 by separately fitting the weak Pareto law to the empirical data for

the medium- and high-income society classes, respectively.
The results obtained in these three steps are correspondingly presented in Figs. 1 and 2, mainly in the log–log scale (only

in Fig. 1 the inserted plot is presented in the log–linear scale).
The plot in Fig. 1 shows the complementary cumulative exponential distribution function, i.e. the Boltzmann–Gibbs law,

Eq. (6), which quitewell describes the EU low-income society class. This finding significantly supports universal applicability
of the Boltzmann–Gibbs law in economy.

Subsequently, the plot in Fig. 2 was constructed. It quite well describes the EU medium-income society class by the
weak Pareto law. Apparently, by joining the Forbes empirical database concerning an effective income of billionaires with
the EU-SILC database, we found that the Pareto (effective, nonuniversal) exponent increased from α = 2.28 ± 0.01 to
α = 2.902 ± 0.002. This result defines the range of Pareto exponents. This range covers, e.g. the exponent α = 2.67
obtained very recently for themedium-income society class in Romania for 2008 by considering a voluminous social security
database [37]. However, this database contains only empirical data for low- and medium-income society class (in our
terminology). In principle, it would also be possible to join this voluminous database with the Forbes corresponding dataset
if Romania billionaires are present asmembers of the Forbes rank. As a result of our joining, the range of themedium-income
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Fig. 1. Fit of the (exponential) Boltzmann–Gibbs law, Eq. (6), (solid line) to empirical data (dots) of the EU low-income society class for year 2008 [27,28]
in the log–log scale, for parameters minit = 0.01 EUR, m0 = 1.40 × 105

± 0.14 × 105 EUR and T = 34902 ± 3. The inset shows the fit in the log–linear
scale.

Fig. 2. Curves 1 and 2: the fit of the weak Pareto law, Eq. (8), (solid line) to empirical data (dots) of the EU medium-income society class for year 2008,
for parameters m0 = 1.40 × 105

± 0.14 × 105 EUR, m1 = 4.0 × 105
± 0.4 × 105 EUR and α = 2.902 ± 0.002 if the Forbes database is included (curve

2) or α = 2.28 ± 0.01 if the Forbes database is not included (curve 1). Curve 3: the fit of the weak Pareto law, Eq. (8), to empirical data (dots) of the EU
high-income society class for year 2008, for parameter α1 = 0.79 ± 0.01 [27,28].

society class becamemuchnarrower and shifted to incomes reducedbyoneorder ofmagnitude. Themedium-income society
class is so sensitive to the size of the high-income society class as the former contains only nomore than 3% of all households.

These results are significant as they demonstrate a crucial role of two income society classes in the society structure, that
is the low- and the high-income society classes.

Remarkably, we fitted again the weak Pareto law (8) to the so completed empirical data by taking into account only the
high-income society class (see plot in Fig. 2). Again, this class is well described by the weak Pareto law, however, driven
by the exponent α1 slightly lower than 1.0 (cf. caption to Fig. 2). This result was expected, as the high-income households
belonging to the high-income society class are usually the owners of companies, whose profits are described, indeed, by the
Zipf law.

Importantly, a power-law distribution reveals special property for exponent α1 ≤ 1. That is, the first and higher mo-
ments (here moments of income) diverge. This means that the proper approach should apply quantiles (which are always
finite [38]) instead of expectation values. For instance, the median should be used instead of the mean value. Anyway, the
moment estimates are always finite and can be calculated directly from the empirical data. Moreover, there is no charac-
teristic (physical) scale in the high-income society class as the mean value diverges. That is, the (hierarchical, self-similar
in a probabilistic sense) income structure of the high-income society class is scale free making all levels of the structure
equivalent. In other words, the same dynamical rules apply across the entire high-income society class independently of the
particular income of different households (belonging to the high-income society class) [35].

To complete our analysis, we calculated the Pareto exponent for the high-income society class by using an alternative
approach. We consider the rank of the difference between the wealth of billionaires in successive years (here year 2008 and
2007 as well as 2006 and 2005). These ranks, i.e. straight lines in the log–log scale, are plotted in Fig. 3. The slopes of these
lines (equal to −αrank) were calculated using a fitting routine. The inverse of αrank gives the Pareto exponent αPareto.

Apparently, our calculation of Pareto exponent by using two independent methods gives almost the same results
(α1 = 0.79±0.01 and αPareto = 0.82±0.02) for year 2008, as expected [23,35], suggesting that thesemethods aremutually
consistent. We show below that the analogous conclusion is fulfilled also for year 2006 (cf. Figs. 3 and 4) as exponents α1
and αPareto are almost equal (α1 = 0.90 ± 0.04 and αPareto = 0.93 ± 0.04).

Hence, we have already obtained all values required by the extended Yakovenko et al. formula, Eq. (19). The
corresponding plots of the empirical and theoretical complementary cumulative distribution functions in the log–log scale
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Fig. 3. Ranks of incomes of billionaires in the EU. Solid lines were obtained by fitting straight lines (in the log–log scale) to empirical data (dots) for year
2008 (αPareto = 1/αrank = 1/1.22 = 0.82 ± 0.02) and to empirical data (squares) for year 2006 (αPareto = 1/αrank = 1/1.07 = 0.93 ± 0.04) [28].

Fig. 4. Fit of the complementary cumulative distribution function, based on the extendedYakovenko et al. formula, Eq. (19), (solid line), to the EUhousehold
income empirical data (dots) for year 2006 (T1 = T2 = T = 43 × 103

± 1 × 103 EUR,m0 = 1.20 × 105
± 0.12 × 105 EUR,m1 = 3.70 × 105

± 0.37 × 105

EUR, α = 3.171 ± 0.002, α1 = 0.90 ± 0.04). The first and the second vertical line representsm0 andm1 [26,28], respectively.

Fig. 5. Fit of the complementary cumulative distribution function, based on the extendedYakovenko et al. formula, Eq. (19), (solid line), to the EUhousehold
income empirical data set (dots) for year 2008 (T1 = T2 = T = 39.5×103

±1×103 EUR,m0 = 1.40×105
±0.14×105 EUR,m1 = 4.0×105

±0.4×105

EUR, α = 2.902 ± 0.002, α1 = 0.79 ± 0.01). The first and the second vertical line representsm0 andm1 [27,28], respectively.

are compared in Figs. 4 and 5 for years 2006 and 2008, respectively. Apparently, the predictions of the extended Yakovenko
et al. formula, Eq. (19), (solid curves in Figs. 4 and 5) well agree with the empirical data (dots in Figs. 4 and 5).1,2

1 The value of the income temperature T , obtained from the fit of the Boltzmann–Gibbs law to the empirical data points for the low-income society class,
is 35321(±4) EUR for year 2006. However, the fit of the complementary cumulative distribution function, based on the Yakovenko et al. formula, Eq. (19),
to all empirical data points is slightly improved, as we used the income temperature T higher by ca. 20%.
2 For year 2008, the value of the income temperature T , obtained from the fit of the Boltzmann–Gibbs law to the empirical data points for the low-income

society class, is 34902(±3) EUR. However, the fit of the complementary cumulative distribution function, based on the Yakovenko et al. formula, Eq. (19),
to all empirical data points is slightly improved, as we used the income temperature T higher by ca. 10%.
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That is, the extended Yakovenko et al. model well describes the empirical complementary cumulative distribution
functions of the household incomes in the EU for all society classes, i.e. for the low-, medium-, and high-income society
class. These successful descriptions result from the sufficiently realistic assumptions of the model adopted herein. These
assumptions allow for coexistence of additive and multiplicative processes as well as for the continuity principle of the
equilibrium distribution function of the household incomes to be obeyed.

4. Conclusions

Herein, we proved that the household incomes of all society classes in the EU can bemodelled by the nonlinear threshold
Langevin dynamics (1) withm-dependent drift term, A(m), andm-dependent dispersion, B(m), given by Eqs. (11) and (12),
respectively. At the thresholdm1, there is a jumpof the proportionality coefficient of the drift term. That is, this termabruptly
changes from a to a′, where a′ < a (as α1 < α). It means that the stochastic term in Eq. (1) is relatively more significant
in this case (i.e. the above threshold m1) than the drift term. That is, economic activity of the high-income society class is
much more risky than activities of all other society classes, as expected.

By comparing results obtained for years 2006 and 2008 (cf. Figs. 4 and 5), we found that the threshold m1 was only
slightly higher for the latter year than for the former. It means that in year 2006, to the high-income society class belonged
the society members almost as rich as those belonging to this class in year 2008. Moreover, the result of only slightly more
extensive society stratification in year 2008 was confirmed by exponents’ inequality, as the exponent α1 for year 2006 is
only slightly higher than that for year 2008. Furthermore, the slowly-varying tendency (similar to that considered above)
is also observed for the medium-income society class. In fact, it is surprising how stable with respect to the recent financial
crisis the shape of the curve Π(m) vs.m is. That is, only the number of households belonging to a given income society class
most likely changed but the income structure of the society as a whole was not altered.

The completed database, which we used (by properly joining the Forbes empirical database with that of EU-SILC),
emphasises a significant role of the high-income society class. Namely, the presence of the third region increases this Pareto
exponent which characterises the medium-income society class making the range of this class narrower and shifting it to
incomes lower by one order of magnitude (cf. Fig. 2). This latter society class is now somuch reduced that it occupies almost
an intermediate region between low- and high-income society classes. Apparently, the role of the low- andmedium-income
society classes was, in the present case, significantly reduced.

The use of two different datasets (EU-SILC and Forbes), which are not necessarily compatible, carries a methodological
danger of getting discontinuous fits. Nevertheless, bringing these two datasets together and analysing them jointly is better
for making progress in this field than avoiding their comparison.

Herein, we succeeded in comparing ratios (i.e. relative population of successive income society classes) of r1 =
Π(minit )−Π(m0)
Π(m0)−Π(m1)

and r2 =
Π(m0)−Π(m1)

Π(m1)
for both year 2006 and 2008 by using our formula, Eq. (19). Hence, we determined

r1 = 32.66 and r2 = 16.48 for year 2006 as well as r1 = 48.98 and r2 = 13.97 for year 2008. We obtained information
on, relatively, how many society members belong to a given income society class. Apparently, population of the medium-
income society class is strongly decreased in year 2008 in comparison to that in year 2006. Several members of this class
were shifted both to the low- and to high-income society classes. Our low-parameter approach seems to be much more
sensitive than that using the Gini coefficient (G) [39] because we obtained G = 54.34 and G = 54.89 for year 2006 and
2008, respectively.

Furthermore, we estimated the percentage breakdown of population of the society classes: for year 2006—low-income:
96.85%; medium-income: 2.97%; high-income: 0.18% and for year 2008—low-income: 97.86%; medium-income: 2.00%;
high-income: 0.14%. These results can be considered as complementary to that (obtained above) corresponding to the
relative population of successive income society classes. Interestingly, the total fraction of the medium- and high-income
classes in the EU was around 3% in year 2006, which is about the same as that found by Yakovenko et al. [3] for the US, and
this fraction has decreased to around 2% in year 2008, most likely due to the financial crisis.

Economists often argue that economic and political conditions are quite different in the US and in the EU, and expect a
lower income inequality in the EU. However, we demonstrate quantitatively herein that the exponential law does apply to
the EUaswell. This finding givesmuch stronger support for universal applicability of the Boltzmann–Gibbs law in economics.

Our work shows that the income distribution in the low-income class, covering around 97% of population, follows the
exponential law,whereas in the twoupper-income classes thedistribution follows twopower lawswithdifferent exponents.
Remarkably, the role of the medium-income society class is strongly reduced making it an intermediate one within our
approach to the complementary cumulative distribution function.

We hope that our results will be useful for studies of static and dynamic properties of the household incomes not only
for the EU as a whole but also for those of other continents and countries, if only sufficiently honest, large, and complete
(i.e. covering all society classes) empirical data are available.

Acknowledgements

We thank Victor M. Yakovenko and Tiziana Di Matteo for very stimulating comments and suggestions.



Author's personal copy

2138 M. Jagielski, R. Kutner / Physica A 392 (2013) 2130–2138

References

[1] R.N. Mantegna, H.E. Stanley, An Introduction to Econophysics: Correlations and Complexity in Finance, Cambridge University Press, Cambridge, 2000.
[2] V.M. Yakovenko, J.B. Rosser, Rev. Modern Phys. 81 (2009) 1703.
[3] A. Banerjee, V.M. Yakovenko, New J. Phys. 12 (2010) 075032.
[4] J. Kwapień, S. Drożdż, Phys. Rep. 515 (2012) 115–226.
[5] S. Solomon, P. Richmond, Eur. Phys. J. B 27 (2002) 257.
[6] P. Richmond, S. Solomon, Int. J. Mod. Phys. C 12 (2001) 333.
[7] P. Richmond, S. Hutzler, R. Coelho, P. Repetowicz, in: B.K. Chakrabarti, A. Chakraborti, A. Chatterjee (Eds.), Econophysics and Sociophysics: Trends and

Perspectives, Wiley-VCH, Weinheim, 2006, pp. 131–159.
[8] B. Mandelbrot, Int. Econ. Rev. 1 (1960) 79.
[9] B. Mandelbrot, J. Polit. Econ. 71 (1963) 421.

[10] M. Armatte, Mathématiques et sciences humaines 129 (1995) 5.
[11] J. Sutton, J. Econ. Lit. 35 (1997) 40.
[12] D.G. Champernowne, Econ. J. 63 (1953) 318.
[13] A. Chatterjee, B.K. Chakrabarti, Eur. Phys. J. B 60 (2007) 135.
[14] P. Bhattacharyya, A. Chatterjee, B.K. Chakrabarti, Physica A 381 (2005) 377.
[15] A. Dragulescu, V.M. Yakovenko, Eur. Phys. J. B 17 (2000) 723.
[16] A. Dragulescu, V.M. Yakovenko, Eur. Phys. J. B 20 (2001) 585.
[17] F. Clementi, T. Di Matteo, M. Gallegati, G. Kaniadakis, Physica A 387 (2008) 3201.
[18] F. Clementi, T. Di Matteo, M. Gallegati, Physica A 370 (2006) 49.
[19] A. Banerjee, V.M. Yakovenko, T. Di Matteo, Physica A 370 (2006) 54.
[20] T. DiMatteo, T. Aste, S.T. Hyde, in: F. Mallamace, H.E. Stanley (Eds.), The Physics of Complex Systems (NewAdvances and Perspectives), in: Proceedings

of the International School of Physics ‘‘Enrico Fermi’’, IOS Press, Amsterdam, 2004, pp. 435–442.
[21] D. Fiaschi, M. Marsili, J. Econ. Behav. Organ 81 (2012) 243.
[22] P. Łukaszewicz, A. Orłowski, Physica A 344 (2004) 146.
[23] M. Jagielski, R. Kutner, Acta Phys. Pol. A 117 (2010) 615.
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