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Abstract. Statistical and thermodynamic properties of the anomalous multifractal structure of random
interevent (or intertransaction) times were thoroughly studied by using the extended continuous-time
random walk (CTRW) formalism of Montroll, Weiss, Scher, and Lax. Although this formalism is quite
general (and can be applied to any interhuman communication with nontrivial priority), we consider
it in the context of a financial market where heterogeneous agent activities can occur within a wide
spectrum of time scales. As the main general consequence, we found (by additionally using the Saddle-
Point Approximation) the scaling or power-dependent form of the partition function, Z(q′). It diverges for
any negative scaling powers q′ (which justifies the name anomalous) while for positive ones it shows the
scaling with the general exponent τ (q′). This exponent is the nonanalytic (singular) or noninteger power
of q′, which is one of the pilar of higher-order phase transitions. In definition of the partition function
we used the pausing-time distribution (PTD) as the central one, which takes the form of convolution (or
superstatistics used, e.g. for describing turbulence as well as the financial market). Its integral kernel is
given by the stretched exponential distribution (often used in disordered systems). This kernel extends both
the exponential distribution assumed in the original version of the CTRW formalism (for description of
the transient photocurrent measured in amorphous glassy material) as well as the Gaussian one sometimes
used in this context (e.g. for diffusion of hydrogen in amorphous metals or for aging effects in glasses). Our
most important finding is the third- and higher-order phase transitions, which can be roughly interpreted
as transitions between the phase where high frequency trading is most visible and the phase defined by low
frequency trading. The specific order of the phase transition directly depends upon the shape exponent α
defining the stretched exponential integral kernel. On this basis a simple practical hint for investors was
formulated.

1 Introduction

For the last few decades, the analysis of time-series has
been an area of systematically increasing scientific ac-
tivity [1–6]1. Thanks to the progress in development of
semi-analytical methods, including different detrending
techniques developed by physicists [7–12] as well as to
the progress in numerical recipes2, the theory of time-
series applies to an ever increasing amount of branches
of knowledge. For example, the evolution of many com-
plex systems in natural, economic, and social sciences
is usually presented in the form of stochastic time se-
ries [13,14]. These series quite often represent multifractal

a e-mail: Andrzej.Kasprzak@fuw.edu.pl
1 See also any volume of the Journal of Time Series Analysis,

edited by M.B. Priestley.
2 See, for example, Mathematica. A system for Doing Math-

ematics by Computer, ver. 6.1 by S. Wolfram and SAS for
Forecasting Time Series, Second Edition, by J. Brocklebank
and D. Dickey.

stochastic processes [15] generated, e.g. by particularly
useful noisy interscale multiplicative cascades (cf. [16]
and references therein) observed, for instance, on spec-
ulative markets [17]. Moreover, variations of their indices,
stock prices, returns and foreign exchange rates show an
intermittent behaviour [18], manifest hierarchical and self-
affine structures, and exhibit large (non-Gaussian) devia-
tions [19] related to extreme events and fat tails of statis-
tics. For a long time it has been well known (cf. [20] and
references therein) that on financial markets the space
variables, for example the most useful ones as indices,
stock prices, returns, and exchange rates as well as time
variables, such as interevent (or intertransaction) times
and first-passage times, can be considered as stochas-
tic variables and form stochastic time series. Indeed, the
continuous-time random walk (CTRW) formalism and its
different versions are ready to treat both space and time
variables in a stochastic way providing a promising phe-
nomenological description of tick-by-tick stochastic dy-
namics.

http://dx.doi.org/10.1140/epjb/e2010-00064-y
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The canonical CTRW formalism was originally intro-
duced by Montroll and Weiss in 1965 [21] as a way to ren-
der time continuous. Since it had been first successfully
applied by Scher and Lax in 1973 (cf. [21–28] and ref-
erences therein) and independently by Moore one year
later [29], to describe the anomalous transient photocur-
rent (manifesting the power-law relaxation) in amorphous
glassy material, this formalism has achieved much more
than its original goal, finding innumerable applications in
many fields, and recently, e.g. in the field of financial mar-
kets ([1,30,31]). It provided there a dynamical description
(in the stochastic sense) of the microstructure of random
systems (see also [32–45]).

The pausing-time distribution (PTD), called also the
waiting-time distribution (WTD), was defined within the
CTRW formalism as a key sharp distribution. Originally,
this distribution was defined within the so-called valley
model. In this model energetic landscape consists only of
valleys, i.e. no mountains are present. The basic, dynamic
part of this PTD was the conditional WTD, ψ(Δt|ε), be-
ing again the sharp probability distribution. It means that
a given carrier stays exactly for a waiting-time interval Δt
within the potential valley (before it makes a jump) under
the condition that the depth of the valley is ε indeed. The
conditional WTD (which in the context of the financial
market is called the conditional pausing-time distribution
while in our case it is the conditional distribution of inter-
transaction or interevent times) can be reinterpreted in the
context of the financial market simply by reinterpretation
of the stochastic variables Δt and ε. Recently, we gave [1]
a list of other potential applications. In this work we were
interested in the statistical properties of interevent times
because they include the indispensable information con-
cerning human communications in financial markets in
particular. These properties are much less known than
the corresponding statistical properties of “space” vari-
ables. In our recent paper [1] we extended the CTRW
formalism to cover the multifractal structure of random
intertransaction times. This structure is one of the most
prominent features of the financial stochastic time series
(cf. [46] and references therein). On this basis we are able
to realize the main goal of the present work. It consists, in
application of the thermodynamic formalism by using the
Legendre transformation, for finding and discussing pos-
sible higher-order phase transitions, so rarely observed in
the real world [47].

1.1 List of main enterprises

Previously [1] we derived averages of arbitrary order q (or
q-moments) of the intertransaction times on financial mar-
kets, 〈Δtq〉, within the extended CTRW formalism. We
called it the multifractal continuous-time random walk
(MF-CTRW) model. Our present work extends this ap-
proach, namely

• within the MF-CTRW formalism and also by using our
refined heuristic formula, we consider pausing-time q-
moments of intertransaction (interevent) times, 〈Δtq〉,

for a wider range −1 < q ≤ 20 than that used for-
merly [1] since it includes also the negative values of
q;

• only on this basis we consider the generalized partition
function [48,49], Z(q′), expressed by the q′(=q + 1)-
moment of coarse-grained probability p (defined by the
joint PTD), which is our main concern.

Owing to our earlier work [1], which proves that moments
of interevent times satisfy the scaling relation (cf. also
Eq. (19) in the present work), we demonstrate here that
the partition function also takes a scaling form. This form
results from the correspondence between crucial integrals,
i.e. I(q) (defined by Eq. (9)) and J(q′) (given by Eq. (32)),

J(q + 1) = σ
exp(−qλμ)
(q + 1)1/α

I

(
− q

(q + 1)1/α

)
, (1)

where q′ = q + 1 > 0 or q > −1. In words, if integral I(q)
can be written in a scaling form then also J(q′) has the
corresponding scaling form, and vice versa.

The analysis of Z(q′) provides formal correspondence
between the MF-CTRW model and equilibrium thermo-
dynamics. Here, we consider:

(i) the spectrum of singularities, which can be considered
as an analogy of the entropy dependence on energy;
and

(ii) 3rd- and higher-order phase transitions, which can be
roughly interpreted as a transition between the phase
of high and that of low frequency trading mostly visi-
ble.

The present paper is organized in the following man-
ner. First (Sect. 2), we consider the scaling relation for
q-moments 〈Δtq〉 within the MF-CTRW formalism and
compare them with corresponding empirical data. Hence,
we found parameters needed for further analysis. Then
(Sect. 3), we include scaling of the partition function,
Z(q′), defined within the MF-CTRW formalism, its mul-
tifractal analysis, and derivation of the thermodynamic
formalism for our case. Subsequently, Section 4 presents
discussion of the 3rd- and higher-order phase transitions.
Finally, Summary and concluding remarks are in Section 5
while some important technical details in Appendix A.

2 Pausing-time q-moments: multifractality
generated by fluctuations

Roots of the model we propose herein are in physics. This
model is also a reminiscence of the Mixture of Distribu-
tion Hypothesis3 in finance, which can be traced back to
the early 1970s [50,51] (and references therein), the varia-
tional principle of energy dissipation at the different time
and spatial scales in turbulence being developed in the

3 The Mixture of Distribution Hypothesis says that it is pos-
sible to consider a convolution of several distributions as a
proper description of the complex financial system. In our case
the convolution of two distributions sufficed.
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1990s [52,53] (and references therein), as well as of super-
statistics and nonextensive entropy [54] (and references
therein). Moreover, it is a direct consequence of the mul-
tifractal version of our CTRW [1].

The main goal of this section is to calculate in a closed
form, within the MF-CTRW formalism, the pausing-time
moment of intertransaction times, 〈Δtq〉 of arbitrary order
q > −1. Hence, the basis is established (in Sect. 3) for
developing thermodynamics (in Sect. 4) in terms of the
partition function.

2.1 Superstatistics and q-moments

2.1.1 Exact calculations

As usual, we define the q-moment (for arbitrary real q)
within the CTRW formalism, as follow

〈Δtq〉 =
∫ ∞

0

Δtqψ(Δt)dΔt =
∫ ∞

−∞
〈Δtq | ε〉ρ(ε)dε, (2)

where the pausing-time distribution, ψ(Δt), is given4 by
the following superposition in the form of superstatis-
tics [55,56],

ψ(Δt) =
∫ ∞

−∞
ψ(Δt | ε)ρ(ε)dε, (3)

and conditional PTD is defined in the Poisson form

ψ(Δt | ε) =
1

γ(ε)
exp

(
− Δt

γ(ε)

)
. (4)

This means that conditional intertransaction times are
statistically independent, which can be assumed as a
reasonable null hypothesis. Here, the conditional event
(marked by parameter ε) means that the last transaction
was realized indeed for the volume ε. In this context, the
Poisson variable Δt is the intertransaction time counted
from the moment of this last transaction to the moment
of the next one while the mean intertransaction time for
the volume ε (i.e., γ(ε)) is the arithmetic average over all
these time intervals counted for fixed volume ε. We also
assume it to be expressed in the exponential form

γ(ε) = γ0 exp(λ ε). (5)

From empirical data we found that λ is, at most, slowly
varying function of ε. However, its statistical error is too
large to be meaningful. The most stable quantities ap-
peared to be q-moments of intertransation times discussed
below. Moreover, we can assume that ε is a positive num-

4 Indirectly, it was roughly verified in [1] by comparison the
sojourn (decumulative) probability, Ψ(t) =

∫ ∞
t
ψ(Δt)d(Δt),

with empirical histogram of futures contracts, for example, on
stocks of Telefonica.

ber for the purchase of futures and negative for their sale
where the purchase and sale are defined in the usual way5.

The conditional pausing-time moment is easily calcu-
lated from expression (4):

〈Δtq | ε〉 =
∫ ∞

0

Δtqψ(Δt | ε)dΔt = Γ (1 + q) γq(ε). (6)

Indeed Γ (1 + q), which appears in (6), confines our ap-
proach to q > −1. However, it is sufficient to permit the
analysis of phase transition at q = 0.

Notably, it is difficult to measure both conditional
quantity (4) and (6), as well as the mean time (5) given
for fixed ε as they are burdened by large statistical errors.
Moreover, the superstatistics (3) rather poorly depends on
the detailed structure of γ(ε) (cf. the plot of the sojourn
probability vs. time [1], which at least partially supports
this inference).

The next, crucial step of the approach is the proper
selection of weight ρ(ε) in the form of the stretched expo-
nent, so often used in disordered systems:

ρ(ε) =
1

21+1/α σ Γ (1 + 1/α)
exp

(
−1

2

( | ε− μ |
σ

)α)
.

(7)
That way derivation (at least approximate) of equation (2)
in a closed form is possible. In fact, this distribution ap-
peared to be the crucial one. Hence, α was selected as the
driving parameter for further investigations.

By combining expressions (6) and (7) with the sec-
ond equation in (2) we get the (real, unconditional) q-
moment 〈Δtq〉 in the intermediate form ready for approx-
imate analysis,

〈Δtq〉 =
τq
0 Γ (1 + q)

21+1/ασΓ (1 + 1/α)
I(q), (8)

where

I(q) def.=
∫ ∞

−∞
dε exp

(
−1

2

( | ε− μ |
σ

)α

+ qλε

)
. (9)

As it is seen, both conditional (6) and unconditional (8)
q-moments of interevent times are well defined only for
q > −1 due to q-dependence of the Γ (1 + q) function.

2.1.2 Approximate calculations

The q-moment of the intertransaction (pausing) time in-
tervals given by (8) was calculated in our work [1] by us-

5 We deal with the purchase transaction of futures when the
order to buy futures is indeed realized; it means that the cor-
responding order to sale futures had earlier been applied and
was waiting until the purchase offer appeared. Definition of
the sale transaction is analogous. Namely, we deal with the
sale transaction of futures (having negative ε) when the order
to buy futures had earlier been applied and waited until the
sale offer appeared. If it happened that offers to buy and sale
appeared at the same time the sign of ε is chosen at random.
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ing the Saddle-Point Approximation6 (SPA). For α > 1
we obtained the following result:

〈Δtq〉
Γ (1 + q)

≈ 〈Δtq〉l
Γ (1 + q)

L|q|α/(α−1)
, (10)

where prefactor

〈Δtq〉l
Γ (1 + q)

= γq
0 l

q (11)

scales with7

l
def.= exp(λμ). (12)

This means that this prefactor is related to dissipation
since it depends on the λμ(= 〈λε〉) shift8, where 〈. . .〉
means the average over the distribution ρ(λε).

Besides, the scale

L
def.= exp(b), (13)

used in equation (10), is responsible for fluctuation since

b = ω−1
0 (21/αλσ)α/(α−1) (14)

(where ω0 = αα/(α−1)/(α−1), cf. Eq. (67) in Appendix A)
depends on

λσ =

√
α

22/α

Γ (1 + 1/α)
Γ (3/2)

σλε, (15)

where variance σ2
λε = 〈(λε − λμ)2〉 and 〈. . .〉 means (as

previously) the average over the distribution ρ(λε). More-
over, by assuming the order q = 1 in equation (10), we
obtain scale L in the form

L =
〈Δt〉
〈Δt〉l . (16)

This form eliminates the monofractal pattern. It means
that L is defined only by the fraction of the mean of the
intertransaction times that is driven by fluctuations.

The q-moment 〈Δtq〉l is the quantity characterizing
monofractal. This is because it can be obtained by assum-
ing that ρ(ε) = δ(ε − μ), which is the result of the limit
σ → 0 in (7) (being an unrealistic case where volume fluc-
tuations are absent). Relation (11) gives a plausible inter-
pretation of scale l by assuming, again, q = 1, namely

l =
〈Δt〉l
γ0

. (17)

6 In the literature, the Saddle-Point Approximation is also
called the Steepest-Descent Method or the Parabolic Extrap-
olation Method.

7 All q-moments (given by Eqs. (10) and (11), as well as
by the general and exact formulas (2), (6) and (8)) obey the
normalization condition, i.e. they are equal to 1 for q = 0, as
expected.

8 Unfortunately, in our approach we are unable to find sep-
arately parameter λ.

Hence, equation (11) becomes

〈Δtq〉l
Γ (1 + q)

= (〈Δt〉l)q
. (18)

By introducing equations (18) and (16) into (10), we ob-
tain the general formula

〈Δtq〉
Γ (1 + q)

= (〈Δt〉l)q

( 〈Δt〉
〈Δt〉l

)|q|α/(α−1)

(19)

where all quantities have well defined interpretations. We
found that q-moments are expressed (in general) by singu-
lar, noninteger power of q and they scale with the ratio of
two different first-order moments of the mean intertransa-
tion times. Equation (19) suggests that our PTD is such a
broad distribution that a hierarchy of exponents is needed
to characterize it. This feature results from the multifrac-
tal nature of our system. However, no signature evidence
of any phase transition is found if one only searches for
q-moments.

2.2 First results and refined heuristic formula

Previously [1] we discussed, for example, futures at six
basic instruments. Three of them (DAX, WIG20, and the
US Dollar-Deutsche Mark, USDM, exchange rate) have
3/2 < α < 2, two of them (TEF and DJI) have α ≈ 3/2
and one of them (the EURUS exchange rate) has α ≈ 2.
Nevertheless, the logarithm of intertransaction time mo-
ments for futures at these basic financial instruments ex-
hibits the analogous nonlinear q-dependence, although the
number of data points changes from 282 007 for WIG20
to 4 997 027 for DAX. Hence, it seems to be reasonable to
consider here transactions only for a chosen, most typical
basic instrument.

Here, we decided to consider, for example, the future
contracts at the USDM rate on Forex. The specification
of these archival, empirical tick-by-tick intertransaction
data used is as follows [1]. We chose quotation of these
futures since 1993-01-04 until 1997-07-31, which consists
of 1 048 590 data points.

In Table 1 we present:

(i) four values of the shape exponent α as well as combined
parameters a (def.= ln(γ0)+λμ) and b (the latter defined
by Eq. (14)) obtained from the fit of the formula9

ln
( 〈Δtq〉
Γ (1 + q)

)
≈ a q + b | q |α/(α−1) (20)

to empirical data within, e.g., four increasing ranges of
q; and

(ii) the corresponding values of the control parameter of
the fit, χ2/m (where m is the number of degrees of
freedom) for these ranges of q.

9 Formula (20) was derived from equation (10) where expres-
sions (11), (12) and (13) were used.
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Table 1. Fitted values of the MF-CTRW parameters α, a and b together with the control parameter χ2/m obtained by the fit
of formula (20) to empirical data within, for example, four different ranges of q.

Range of q α a b χ2/m
0−3 1.754 ± 0.080 3.008 ± 0.011 0.2268 ± 0.0087 0.00012
0−4 2.04 ± 0.12 2.827 ± 0.039 0.394 ± 0.031 0.00049
0−5 2.48 ± 0.47 2.49 ± 0.20 0.710 ± 0.170 0.00131
0−6 3.18 ± 0.28 1.89 ± 0.15 1.27 ± 0.14 0.00261

In Table 1, we present results of fits for the range of q ≥ 3.0
since only then the fits supply reliable values of the shape
exponent α. This means that the difference between the
empirical and straight curves is insufficient (cf. Fig. 2)
to consider multifractality for shorter ranges of q. How-
ever, for a longer q range, the quantity χ2/m is too large.
Therefore, the exponent α = 1.754 ± 0.080 (and the cor-
responding values of the remaining parameters), obtained
for the fit within the first q-interval, seems to be an opti-
mal choice (used in our further considerations, cf. Tab. 2).

The upper solid curve in Figures 1 and 2 shows the
prediction of formula (20). This prediction is obtained by
fitting formula (20) to empirical data (marked by dots)
within the shortest range of q, i.e. for 0 ≤ q ≤ 3. In these
figures we also marked two inflection points10 of the empir-
ical curve found for the particular orders q = q0ip ≈ 0 and
q = q1ip ≈ 6.48 (cf. the intersection of the corresponding
solid and dashed vertical straight lines with the empirical
curve). These inflection points are very important since
they split the whole range of q into three different regions.
The first one, −1 < q < q0ip, the second one, q0ip ≤ q ≤ q1ip,
and the third one, q > q1ip where the q-moment is a con-
cave, convex, and again concave function of q, respectively.
Within the MF-CTRW formalism, we are able to system-
atically study (with a good approximation) first and sec-
ond ranges of q. The systematic analysis of the third range
still remains as a challenge, though, further in this section
the heuristic formula is shown, which fits well the empiri-
cal curve for the whole range of q.

2.2.1 Guess of the refined heuristic formula

Formula (10) is the basis for the more advanced heuristic
one, which must fit well the empirical data within the
whole accessible range of q, here −1 < q ≤ 20. This means
that this formula for ln

(
〈Δtq〉

Γ (1+q)

)
must at least fulfill the

following requirements:
(i) the normalization condition (i.e. for q = 0 the formula

should be equal to 0);
(ii) for small, non-negative values of q the formula should

become (with good approximation) the natural loga-
rithm of formula (10), which is a convex function of q;

(iii) for the negative values of q (here within the range−1 <
q < 0) the formula should be a concave function of q
to fit well the empirical data (cf. Fig. 2);

10 The inflection point of a given function ζ(q) is defined by

the equality d2ζ(q)

dq2 = 0 in this point and the requirement of
the nonvanishing value of the second derivative in its vicinity.

Fig. 1. (Color online) Semi-logarithmic plot comparing empir-
ical data for q-moment 〈Δtq〉/Γ (1 + q) vs. order q (concerning
futures at USDM rate on Forex, marked by dots) with two
different theoretical predictions given by formulas (20) (the
upper curve, marked by MF-CTRW: 0 ≤ q ≤ 3) and (21) (the
lower one, which satisfactorily fits the empirical data in the
whole range of q, marked by HMF), respectively. Moreover,
the inflection points of the empirical curve for q = q0ip ≈ 0 and
q = q1ip ≈ 6.48 are marked.

Fig. 2. (Color online) Magnification of the initial and cen-
tral parts of Figure 1. The comparison of the empirical data
(marked by dots) with the corresponding theoretical predic-
tions. (i) The upper solid curve, given by formula (20), is ex-
tended to negative value of q = −0.8 and (ii) the lower limit,
given by expression (21), is more distinct than that in Figure 1.

(iv) for q = q0ip the formula should provide the first in-
flection point, while for some intermediate q (here for
q = q1ip = 6.48) it should provide the second one;

(v) for large values of q the formula should tend to the
monofractal form.

Hence, such a formula can already be easily guessed

〈Δtq〉
Γ (1 + q)

≈ (〈Δt〉l)q
L

[
1−L

−|q|1/(α−1)

2

]
q

1 , (21)
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Table 2. Set of the corresponding parameters of the MF-CTRW and the HMF formulas.

Model α a b b1 b2

MF-CTRW 1.754 ± 0.080 3.008 ± 0.011 0.227 ± 0.009 – –

HMF 1.676 ± 0.018 3.074 ± 0.063 0.228 ± 0.028 2.152 ± 0.063 0.106 ± 0.010

where exponent b (given by expression (14)) is factorized

b = b1 b2 (22)

and the following definitions of scales are used

L1
def.= exp(b1), L2

def.= exp(b2). (23)

The prediction of the HMF (Heuristic Multifractal) for-
mula (21) was also shown in Figure 1 by the lower solid
curve, which quite well fits the empirical data for the whole
range of q. This prediction is additionally confirmed by
magnifications shown in Figure 2 for the initial and in-
termediate values of q. As expected (see also Tab. 2) for
the range −0.5 � q � 3.5 (essential for further consider-
ations), the predictions of formulas (20) and (21) cannot
practically be distinguished. In Table 2 we compare val-
ues of parameters defining both curves. Although these
parameters are quite similar, in further considerations we
use those predicted by formula (20) (the first row).

Moreover, predictions of the HMF formula (21) in Fig-
ures 1 and 2 are shown for the initial and asymptotic
ranges of q converging to sloped straight lines11. These
lines define the corresponding monofractals. Detailed re-
sults presented in these figures confirm that we have to
deal with three different structures of interevent times.
The main goal of the present work is to analyze the sec-
ond, most important, multifractal structure of interevent
times together with the one belonging to the left vicinity
of q = 0.

It is possible to study our system by the partition func-
tion technique. This technique supplies cases of current
interest in the investigation of multifractality of the struc-
ture of interevent times.

3 Partition function for the MF-CTRW
formalism

In Section 2 above, we demonstrated that the q-moment of
interevent times scales nonlinearly with the volume fluc-
tuation. The important question arises if the partition
function scales analogously as well. The aim of Sections 3
and 4 is to derive (at least approximately) the general-
ized partition function [48,49] in a closed form within the
MF-CTRW model, and next, to consider

(i) important (complementary to those discussed in
Sect. 2) multifractal properties of the structure of
interevent times; and

11 Note that ln (Δtq/Γ (1 + q)) tends linearly to zero from its
both sides.

(ii) its thermodynamic consequences, e.g. the possibility of
higher-order phase transitions.

Initially, we use the following generalized form of the par-
tition function [49], which is analogous to the grand par-
tition function:

Z(q′) =
1

θ q′−1
Z0(q′) =

〈(pi

θ

)q〉
, q′ = q + 1. (24)

In the latter, the partition function

Z0(q′) =
∑

i

pq′
i , (25)

and θ(>0) (defined self-consistently later on) relates
to chemical potential for an open system, while two-
component index i = (i1, i2) denotes a rectangle (with
side length Δt

12 and Δε, respectively). A coarse-grained
probability (measure) pi is attributed to this rectangle. By
using such rectangles we can partition our phase space.
In our approach (based on the MF-CTRW model), we
consider the support of the measure, which is a two-
dimensional, half-space continuum defined by the time in-
terval t ≥ 0 and the volume, ε, of traded futures that are
bought or sold. Our measure vanishes only for t → ∞
and/or |ε| → ∞.

Both partition functions given by equation (24) obey
(as it is required) the normalization condition, i.e.

Z(q′ = 1) = Z0(q′ = 1) = 1. (26)

It means that orders q′ and q (used in the definition of
q-moment (2)) are shifted by 1, i.e., q′ = q + 1, which
defines mutual calibration of both orders.

Moreover, one has

Z(q′ → 0) = Z0(q′ → 0) → ∞ (27)

since the substrate (defined by the Cartesian product of
interevent time and futures volume) is unrestricted and all
pi values are nonvanishing (cf. expression (29)). This is the
reason why (in our case) also Z(q′ < 0) = Z0(q′ < 0) = ∞.
Therefore, we have to restrict our considerations only to
q′ > 0.

For integer, nonvanishing q′ values the partition func-
tion Z0(q′) is the probability of finding q′ transactions in
any rectangle i. In case of fixed q′ values and different
probabilities pi, the partition function Z0(q′) increases for
more heterogeneous values of pi. Therefore, for q′ ≥ 2
Z0(q′) defines the chance of how close q′ transactions are
localized, i.e., it can measure the degree of heterogeneity
12 Index t used here and in further considerations is equivalent
to Δt used earlier.
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of the structure or correlations between transactions. For
example (as it follows from definition (25)), for full het-
erogeneity or localization at some rectangle j (then one
has pi = δi,j), the partition function assumes its maximal
value, Z0(q′) = 1. Moreover, for fixed pi < 1 and varying
power q′, the partition function decreases with increas-
ing power. That is, correlations between transactions or
the localization decrease when the number of transactions
increases, as expected.

Next, we relate probabilities pi to joint and conditional
waiting-time distributions defined within our MF-CTRW
formalism. Then, we define the generalized partition func-
tion, Z(q′), and perform calculations

Z(q′) def.=
1

θ q′−1

×
∞∑

i1=0

∞∑
i2=−∞

[∫ ti1+Δt

ti1

dt

∫ εi2+Δε

εi2

dε ψ(t | ε) ρ(ε)
]q′

≈ 1
(θ/Δt Δε)q′−1

∞∑
i2=−∞

[ρ(εi2)]
q′
Δε

×
∞∑

i1=0

[ψ(ti1 | εi2)]
q′
Δt. (28)

Here, Δε Δt is the surface of the elementary rectangle
whose side lengths Δt(	τ0) and Δε(	σ) are arbitrarily
small positive numbers while ti1 = i1Δt and εi2 = i2Δε.

In equation (28) summation over variable i1 is limited
from the bottom and over i2 is unlimited. This means
that the study of the generalized partition function scaling
with side lengths is impossible. Nevertheless, the answer
to the question how it scales with volume fluctuation is
still possible, and this is our main interest in this section.

By comparing expressions (28) and (24), so far we find
that

pi ≈ ρ(i2Δε)ψ(i1Δt | i2Δε)ΔεΔt, (29)

equation (29) relates pi to a grid of rectangles of equal size.
Note that the last summation over i1 in expression (28)
can be performed explicitly

∞∑
i1=0

[ψ(ti1 | εi2)]
q′

= [τ(εi2 )]
−q′

∞∑
i1=0

exp(−i1 q′Δt /τ(εi2))

=
[τ(εi2 )]

−q′

1 − exp(−q′Δt /τ(εi2))
≈ [τ(εi2 )]

1−q′

q′Δt
. (30)

When deriving the last approximate equality in equa-
tion (30), we had to use the constraint q′Δt/τ(εi2) 	 1,
which can always be obeyed as Δt is arbitrarily small and
q′ is a restricted quantity. By introducing expression (30)
into (28) we obtain (changing also the summation over i2
in the third row of (28) by integration) the generalized

partition function in the form

Z(q′) ≈
(τ0 σ
M

)q′−1 1
q′

∫ ∞

−∞
dε [ρ(ε)]q

′
[τ(ε)]1−q′

=
( σ

M

)q′−1 1
q′

∫ ∞

−∞
dε [ρ(ε)]q

′
exp(λ (1 − q′) ε)

= Nq′ exp(λμ (1 − q′))J(q′). (31)

In equation (31) the integral

J(q′) def.=
∫ ∞

−∞
dy exp

(
−q

′

2
| y |α +λσ(1 − q′)y

)

(32)

and factor Nq′ = 1
q′M

1−2 q′
were obtained after simple

changing of variables, y def.= (ε − μ)/σ, in the integrals in
the first and second rows in equation (31). The (dimen-
sionless) denominator θ in expression (28) assumes the
form θ = MΔtΔε/τ0 σ proportional to ΔtΔε to avoid

superfluous rectangle there. Note that the
(

σ
M

)q′−1 1
q′

coefficient leaves normalization of the generalized parti-
tion function in equation (31) unchanged. Here M

def.=
21+1/αΓ (1 + 1/α). In Section 3.1 below, we discuss the
scaling form of the generalized partition function and con-
sider useful Rényi dimensions.

3.1 Multiscaling form of the partition function: Rényi
dimensions

Since integral J(q′) and hence the partition function Z(q′)
are already calculated in Appendix A, again by using SPA
(cf. Eq. (69)), one readily finds that

Z(q′) ≈ B(q′)L−τ(q′), (33)

where

B(q′) = M1−q′
q′(1−2α)/2(α−1) exp((bc−λμ)(q′−1)), (34)

while c is the constant, which should be chosen so as to
make prefactor B(q′) independent of the scale L as ex-
pected. Therefore,

c =
λμ

b
(35)

and it should be fixed to make the general scaling expo-
nent τ(q′) also independent on L. This condition is possi-
ble to fulfil as it is already fixed by relation (45). Therefore,
the exponent takes the form (cf. Eq. (69) in Appendix A)

τ(q′) = −c (1 − q′) − |1 − q′|
( |1 − q′|
q′ + q′0

)1/(α−1)

= (q′ − 1)D(q′), (36)

where q′0 is the ad hoc correction constant, which can be
estimated by self-consistency of our procedure (cf. rela-
tion (i) below). Here, the (positive) Rényi dimensions

D(q′) =
τ(q′)
q′ − 1

= c+ sgn(1 − q′)
( |1 − q′|
q′ + q′0

)1/(α−1)

(37)



8 The European Physical Journal B

obey the following relations:

(i) the limq′→0D(q′) = c+ 1

q
′1/(α−1)
0

≡ q′0 = 1
[D(0)−c]α−1 ≥

0 relation, where D(0) = f(η(q′ = 0)) > c (which
comes from the comparison of the second relation in
(36) with Eq. (42)), cannot be identified here with ca-
pacity or box dimension13 (defined, e.g., in [49]);

(ii) limq′→∞D(q′) = c− 1 ≥ 0;
(iii) limq′→1D(q′) = c > 0;
(iv) the first derivative D(q′) over q′;

D′(q′) = − 1
α− 1

( | 1 − q′ |
q′ + q′0

)(2−α)/(α−1)

× 1 + q′0
(q′ + q′0)2

≤ 0, (38)

which for q′ = ∞ is equal to 0, while it vanishes at
q′ = 1 for α < 2 otherwise (for α > 2) it diverges;

(v) the second derivative D(q′) over q′

D′′(q′) =
2

α− 1

( | 1 − q′ |
q′ + q′0

)(2−α)/(α−1) 1 + q′0
(q′ + q′0)3

+
2 − α

(α− 1)2

(
1 + q′0

(q′ + q′0)2

)2

×
( | 1 − q′ |
q′ + q′0

)(3−2α)/(α−1)

sgn(1 − q′),

(39)

and again equals 0 for q′ = ∞ and for α < 3/2 it
vanishes at q′ = 1, otherwise (for α > 3/2) it diverges.

From equation (36) and relation (ii) we obtain for large
q′, the expression concerning the general exponent

τ(q′) ≈ (c− 1) q′ = ηmin q
′. (40)

This expression is an important result for the analysis
of the spectrum of singularities, as ηmin = c − 1 defines
its bottom (cf. Sect. 3.2). Moreover, by introducing equa-
tion (40) into equation (33) and comparing it with equa-
tions (24) and (25), we find (after some manipulations)
for q′ → ∞

pmax
i ≈ θ L−ηmin . (41)

In equation (41) pmax
i is the maximal value among all lo-

cal probabilities pi. Apparently, the generalized partition
function for diverging q′ is dominated by the maximal lo-
cal probability, which constitutes a monofractal. The q′
power plays the role of the filter, which selects the largest
probability value14. The self-consistent hypothesis is that
all local probabilities scale with L. Hence, it is reasonably
to study the spectrum of local scaling exponents (called

13 Rényi dimension D(0) can be determined here only to some
multiplicative factor, cf. Section 3.2.
14 The analogous role plays q′ for its decreasing negative val-
ues as it selects the lowest value of the local scaling exponent.
However, it is not the case considered here.

Fig. 3. (Color online) Plot of the general scaling exponent τ
vs. order q′ at α = 1.754 and both for q′0 = 0 (lower laying
dashed curve) and q′0 = 1.0 (upper laying solid and dotted
curve), defined only for the positive values of q′. Solid part of
the upper curve corresponds to the range of q′ values where
the MF-CTRW formula satisfactorily fits the empirical data,
while the dotted part corresponds to the range where the fit is
unsatisfactory (cf. Figs. 1 and 2).

also pointwise or local dimensions [49] of different frac-
tals placed here in (Δt, ε) half-plane, see Sect. 3.2 below).
Therefore, by increasing q′ larger and larger the local di-
mensions are visible less and less. This result gives a cou-
pling, which is a source of q′-dependence of η shown by
the first relation in (44) in Section 3.2.

We plotted the general scaling exponent τ(q′) vs. q′ for
two different examples q′0 = 0 (lower laying curve in Fig. 3)
and q′0 = 1 (upper laying curve in Fig. 3). As it is seen,
there is an essential difference between them. That is, this
exponent diverges for q′ → 0 (according to the power law)
in the former case in contrast to the latter case where it is
finite. For both examples, for q′ → ∞, the general scaling
exponent diverges linearly while it vanishes for q′ = 1.
That way, finite Rényi dimensions can be viewed as useful
quantities, as they are the most important (multiplicative)
parts of the general scaling exponent, describing different
interesting properties of the system. For instance, for q′ >
1 transactions or correlations between them presumably
cluster while for q′ = 1 the Rényi dimensionD(1) becomes
the Shannon information.

Property (ii) follows directly from equation (37).
Hence, as usual [49], our Rényi dimensions are the non-
negative, monotonically decreasing functions of q′ (cf.
Fig. 4). Indistinct (in this scale) kink appears at q′ = 1.
This kink can be considered as a fingerprint of D′ singu-
larity and D′′ discontinuity at this point (cf. Figs. 5 and 6,
respectively).

To make analysis of the Rényi dimensions easier (par-
ticularly in the vicinity of q′ = 1) we plotted in Figure 5
their first derivative, D′(q′), given by expression (38), and
in Figure 6 its second derivative, D′′(q′), given by expres-
sion (39) (both, e.g., for exponent α = 1.754).

Plots shown in Figures 4 and 5 are consistent with that
presented in Figure 6. The latter shows that for 3/2 <
α < 2 the limits of second derivative D′′(q′ → 1−) →
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Fig. 4. (Color online) The Rényi dimensions, D(q′), vs. order,
q′(≥0), given by expression (37) for exponent α = 1.754 and
q′0 = 1.0. The indistinct kink placed at q′ = 1 suggests a possi-
ble singularity of D′(q′) at this point (cf. Fig. 5). The second
half of D(q′) (for q′ < 0) does not exist within our model.

Fig. 5. (Color online) The spike of the first derivative of the
Rényi dimensions D′(q′) vs. order q′(≥0) given by expres-
sion (38) for exponent α = 1.754 and q′0 = 1.0. The finite
height spike of D′(q′) is placed at q′ = 1; its asymmetry is
weakly visible.

−∞ and D′′(q′ → 1+) → ∞ mean, that at q′ = 1 the
second derivative, D′′, is indefinite, i.e., it has an infinite
discontinuity at q′ = 1. Such a behaviour of the Rényi
dimensions and their derivatives is, indeed, responsible for
phase transitions considered in Section 4, below.

3.2 Spectrum of local dimensions

Since the scale can be determined up to some arbitrary
power ω and hence the general scaling exponent as well
as the Rényi dimensions up to some multiplicative fac-
tor 1/ω, the question arises which definition of scale can
be the most appropriate for our analysis. To answer this
question, we consider in this section the spectrum of local
dimensions in order to construct a self-consistent multi-
fractal procedure.

Since the Legendre (or contact) transformation can be
defined here, we obtain the spectrum of local dimensions
f(η) from the global scaling exponent τ(q′),

f(η) = q′ η − τ(q′). (42)

Fig. 6. (Color online) The second derivative of the Rényi di-
mensions D′′(q′) vs. order q′(≥0) given by expression (39) for
exponent α = 1.754 and q′0 = 1, obtained from empirical data
(cf. Tab. 1). Indeed, q′-dependence of this quantity together
with D′(q′) one clearly show the existence of singularity at
q′ = 1.

Here, variables

η(q′) =
dτ(q′)
dq′

,

q′ =
d f(η)
dη

. (43)

By combining equations (36)−(38) and (42) we derive an
explicit dependence of the spectrum of local dimensions
f and local dimension η themselves on the independent
variable q′,

η(q′) = D(q′) + (q′ − 1)D′(q′)

= c+
( | 1 − q′ |
q′ + q′0

)ν (
1 + ν

1 + q′0
q′ + q′0

)
sgn(1 − q′),

f(η(q′)) = D(q′) + q′(q′ − 1)D′(q′)

= c+
( | 1 − q′ |
q′ + q′0

)ν (
1 + ν q′

1 + q′0
q′ + q′0

)
sgn(1 − q′),

(44)

where ν def.= 1/(α− 1).
To make equation (42) consistent with equation (40),

we assume that f(η = ηmin) disappears. This assumption
supplies an additional condition. From this condition and
from the second relation in equation (44) we obtain

c =
α+ q′0
α− 1

, (45)

which is complementary to (35). The first relation in (44)
does not introduce, for η = ηmin, a subsequent relation.
Obviously, both (35) and (45) conditions reduce the num-
ber of free parameters in our model.

Although we obtained an explicit dependence of f on q′
(the second relation in (44)), the analogous dependence of
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Fig. 7. (Color online) The spectrum of local dimensions f̃
vs. local dimension η̃ for exponent α = 1.754 (i.e., this spec-
trum describes the trading on futures at the USDM exchange
rate) and q′0 = 1.0. This plot corresponds only to the positive
range of q′. Hence, it is truncated at η̃(q′ = 0) = 1.490. This
spectrum, considered within the MF-CTRW model, is valid
(roughly speaking) for the range of (η̃, f̃) between point (0.586,
0.421) (obtained from Eqs. (44) for q′ = 4) and point (1.490,
0.949) (obtained for q′ = 0), being still sufficiently broad (e.g.,
it is broader than the η̃min value).

f on η requires, in general, the solution of the entangled,
transcendental equation. This equation is derived below
by combining both relations given in equation (44),

|η − c| = ω0 (1 + q′0)

(
1 − f−c

η−c

)ν

(
q′0 + f−c

η−c

)ν+1 , η �= c, (46)

where sgn(f−c) = sgn(η−c) = sgn(1−q′) and ω0 was al-
ready defined in Section 2.1.2, above. Equation (46) gives
solution η (by using the method of successive iterations)
as a convex function of f . That is, we have f ≤ η while
equality η = f is valid only for a single point q′ = 1. Addi-
tionally, η = c for this point. Notably, of a concrete value
of the correction constant q′0 has to be known in order to
solve equation (46). For the pathological case of vanish-
ing of the correction constant, this equation reduces to its
simplified form

η = f + ω
−(α−1)
0 |f − c|α. (47)

In fact, in Figure 7 the plot of f̃ vs. η̃ is shown, where any
quantity h̃ def.= ω−1

0 h. In this representation equation (46)
takes the simpler form (which is consistent with (42) and
both relations in (43)), where ω0 is absent (and η, c and
f are simply replaced by η̃, c̃ and f̃ , respectively); in this
representation both q′ and q′0 remains unchanged. Hence,
for example, equation (47) takes simpler form:

η̃ = f̃+ | f̃ − c̃ |α . (48)

The width of the spectrum of singularities corresponds to
the range −1 < q < 3 (shown in Figs. 1 and 2), where

prediction of the MF-CTRW model satisfactorily fits the
empirical curve ln (〈Δtq〉 /Γ (1 + q)). Fortunately, this is
the range most important for study of the multifractality
(as there the nonlinear q-dependence is placed). Hence,
only within the range η̃(q′ = 4) < η̃ < η̃(q′ = 0) the
MF-CTRW model can be used to describe empirical data.
This restriction still leaves the width of the spectrum suffi-
ciently large. This is the argument for utility of the model
to study multifractal properties of intertransation times
generated by fluctuations. Another argument, the most
important for our work, is that the MF-CTRW model is
valid both for q′ = 1 and its vicinity (cf. plot in Fig. 7
as the derivative df̃/dη̃ = 1 at this point), where indeed
phase transitions are investigated. However, the spectrum
of singularities is unsensitive to these transitions therefore
it is necessary to study phase transitions from the ther-
modynamic point of view.

Note that some so-called left-sided multifractals
(whose spectra of singularities have only the bottom i.e.,
f(η) is shaped like the left half of

⋂
) were already in-

vestigated in [63] from the mathematical point of view,
where authors considered even spectra of singularities hav-
ing their tops at η = ∞.

4 Financial higher-order phase transitions

In the present section we prove that intensive trading of
the futures on Forex (for example, the archival data at the
USDM exchange rate) can exhibit the third-order phase
transition for q′ → 1 (or q → 0). This phase transition
is controlled by the multifractal component of free energy
(cf. Tab. 3 and Eq. (36)). We discuss it herein for the range
of α > 3/2, since

(i) α belonging to this range was, indeed, derived from
most of our empirical data (cf. Tab. III in [1]) by using
the MF-CTRW formalism;

(ii) for this range of α (except α = 2) the lowest (sim-
plest), third-order phase transition was predicted (cf.
Eqs. (51) and (52) derived in Sect. 4.1, below).

For exponent α ≤ 3/2 we predicted even higher-order
phase transitions (cf. Tab. 4) but empirical α values from
this range (cf. Tab. III in [1]) are burdened by too large
statistical errors to make any definite conclusion.

4.1 Remarks on the specific heat

Our considerations are based on the correspondence
(shown in Tab. 3) between thermodynamic quantities on
the one hand and multifractal ones on the other.

By using this correspondence we exploited the analog
of specific heat, which characterizes fluctuations within
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Table 3. Correspondence between selected thermodynamic
and multifractal quantities.

Thermodynamics Multifractality

β q′

V b(=ln(L))

E(β)/V η(q′)

βF (β)/V τ (q′)

S(E)/V f(η)

cV (β) cb(q′)

the multi- and monofractal domains

cV (β) =
(
∂(E/V )
∂T

)
V

= −T
(
∂2(F/V )
∂T 2

)
V

= −β2

(
∂(E/V )
∂β

)
V

= −β2

(
∂2(βF/V )

∂β2

)
V

≡ −q′2
(
∂2τ(q′; b)
∂q′2

)
b

=
(
∂η(q′; b)
∂(1/q′)

)
b

= cb(q′).

(49)

Only here (and in the second relation in (50)) we
introduced an explicit dependence of some multifractal
quantities on b (and therefore used partial derivatives)
to emphasize their relations to corresponding thermody-
namic quantities. In this derivation we used the following
expressions and the correspondence between thermody-
namic and multifractal quantities

E/V =
(
∂(βF/V )

∂β

)
V

≡ η =
(
∂τ

∂q′

)
b

. (50)

The first expression in the last row in equation (49) is the
basis for derivation of the explicit q′-dependence of the
specific heat, c(q′)15.

After calculating of the second derivative, d2τ(q′)/dq′2,
(by using the first equality in Eq. (36)) we finally obtain
from equation (49) the expression

c(q′) = ν (ν + 1)
(
q′

1 + q′0
q′ + q′0

)2 | 1 − q′ |ν−1

(q′ + q′0)ν
. (51)

Equation (51) diverges according to power-law 1/|1 −
q′|1−ν at q′ = 1 only for ν < 1 or α > 2. We examine
this crucial formula for the 3rd- and higher-order phase
transitions.

In Figure 8 the specific heat given by formula (51) is
shown for α = 1.754 and q′0 = 1. Again, the prediction
of the MF-CTRW formalism within the range of q′ values
where q-moments well fit the empirical data is represented
by the solid curve, while the dotted curve shows the region
where they do not fit (cf. Fig. 1).

Although for q′ → 0 the specific heat shows singular-
ity (which is a signature of a phase transition), the most

15 The notation of the specific heat c(q′) has nothing to do
with constant c used earlier e.g., in equations (35) and (45).

Fig. 8. (Color online) The anti-spike of specific heat c(q′)
(given by formula (51)) vs. q′ (for α = 1.754 and q′0 = 1),
which exhibits the third-order phase transition at q′ = q′c = 1
(or at q = qc = 0), cf. Figure 9 for completeness.

interesting and possible for more intensive study is its be-
haviour in the vicinity of q′ = q′c = 1. We explain below
that in such a case we have to deal with the third-order
phase transition. This transition can be roughly inter-
preted in terms of the transition between the phase (with
q < 0 ≡ q′ < 1) where high frequency trading dominates
the q-moment 〈Δtq〉 and the phase (with q > 0 ≡ q′ > 1),
where the low frequency trading dominates this moment.

From equation (51) we obtain,

dc(q′)
dq′

=
2
q′
c(q′) − q′2

d3τ(q′)
dq′3

= sgn(1 − q′)ν(ν + 1)(1 + q′0)
2q′

|1 − q′|ν−2

(q′ + q′0)ν+3

×{q′ [q′ − ν − (ν + 1) q′0] + 2q′0} , (52)

which we study for q′ > 0.
In Figure 9 the prediction of formula (52) is presented

as a function of q′ (again for α = 1.754 and q′0 = 1). As it is
seen, the first derivative, dc(q′)

dq′ , features an infinitely large
discontinuity at q′ = 1. The third-order derivative of the
free energy or, more precisely, the third-order derivative of
its nonlinear component (cf. expression (36) and Tab. 3)
is responsible for this diverging discontinuity. Therefore,
we can call this transition the third-order transition.

In Table 4 we summarize recommendations concerning
possible phase transitions predicted by our MF-CTRW
formalism. Of course, even more detailed analysis can be
accomplished by taking higher-order derivatives of c(q′)
with respect to q′.

5 Summary and concluding remarks

In the present work we used the Multifractal Continuous-
Time Random Walk (MF-CTRW) formalism, developed
in our recent paper [1], to study statistical and thermo-
dynamic properties of interevent times (intertransaction
times or pausing times) recorded when futures at the
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Table 4. Orders of possible phase transitions at q′ = 1 for complementary ranges of α.

Range of α Range of ν c(q′ = 1) dc(q′)
dq′ |q′=1 Phase transition

α ≤ 3/2 ν ≥ 2 continuous continuous at least 5th order (depends on α)
3/2 < α < 2 1 < ν < 2 continuous & diverging discontinuous & diverging 3rd order

α = 2 ν = 1 continuous continuous no phase transition
α > 2 ν < 1 continuous & diverging discontinuous & diverging 3rd order

Fig. 9. (Color online) The plot of the first derivative of specific

heat, dc(q′)
dq′ , given by formula (52) (for α = 1.754 and q′0 = 1)

vs. q′, whose discontinuity at q′ = q′c = 1 (or q = qc = 0) as
well as left and right divergences (according to power-laws) are
well seen. This plot confirms the third-order phase transition
(cf. Fig. 8).

USDM foreign exchange rate on Forex, as a typical ex-
ample, were intensively traded. That is, we applied the
MF-CTRW formalism to describe

(i) The multifractal structure defined (in Sect. 2) by the
initial concave and intermediate convex parts of empir-
ical (reduced) q-moments, ln (〈Δtq〉/Γ (1 + q)), of in-
terevent times, presented as a non-linear function of
q, cf. plots in Figures 1 and 2 for −1 < q < 0 and
0 ≤ q < q1ip(=6.48), respectively; for q ≥ q1ip we have
again to deal with the concave part. Roughly speaking,
apart from the smallest (in the vicinity of q ≈ −1) and
large q values the multifractality occurs.

In this part we found the range −1 < q < 3, where pre-
diction of the MF-CTRW model for ln (〈Δtq〉 /Γ (1 + q))
satisfactorily fits empirical data. We expect that the model
can be applied to descrption of all empirical data forming
curves of the shape like those shown in Figures 1 and 2 (cf.
also plot in Fig. 2 in Ref. [1]). The multifractality found in
Section 2 was, however, insufficient to observe any phase
transition.

On the basis of this description we performed two
steps. That is,

(ii) we found (by applying the Saddle-Point Approxima-
tion) a multifractal scaling equation (33) together with
equation (36) of the generalized partition function
Z(q′) and hence;

(iii) by using the Legendre transformation, we applied the
formalism of equilibrium thermodynamics related to

global τ(q′) and local η(q′) exponents to our multifrac-
tal system; we considered phase transitions16 mainly as
those of the third order. The formula (51) for the ex-
plicit dependence of the specific heat vs. q′ was here
the key one.

We obtained our results in the form presented, because
we used the interevent time distribution in the form of
superstatistics, where

(1) the integral kernel, ρ(ε), was given by the stretched
exponential (often used for disordered systems) rather
than the exponential function used in the original ver-
sion of the Continuous-Time Random Walk formalism;

(2) the conditional Pausing-Time Distribution, ψ(Δt | ε),
was assumed in the Poisson (exponential) form as well
as;

(3) the first moment 〈Δt | ε〉 = γ(ε) was assumed that
exponentially depends on parameter ε.

Additionally, we extended the comparison of prediction of
the heuristic multifractal formula (proposed in our recent
paper [1]) with empirical data to the negative q, namely

(iv) we fitted the q-moments 〈Δtq〉/Γ (1 + q), given by
the HMF formula within the range −1 < q ≤ 20, quite
well.

Our approach can be considered as complementary to the
commonly used Multifractal Detrended Fluctuation Anal-
ysis (MF-DFA) [7–9]. Although we are able to transform
the scaling exponent τ(q′) into the form required by the
MF-DFA method, finding the relation between our ap-
proach and the MF-DFA one remains as a challenge (since
it is an open question how our qth order partition function
relates to the fluctuation function of the corresponding or-
der used in the MF-DFA method).

Concluding, as the most important result concerning
the multifractality we considered the third- and higher or-
der phase transitions found at q = 0, whose order directly
depends on exponent α. These phase transitions can be
roughly interpreted as transitions between the phase (with
q < 0) where high frequency tradings (or short intertrans-
action times) are most visible and the phase (with q > 0)
defined by the low frequency tradings (or long intertrans-
action times). In other words, according to decreasing pa-
rameter q, for q < 0, better and better visible are shorter
and shorter intertransaction times; the reverse situation
occurs for increasing q, for q > 0.

16 The system is said to exhibit a phase transition if by a very
small continuous change of an appropriate thermal variable the
behaviour of the system changes abruptly.
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Another interpretation arises from the observation
that these phase transitions are driven by the way de-
termining how the probability that q′ transactions occur
at any rectangle (Δt, Δε) (cf. Sect. 3) passes the situation
when q′ = 1. That is, transition between the situation
where more than single transation occurs (q′ > 1) to the
situation, where less than one (q′ < 1) occurs can here be
interpreted as the higher-order phase transition.

The higher-order phase transitions is uncommon in the
real world and (to our knowledge) was found herein for
the first time on the financial market. The order of the
phase transition can classify the global measure of the
risk. When this order is higher, then finding discontinuity
is more difficult (as it is more hidden) and, hence, investor
activity can be less risky and more intense. Therefore, if
an investor would like to trade less risky assets he or she
should avoid such time series, which supply the lowest
(the first and/or the second) order phase transitions and
left those, which exhibit the higher-order phase transitions
between localized (q′ > 1) and delocalized (q′ < 1) phases.

We hope that this finding will inspire investors to con-
sider not only the dynamics of financial instrument itself
but at least (i) its first derivative (or velocity); (ii) its
acceleration (or the second derivative of the instrument)
as well as (iii) its jerk (or the third derivative). Hence,
for example, the higher order volatilities and correlations
should be also considered (cf. [67]).

Two of us (A.K. and R.K.) wish to thank the Organizers of
the 7th International Conference “Applications of Physics in
Financial Analysis” & Tokyo Tech – Hitotsubashi Interdisci-
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Two of us (A.K. and R.K.) thank Didier Sornette and Armin
Bunde for useful discussions. Two of us (J.P. and J.M.) wish
to thank the Ministerio of Ciencia e Innovación for partial fi-
nancial support under contract FIS 2009-09689.

Appendix A: Calculation of the integral J(q′)

In the present section we calculate, by using the Saddle-
Point Approximation, the basic integral

J(q′) =
∫ ∞

−∞
dy exp

(
−q

′

2
| y |α +λσ(1 − q′)y

)
(53)

and, hence, the generalized partition function

Z(q′) ≈ Nq′ exp(λ (1 − q′)μ)J(q′), (54)

where the factor Nq′ is

Nq′ =
1
q′
M1−2 q′

. (55)

and the coefficient M is defined as

M = 21+1/αΓ (1 + 1/α). (56)

In order to evaluate the integral (53), first, we change the
integration variable y = κx, (where κ > 0), which results
in

J(q′) = κ

∫ ∞

−∞
exp [−f(x)] dx (57)

where

f(x) =
q′

2
| κx |α −sgn(1 − q′)κλσ | 1 − q′ | x. (58)

By assuming that coefficients at both powers of variable
x are equal, we obtain

κ =
[
2
λσ | 1 − q′ |

q′

]1/(α−1)

. (59)

Hence, integral J(q′) takes the form

J(q′) = κ

∫ ∞

−∞
exp

[
−q

′κα

2
h(x)

]
dx, (60)

where

h(x) =| x |α −sgn(1 − q′)x. (61)

Now, we are ready to go for both steps of SPA for the
calculation of integral J(q′):

(i) approximation of the function h(x) by the parabolic
expansion around its minimum x0,

h(x) ≈ h(x0) +
1
2
h′′(x0)(x − x0)2, (62)

where minimum

x0 =
sgn(1 − q′)
α1/(α−1)

(63)

while

h(x0) =
1

αα/(α−1)
− 1
α1/(α−1)

= − α− 1
αα/(α−1)

< 0,

h′′(x0) = α(α − 1) | x0 |α−2

= (α − 1)α1/(α−1) > 0, (64)

and, next;
(ii) the explicit calculation of the Gaussian integral (based

on the quadratic part of h(x) function) as an approxi-
mation of J(q′), namely

J(q′) ≈ κ exp
[
−q

′κα

2
h(x0)

]

×
∫ ∞

−∞
exp

[
−q

′κα

4
h′′(x)(x − x0)2

]
dx

=
2κ

√
π√

q′καh′′(x0)
exp

[
−q

′κα

2
h(x0)

]
. (65)
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Finally, by introducing expressions (64) into (65) and us-
ing definition of κ (59) we obtain

J(q′) =
(

2π
α− 1

)1/2 [
2
α

(λσ)2−α

]1/2(α−1)

×
( | 1 − q′ |2−α

q′

)1/2(α−1)

× exp

[
b

( | 1 − q′ |α
q′

)1/(α−1)
]
, (66)

where

b = ω−1
0 (21/αλσ)α/(α−1), (67)

here ω0
def.= αα/(α−1)/(α− 1).

By using the last row in expression (31) we obtain the
formula for the generalized partition function

Z(q′) ≈ Nq′

(
2π
α− 1

)1/2 [
2
α

(λσ)2−α

]1/2(α−1)

×
( | 1 − q′ |2−α

q′

)1/2(α−1)

× exp

[
λμ(1 − q′) + b

( | 1 − q′ |α
q′

)1/(α−1)
]
.

(68)

In order to return to normalized Z(q′) (i.e. to the par-
tition function obeying (26)), we have to neglect a part
of the prefactor of equation (68). Thus, our final rough
approximation for the partition function is

Z(q′) ≈M1−q′
q′(1−2α)/2(α−1)

× exp

[
λμ(1 − q′) + b

( | 1 − q′ |α
q′ + q′0

)1/(α−1)
]
,(69)

where the correction constant q′0 should be estimated from
the requirement of self-consistency of the approach while
its exact value should be obtained by comparing the pre-
diction of the approach with the corresponding empirical
data. This Z(q′) is further considered in Section 3. Beside
the normalization obeyed by expression (69), Z(q′) takes
(for α = 2) the form defined by the Gaussian kernel ρ(ε),
which can be derived by independent, exact calculations,
without applying SPA.
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