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Summary

A Lie system is a non-autonomous system of first-order ordinary differential equations whose general
solution can be described as an autonomous function, the superposition rule, of a generic family of particular
solutions and a set of constants [CL.PH12, PW, CGM00, CGM07]. Relevant types of Lie systems are
non-autonomous linear systems of first-order ordinary differential equations and most types of Riccati
equations, e.g. matrix and conformal Riccati equations [CL.PH12, PW, AW].

The interest of Lie systems is twofold. On the one hand, their study involves the analysis of relevant
properties of geometric structures such as k-symplectic structures [LV.H1], Dirac structures [CGL.H6],
momentum maps [CGL.H6, CGL.H8], or the local classification of finite-dimensional Lie algebras of
vector fields on manifolds [BBHL.H2, GKO92]. On the other hand, Lie systems occur in physics, biology,
medicine, etcetera [BHL.H3]. As Lie systems are not very well known [CL.PH12], their applications to old
and modern problems allow for approaches that have passed unadvertised so far (cf. [LV.H1]).

This habilitation thesis describes my postdoctoral results on the application of modern geometric and
algebraic structures to Lie systems, superposition rules, and their applications in physics, biology, and
mathematics. My findings were published in a series of nine articles:

LV.H1. J. de Lucas and S. Vilariño, k-Symplectic Lie systems: theory and applications, J. Differential
Equations 258, 2221–2255 (2015). (Ranking JCR4: 14/312 in Mathematics) My contribution was
around the 85%.

BBHL.H2. A. Ballesteros, A. Blasco, F.J. Herranz, J. de Lucas, and C. Sardón, Lie–Hamilton systems on the
plane: Properties, classification and applications, J. Differential Equations 258, 2873–2907 (2015).
(Ranking JCR: 14/312 in Mathematics) My contribution was around the 60%.

BHL.H3. A. Blasco, F.J. Herranz, J. de Lucas, and C. Sardón, Lie–Hamilton systems on the plane:
applications and superposition rules, J. Phys. A 48, 345202 (2015). (Ranking JCR: 11/53 in
Physics, Mathematical) My contribution was around the 65%.

LTV.H4. J. de Lucas, M. Tobolski, and S. Vilariño, A new application of k-symplectic Lie systems, Int. J.
Geom. Methods Mod. Phys. 12, 1550071 (2015). (Ranking JCR: 41/53 in Physics) My contribution
was around the 55%.

HL.H5. F.J. Herranz, J. de Lucas, and C. Sardón, Jacobi–Lie systems: theory and low dimensional
classification in: The 10th AIMS Conference on Dynamical Systems, Differential Equations and

Applications, AIMS Proceedings 2015, p. 605–614. My contribution was around the 70%.
CGL.H6. J.F. Cariñena, J. Grabowski, J. de Lucas, and C. Sardón, Dirac–Lie systems and Schwarzian

equations, J. Differential Equations 257, 2303–2340 (2014). (Ranking JCR: 16/312 in
Mathematics) My contribution was around the 55%.

BCHL.H7. A. Ballesteros, J.F. Cariñena, F.J. Herranz, J. de Lucas, and C. Sardón, From constants of motion to
superposition rules for Lie–Hamilton systems, J. Phys. A 46, 285203 (2013). (Ranking JCR: 26/78
in Physics, Multidisciplinary) My contribution was around the 55%.

CGL.H8. J.F. Cariñena, J. de Lucas, and C. Sardón, Lie–Hamilton systems: theory and applications, Int. J.
Geom. Methods Mod. Phys. 10, 1350047 (2013). (Ranking JCR: 45/55 in Physics) My contribution
was around the 65%.

4Ranking JCR stands for the ranking in the Journal Citation Reports in the year of publication of the paper. Additional information
is detailed in the curriculum of this habilitation.
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6 SUMMARY

CLS.H9. J.F. Cariñena, J. de Lucas, and C. Sardón, A new Lie systems approach to second-order Riccati
equations, Int. J. Geom. Methods Mod. Phys. 9, 1260007 (2012). (Ranking JCR: 34/55 in Physics,
Mathematical) My contribution was around the 70%.

There were just a very few and simple applications of symplectic structures and Drinfel’d doubles to
Lie systems when I finished my PhD in 2009 (see e.g. [CGM00, CR05]). After analysing several new Lie
systems of Hamiltonian type [CGL.H8, CLS.H9], I noticed that geometric structures can be of the utmost
relevance in this research field. Subsequently, I applied Poisson, Dirac, Jacobi and k-symplectic structures
to construct superposition rules and other invariants of Lie systems appearing in physical, mathematical, and
biological related problems, e.g. Ermakov-Ince invariants [CGL.H8], viral models [BHL.H3] or Casimir
tensor fields [BBHL.H2]. As a first consequence, this allowed me to understand known and new invariants
related to Lie systems geometrically [BCHL.H7, LTV.H4]. Second, that gave rise to techniques simplifying
previous methods to obtain superposition rules, constants of motion, etcetera [BCHL.H7]. Third, my
research led to derive new results and applications of modern geometric theories [LV.H1]. As a byproduct, I
obtained many findings on the existence, properties, and applications of Lie algebras of vector fields on the
plane [BBHL.H2, HL.H5]. This has inspired further research by other authors [LS16, CS16, CS16II].

In particular, the well-known superposition rule for Riccati equations [LS] was derived through a
symplectic invariant constructed by means of a Casimir element of sl(2) [BCHL.H7]. This led me to devise
methods to simplify the calculation of superposition rules for Lie-Hamilton systems via Poisson coalgebras
[BBHL.H2, BHL.H3, BCHL.H7]. I proved that k-symplectic structures can be related to Poisson algebras
of functions. This was previously considered as impossible and/or useless [LV.H1]. Nevertheless, I proved
that these Poisson algebras enable us to simplify the calculation of superposition rules and I applied this to
study systems of first-order ordinary differential equations, control systems, and physical models [LV.H1].
This opened a new field of applications for k-symplectic structures, which are mainly applied nowadays to
systems of partial differential equations appearing in field theories [LSV16].

The line of research described in this habilitation is far from being exhausted since other geometric
structures can be applied to Lie systems as noticed in [LS16], where Lie systems were related to
Nambu-Poisson structures. I think that Lie systems can also be studied through multisymplectic structures,
twisted-Dirac manifolds, and Lie algebroids [CGL.H6]. I expect to develop these ideas in a near future.

Previously to my postdoctoral research, Lie systems were mainly applied to types of matrix Riccati
equations, Ermakov-like systems, and a few Lie systems appearing in control theory and quantum
mechanics by Cariñena, Marmo, Winternitz, and their coworkers [CL.PH12, PW, CGM00]. Meanwhile,
this habilitation thesis details a much larger family of applications as illustrated by my analysis of Lie
systems occurring in viral systems, Kummer–Schwarz equations, diffusion models, equations of the Riccati
hierarchy, Buchdahl equations, and many more (see e.g. [BBHL.H2, BHL.H3, CLS.H9] and Table 2).

The analysis of the above-mentioned examples and their physical meaning was carried out in
collaboration with my previous PhD student, dr. C. Sardón, and they form part of her PhD dissertation
[CS15]. In our common articles, I was mostly concerned with the theoretical part of the work, and
I suggested models for their application. C. Sardón applied my results to physical systems, e.g. in
Winternitz–Smorodinski oscillators, and she also took part in the redaction of our common works. Her
contribution was modest in some of our first common works, but the last paper of her PhD dissertation,
namely [EHL.PH1], was almost entirely performed by her.

This habilitation thesis consists of two chapters. The first one details the main results of this habilitation.
Since Lie systems are rather unknown to the general public, I describe quite in detail my findings and I
illustrate them with recent examples from my research. The second chapter details other scientific activities
accomplished during my postdoctoral research. In particular, it very briefly describes fourteen papers, named
as [EHL.PH1]–[CL.PH14], that I wrote as a continuation of my research line as a PhD. Additionally, I
also describe other works, namely [E1] and [E2], I wrote on the geometric properties and applications
of differential equations, e.g. on the application of infinite-dimensional jet bundles to the description of
symmetries of nonlinear oscillators. The second chapter also describes my attendance at conferences,
seminars, my stays in research centers, and the talks I gave in international conferences, universities, and
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other research centers. A more detailed information can be found in the curriculum accompanying this
dissertation.





CHAPTER 1

Lie systems and geometric structures

1. Introduction to Lie systems

This section surveys the most fundamental concepts and techniques of the theory of Lie systems (see
[CL.PH12, LS, CGM07, CGM00] for details). It also provides a brief state-of-the-art of the subject prior
to the works of my habilitation to help referees with the assessment of the impact of my findings. Although
most results of this section are standard in the literature, their presentation has been devised mainly by my
colleagues and me over the recent years.

Structures are hereafter considered to be real, smooth, and globally defined. This simplifies the
presentation and highlights its main points. More precise results can easily be obtained by adding appropriate
technical assumptions and details. Differential equations are always assumed to be non-autonomous systems
of ordinary differential equations.

Let (V, [·, ·]) be a Lie algebra with a Lie bracket [· , ·] : V ⇥ V ! V . We define Lie(B, V, [·, ·]) to be the
smallest Lie subalgebra of (V, [·, ·]) containing a subset B ⇢ V . When its meaning is clear from context, we
denote (V, [·, ·]) by V and Lie(B, V, [·, ·]) by Lie(B, [·, ·]) or simply Lie(B).
Definition 1.1. A t-dependent vector field X on N is a mapping X : R ⇥N ! TN such that ⌧ �X = ⇡,
where ⇡ : (t, x) 2 R⇥N 7! x 2 N and ⌧ : TN ! N is the canonical tangent bundle projection onto N .

Every t-dependent vector field X on N amounts to a family {X
t

}
t2R of standard vector fields X

t

: x 2
N 7! X(t, x) 2 TN on N .

Definition 1.2. ([CL.PH12], Definition 2.1) The minimal Lie algebra of a t-dependent vector field X on N

is the smallest real Lie algebra of vector fields, V X , containing {X
t

}
t2R, i.e. V X = Lie({X

t

}
t2R, [·, ·]).

Definition 1.3. An integral curve of a t-dependent vector field X on N is an integral curve � : R ! R⇥N

of the vector field X̄ := @

t

+ X(t, x) on R ⇥ N that is also a section of the fiber bundle pr : (t, x) 2
R⇥N 7! t 2 R, i.e. pr � � = Id

N

, where Id
N

is the identity map on N .

In other words, the integral curves of a t-dependent vector field X on N are the sections � : R ! R⇥N

of the fiber bundle pr : (t, x) 2 R⇥N 7! t 2 R that satisfy
d⇡ � �
dt

= X(t,⇡ � �). (1.1)

System (1.1) is the so-called associated system of X . Conversely, a first-order system of ordinary differential
equations in normal form on N determines a unique t-dependent vector field X on N whose integral curves,
�, are such that ⇡ � � are particular solutions to (1.1). This justifies denoting by X both a t-dependent vector
field and its associated system [CL.PH12].

Definition 1.4. ([CGL.H8], Definition 4) Let X be a t-dependent vector field on N . Its associated
distribution, DX

, is the generalised distribution on N given by

DX

x

:= {Y
x

| Y 2 V

X} ⇢ T

x

N, 8x 2 N,

and its associated co-distribution, VX , is the generalised co-distribution on N of the form

VX

x

:= {# 2 T

⇤
x

N | #(Z
x

) = 0, 8 Z

x

2 DX

x

} = (DX

x

)� ⇢ T

⇤
x

N, 8x 2 N,

where (DX

x

)� is the annihilator of DX

x

for each x 2 N .
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10 1. LIE SYSTEMS AND GEOMETRIC STRUCTURES

The generalised distribution DX is involutive and regular on each connected component of an open dense
subset UX of N . Hence, VX becomes a regular co-distribution on each connected component of UX (see
[CGL.H8, p. 5] for details). The most relevant case for us is when DX is spanned by a finite-dimensional
V

X . In that case DX becomes integrable on N (cf. [JP, p. 63]). These structures are interesting to obtain
constants of motion and superposition rules for Lie systems.

Definition 1.5. A Lie system is a system X whose V

X is finite-dimensional. A finite-dimensional Lie
algebra V containing V

X is called a Vessiot–Guldberg Lie algebra of X [BBHL.H2, CL.PH12, PW].

The Lie algebra V X of a Lie system X contains relevant information about it, e.g. a solvable V X allows
us to integrate X by quadratures [CRG].

Example 1.6. Every Lie system on R is locally diffeomorphic to a Riccati equation [Eg07, PW, LS], namely
a differential equation of the form

dx

dt
= a1(t) + a2(t)x+ a3(t)x

2
, x 2 R, (1.2)

where a1(t), a2(t), a3(t) are arbitrary t-dependent real functions. There is a wealth of applications of the
Riccati equation in physics [NR02, Ra71].

The Riccati equation (1.2) has an associated t-dependent vector field X =
P3

↵=1 a↵(t)X↵

, where

X1 := @

x

, X2 := x@

x

, X3 := x

2
@

x

. (1.3)

Since
[X1, X2] = X1, [X1, X3] = 2X2, [X2, X3] = X3,

these vector fields span a Lie algebra V ' sl(2). As X takes values in V , i.e. X
t

2 V for every t 2 R, it
follows that V X ⇢ V and V

X is finite-dimensional. Hence, X is a Lie system and V is a Vessiot–Guldberg
Lie algebra for X . The form of V

X depends on the t-dependent coefficients of X , e.g. V

X = 0 for
a

↵

(t) = 0 with ↵ = 1, 2, 3.

Example 1.7. Let us give another relevant Lie system analyzed in [BBHL.H2, Example 2.1]. Consider the
system of differential equations

dx

dt
= a1(t) + a2(t)x+ a3(t)(x

2 � y

2),
dy

dt
= a2(t)y + a3(t)2xy, (x, y) 2 R2

, (1.4)

where a1(t), a2(t), a3(t) are arbitrary t-dependent real functions. The system (1.4) is a particular type of
planar Riccati equation briefly studied in [Eg07]. Writing z := x+ iy, system (1.4) amounts to

dz

dt
= a1(t) + a2(t)z + a3(t)z

2
, z 2 C, (1.5)

which is a particular type of complex Riccati equations, which plays a relevant role in several physical
problems, like in the study of non-autonomous Schrödinger equations [Sc12] and others [BHL.H3].
Particular solutions of periodic equations of this type have been investigated in [Ca97, Or12] and other
special types of complex Riccati equations appear in [FMR10]. The differential equations (1.5) also appear
in the application of Wei–Norman method in t-dependent quantum harmonic oscillators [CK13].

The system (1.4) is related to the t-dependent vector field X :=
P3

↵=1 a↵(t)X↵

, where

X1 := @

x

, X2 := x@

x

+ y@

y

, X3 := (x2 � y

2)@
x

+ 2xy@
y

(1.6)

span a Vessiot–Guldberg Lie algebra V ' sl(2). Hence, {X
t

}
t2R ⇢ V

X ⇢ V and V

X is finite-dimensional,
which turns X to be a Lie system. The Lie algebra V is a Vessiot–Guldberg Lie algebra for X , and the
systems of the form (1.4) are Lie systems.

Real and complex Riccati equations are types of Riccati equations over a normed division algebra
with unity which are in turn particular cases of conformal Riccati equations [LT.PH2]. Example 1.7 is,
additionally, a particular type of Cayley–Klein Riccati equation, defined and studied in [BHL.H3]. I proved
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that all these differential equations can be described through Lie systems. Details were analyzed together
with my collaborators and students in [BBHL.H2, BHL.H3, LT.PH2].

Riccati equations are differential equations determined by a t-dependent second-order polynomial.
Despite this apparent simplicity, there is no method to integrate a Riccati equation with arbitrary t-dependent
coefficients [Ince]. Nonetheless, the general solution, x(t), to a Riccati equation (1.2) can be written as

x(t) :=
x(1)(t)(x(3)(t)� x(2)(t)) + kx(2)(t)(x(3)(t)� x(1)(t))

x(3)(t)� x(2)(t) + k(x(3)(t)� x(1)(t))
, k 2 R,

in terms of three different particular solutions x(1)(t), x(2)(t), x(3)(t) [Ince]. This reduces the integration of
the whole Riccati equation to determine a set of three particular solutions. This simplifies the integration
by means of numerical methods of Riccati equations [PW], and it also provides techniques to study the
behaviour of their solutions [LT.PH2]. It turns out that (1.4) admits a similar property and, in general, Lie
proved that every Lie system does also [LS]. This motivated the following definition (see [CGM07, LCO09]
for further details).

Definition 1.8. A superposition rule depending on m particular solutions for a system X on N is a function
� : Nm ⇥N ! N , x = �(x(1), . . . , x(m);�), such that the general solution x(t) of X can be brought into
the form x(t) = �(x(1)(t), . . . , x(m)(t);�), where x(1)(t), . . . , x(m)(t) is any generic family of particular
solutions and � is a point of N to be related to initial conditions.

Example 1.9. Riccati equations admit a superposition rule � : R3 ⇥ R ! R given by

x :=
x(1)(x(3) � x(2)) + kx(2)(x(3) � x(1))

x(3) � x(2) + k(x(3) � x(1))
, k 2 R.

The Lie–Scheffers Theorem establishes the necessary and sufficient conditions for a system X to have
a superposition rule [LS, Theorem 44]. A modern statement of this relevant result is described next (for a
modern geometric description see [CGM07, Theorem 1]) .

Theorem 1.10. (Lie–Scheffers Theorem [LS, CGM07]) A system X admits a superposition rule if and
only if X =

P

r

↵=1b↵(t)X↵

for a certain family b1(t), . . . , br(t) of t-dependent functions and a collection
X1, . . . , Xr

of vector fields spanning an r-dimensional real Lie algebra. In other words, a system X admits
a superposition rule if and only if V X is finite-dimensional.

Although the Lie–Scheffers Theorem characterize Lie systems, it can be difficult to determine whether
a particular system X is a Lie system, namely whether V X is finite-dimensional or not. To solve this, it is
helpful to classify all possible finite-dimensional Lie algebras V X on a fixed manifold. Lie proved that every
Vessiot–Guldberg Lie algebra on R is locally diffeomorphic around a generic point, namely a point around
which the elements of the Lie algebra generate a locally regular distribution, to h@

x

, x@

x

, x

2
@

x

i ' sl(2)
[LS, Lie1880]. The corresponding result on R2 was solved by Lie [Lie1880III], but his proof led to many
misunderstandings, which were finally fixed by González, Kamran and Olver [GKO92]. They proved that
every finite-dimensional Lie algebra of vector fields on R2 is locally diffeomorphic around a generic point
to one of the classes in Table 1. That is why we call this classification GKO classification. Additionally,
Winternitz and coworkers classified almost all complex primitive intransitive Lie algebras of complex vector
fields on Cn, and they applied this result to obtain superposition rules for a very general class of complex Lie
systems in certain canonical forms [SW84, SW84II]. Since Winternitz’s classification is based on canonical
forms, it can be easier in relevant cases to obtain the superposition rule by means of other methods.

The geometrical description of superposition rules as well as one of the techniques for their determination
is based upon the notion of diagonal prolongation [CGM07].

Definition 1.11. Given a t-dependent vector field X(t, x) :=
P

n

i=1X
i(t, x)@

x

i

on N , the t-dependent
vector field e

X

[m+1] on N

m+1 of the form e

X

[m+1] :=
P

m

a=0

P

n

i=1X
i(t, x(a))@

x

i

(a)
, is called the diagonal

prolongation of X to N

(m+1).
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TABLE 1. The GKO (González, Kamran, Olver) classification [GKO92] of classes of
finite-dimensional real Lie algebras of vector fields on R2 and their most relevant characteristics. My
contribution to the following table relies on the calculation of the domains and modular generating
systems for every Lie algebra (the first one or two vector fields which are written between brackets
form a modular generating system). These structures were found in [BBHL.H2, Definitions 3.1
and 4.3] to classify finite-dimensional Lie algebras of Hamiltonian vector fields on R2. Finally,
g ' g1 n g2 means that g is the direct sum (as linear subspaces) of g1 and g2, where g2 is an ideal of
g.

# Primitive Basis of vector fields X
i

Domain

P1 A

↵

' Rn R2 {@
x

, @

y

},↵(x@
x

+ y@

y

) + y@

x

� x@

y

, ↵ � 0 R2

P2 sl(2) {@
x

, x@

x

+ y@

y

}, (x2 � y

2
)@

x

+ 2xy@

y

R2
y 6=0

P3 so(3) {y@
x

� x@

y

, (1 + x

2 � y

2
)@

x

+ 2xy@

y

}, 2xy@
x

+ (1 + y

2 � x

2
)@

y

R2

P4 R2 n R2 {@
x

, @

y

}, x@
x

+ y@

y

, y@

x

� x@

y

R2

P5 sl(2)n R2 {@
x

, @

y

}, x@
x

� y@

y

, y@

x

, x@

y

R2

P6 gl(2)n R2 {@
x

, @

y

}, x@
x

, y@

x

, x@

y

, y@

y

R2

P7 so(3, 1) {@
x

, @

y

}, x@
x

+y@

y

, y@

x

�x@

y

, (x

2�y

2
)@

x

+2xy@

y

, 2xy@

x

+(y

2�x

2
)@

y

R2

P8 sl(3) {@
x

, @

y

}, x@
x

, y@

x

, x@

y

, y@

y

, x

2
@

x

+ xy@

y

, xy@

x

+ y

2
@

y

R2

# Imprimitive Basis of vector fields X
i

Domain

I1 R {@
x

} R2

I2 h2 {@
x

}, x@
x

R2

I3 sl(2) (type I) {@
x

}, x@
x

, x

2
@

x

R2

I4 sl(2) (type II) {@
x

+ @

y

, x@

x

+ y@

y

}, x2
@

x

+ y

2
@

y

R2
x 6=y

I5 sl(2) (type III) {@
x

, 2x@

x

+ y@

y

}, x2
@

x

+ xy@

y

R2
y 6=0

I6 gl(2) (type I) {@
x

, @

y

}, x@
x

, x

2
@

x

R2

I7 gl(2) (type II) {@
x

, y@

y

}, x@
x

, x

2
@

x

+ xy@

y

R2
y 6=0

I8 B

↵

' Rn R2 {@
x

, @

y

}, x@
x

+ ↵y@

y

, 0 < |↵|  1 R2

I9 h2 � h2 {@
x

, @

y

}, x@
x

, y@

y

R2

I10 sl(2)� h2 {@
x

, @

y

}, x@
x

, y@

y

, x

2
@

x

R2

I11 sl(2)� sl(2) {@
x

, @

y

}, x@
x

, y@

y

, x

2
@

x

, y

2
@

y

R2

I12 Rr+1 {@
y

}, ⇠1(x)@y

, . . . , ⇠

r

(x)@

y

, r � 1 R2

I13 Rn Rr+1 {@
y

}, y@
y

, ⇠1(x)@y

, . . . , ⇠

r

(x)@

y

, r � 1 R2

I14 Rn Rr {@
x

, ⌘1(x)@y

}, ⌘2(x)@y

, . . . , ⌘

r

(x)@

y

, r � 1 R2

I15 R2 n Rr {@
x

, y@

y

}, ⌘1(x)@y

, . . . , ⌘

r

(x)@

y

, r � 1 R2

I16 C

r

↵

' h2 n Rr+1 {@
x

, @

y

}, x@
x

+ ↵y@y, x@

y

, . . . , x

r

@

y

, r � 1, ↵ 2 R R2

I17 Rn (Rn Rr

) {@
x

, @

y

}, x@
x

+ (ry + x

r

)@

y

, x@

y

, . . . , x

r�1
@

y

, r � 1 R2

I18 (h2 � R)n Rr+1 {@
x

, @

y

}, x@
x

, x@

y

, y@

y

, x

2
@

y

, . . . , x

r

@

y

, r � 1 R2

I19 sl(2)n Rr+1 {@
x

, @

y

}, x@
y

, 2x@

x

+ ry@

y

, x

2
@

x

+ rxy@

y

, x

2
@

y

, . . . , x

r

@

y

, r � 1 R2

I20 gl(2)n Rr+1 {@
x

, @

y

}, x@
x

, x@

y

, y@

y

, x

2
@

x

+ rxy@

y

, x

2
@

y

, . . . , x

r

@

y

, r � 1 R2

Since every vector field can be naturally considered as a t-dependent vector field, the above definition
also applies to vector fields. Their diagonal prolongations are also vector fields [CL.PH12].
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A method for determining superposition rules obtained by Cariñena, Grabowski, and Marmo is briefly
described as follows (see [CGM07, CL.PH7] for details and examples). It is worth noting that this method
is a theoretical improvement of the method of invariants previously applied by Winternitz [PW]. Indeed,
this procedure is implicitly described in the proof of the Lie–Scheffers Theorem [LS].

(1) Take a basis X1, . . . , Xr

of a Vessiot–Guldberg Lie algebra V associated with the Lie system under
study.

(2) Choose the smallest positive integer m so that the diagonal prolongations of X1, . . . , Xr

to N

m are
linearly independent at a generic point.

(3) Take coordinates x1, . . . , xn on N . By defining this coordinate system on each copy of N within
N

m+1, we get a coordinate system {xi(a) | i = 1, . . . , n, a = 0, . . . ,m} on N

m+1. Obtain

n first-integrals F1, . . . , Fn

common to the diagonal prolongations eX [m+1]
1 , . . . ,

e

X

[m+1]
r

such that
@(F1, . . . , Fn

)/@(x1(0), . . . , x
n

(0)) 6= 0.
(4) Assume the above first-integrals to take certain real constant values, i.e. F

i

= k

i

for i = 1, . . . , n.
By means of these equations, calculate the expressions of the variables x

1
(0) . . . , x

n

(0) in terms of
x

1
(a), . . . , x

n

(a), with a = 1, . . . ,m, and k1, . . . , kn.
(5) The obtained expressions give rise to a superposition rule in terms of any generic family of m

particular solutions and the constants k1, . . . , kn.

Since the above method involves solving a system of PDEs to determine F1, . . . , Fn

, the procedure
becomes difficult (or impossible) to be applied. Other techniques to derive superposition rules, e.g. those
described by Winternitz in [PW, AHW81], also demand the integration of the vector fields X1, . . . , Xr

,
which is frequently complicated and long [PW, CL.PH7]. The canonical forms derived by Winternitz
[SW84, SW84II] are useful when it is simple to map our Lie system onto one of the canonical forms, e.g. that
is the case of octonionic Riccati equations [LT.PH2] or the equations of the Riccati chain hierarchy [GL16].
This has applications in many physical systems and in quaternionic quantum mechanics [LT.PH2, GL16].

Previously to this habilitation thesis, applications of Lie systems were mostly restricted to matrix Riccati
equations, thoroughly analyzed by Winternitz and his collaborators [HWA83, LW96], several Milne–Pinney
equations, and a few control systems [CR03, CCR03]. Mathematically, geometric structures, like symplectic
and/or Poisson structures, were very rarely used in the analysis of Lie systems. A few applications were done
in integrable systems [CGM00] and during the study of classical and quantum systems [CR03].

2. Lie–Hamilton systems

2.1. On the relevance of Lie–Hamilton systems. I surprisingly found that there are more applications
for Lie systems admitting a Vessiot–Guldberg Lie algebra of Hamiltonian vector fields with respect to a
Poisson bivector [IV] than for Lie systems not related to any geometric structure [CGL.H8]. This is
illustrated in Table 2, which summarizes most Lie systems of this type I found in [LV.H1, BBHL.H2,
BHL.H3, LTV.H4, HL.H5, CGL.H6, BCHL.H7, CGL.H8, CLS.H9]. This led me to define the following
notion.

Definition 2.1. [CGL.H8, Definition 10] A system X on N is a Lie–Hamilton system if V

X is a
finite-dimensional Lie algebra of Hamiltonian vector fields relative to a Poisson structure on N .

Example 2.2. ([BCHL.H7, Section 7.4] and [CGL.H8, Section 4]) Let us analyze the Hamilton equations
for an n-dimensional Winternitz–Smorodinsky oscillator [WSUF67] on T⇤Rn

0 , with R0 := R\{0}, i.e.
8

>

>

<

>

>

:

dx

i

dt

= p

i

,

dp

i

dt

= �!

2(t)x
i

+
k

x

3
i

,

i = 1, . . . , n, (2.1)
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where !(t) is an arbitrary t-dependent function and k 2 R. These oscillators have attracted quite much
attention in classical and quantum mechanics for their special properties [GPS06, HBS05]. Note that (2.1)
reduce to t-dependent isotropic harmonic oscillators when k = 0.

System (2.1) describes the integral curves of the t-dependent vector field on T⇤Rn

0 given by

X =

n

X

i=1



p

i

@

x

i

+

✓

�!

2(t)x
i

+
k

x

3
i

◆

@

p

i

�

. (2.2)

This allows us to write X

t

= X3 + !

2(t)X1 by defining

X1 := �
n

X

i=1

x

i

@

p

i

, X2 :=
n

X

i=1

1

2
(p

i

@

p

i

� x

i

@

x

i

) , X3 :=
n

X

i=1

✓

p

i

@

x

i

+
k

x

3
i

@

p

i

◆

. (2.3)

Since
[X1, X3] = 2X2, [X1, X2] = X1, [X2, X3] = X3, (2.4)

it follows that (2.1) is a Lie system related to a Vessiot–Guldberg Lie algebra isomorphic to sl(2). This Lie
algebra also consists of Hamiltonian vector fields relative to the natural Poisson bivector ⇤ :=

P

n

i=1 @xi

^@
p

i

.
Indeed, let b⇤ be the vector bundle morphism b⇤ : T⇤Rn

0 ! TRn

0 given by [b⇤(✓)](✓0) := ⇤(✓, ✓0) for arbitrary
✓, ✓

0 2 T⇤Rn

0 . Then, X
↵

= �b⇤(dh
↵

), with ↵ = 1, 2, 3 and

h1 =
1

2

n

X

i=1

x

2
i

, h2 = �1

2

n

X

i=1

x

i

p

i

, h3 =
1

2

n

X

i=1

✓

p

2
i

+
k

x

2
i

◆

. (2.5)

Hence, X becomes a Lie–Hamilton system.

Each vector field X

t

, with t 2 R, admits a Hamiltonian function h

t

= h3 + !

2(t)h1 and

{h1, h2}⇤ = �h1, {h1, h3}⇤ = 2h2, {h2, h3}⇤ = h3,

where {·, ·}⇤ is the Poisson bracket related to ⇤ [IV]. Hence, X can be associated with a t-dependent
Hamiltonian function h := h3 + !

2(t)h1 taking values in a finite-dimensional Lie algebra of functions
(over the reals). I found a similar structure while studying Kummer–Schwarz equations of second-order
[BCHL.H7, CGL.H8] and certain integrable systems with trigonometric non-linearities [BCHL.H7,
ADR12]. This led me to give a definition for the above structure and to study its properties.

Definition 2.3. ([CGL.H8, Definition 11]) A Lie–Hamiltonian structure is a triple (N,⇤, h), where (N,⇤)
stands for a Poisson manifold and h represents a t-parametrised family of functions h

t

: N ! R such that
W := Lie({h

t

}
t2R, {·, ·}⇤) is finite-dimensional. We call W the Lie–Hamilton algebra of (N,⇤, h). A

t-dependent vector field X admits, or possesses, a Lie–Hamiltonian structure (N,⇤, h) if X
t

= �b⇤(dh
t

)
for all t 2 R.

Roughly speaking, a Lie–Hamiltonian structure is a curve within a certain Lie algebra of functions
relative to a Poisson structure, and a system X admits a Lie–Hamiltonian structure if it can be determined
by means of one. The following example illustrates the above.

Example 2.4. ([CGL.H8, p. 10–12]) The system X given by (2.2) admits a Lie–Hamiltonian structure given
by (T⇤Rn

0 ,⇤, h = h3+!

2(t)h1). Indeed, X
t

= �b⇤(dh
t

) for each t 2 R. The corresponding Lie–Hamilton
algebra reads Lie({h

t

}
t2R). If {X

t

}
t2R = hX1, X3i, then {h

t

}
t2R = {h1, h3} and W = {h1, h2, h3}.

The main theorem of the theory of Lie–Hamilton systems is the following one. Roughly speaking, it
states that every Lie–Hamilton system comes from a curve in a finite-dimensional Lie algebra of functions
relative to a Poisson structure.

Theorem 2.5. ([CGL.H8, Theorem 16]) A system X admits a Lie–Hamiltonian structure if and only if it is
a Lie–Hamilton system.
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TABLE 2. Specific Lie–Hamilton systems on the plane according to their class given in Table 1.
All of these systems have t-dependent real coefficients except for P1. The systems marked with ‘⇤’
(Ir=2
14A and Ir=2

14B) have been studied in [BBHL.H2], while the one marked with ‘†’ in P3 can be found
in [BCHL.H7, ADR12]. All these Lie systems were discovered in the papers [LV.H1]–[CLS.H9].
Further information on this table can be found in [BHL.H3].

# LH systems

P1 Complex Bernoulli equation ż = ia(t)z + b(t)z

n for real a(t) and complex b(t)

P2 Complex Riccati equation
Milne–Pinney and Kummer–Schwarz equations with c > 0

P3 Projective Schrödinger equations on CP1

Planar system with trigonometric nonlinearities†

P5 Dissipative harmonic oscillator
Second-order Riccati equation in Hamiltonian form

I4 Split-complex Riccati equation
Coupled Riccati equations
Milne–Pinney and Kummer–Schwarz equations with c < 0

Planar diffusion Riccati system for c0 = 1

I5 Dual-Study Riccati equation
Milne–Pinney and Kummer–Schwarz equations with c = 0

Harmonic oscillator
Planar diffusion Riccati system for c0 = 0

Ir=1
14A Complex Bernoulli equation ż = a1(t)z + a2(t)z

n

Generalised Buchdahl equations
Lotka–Volterra systems

Ir=2
14A Quadratic polynomial systems ẋ = bx+ c(t)y + f(t)y

2, ẏ = y with b /2 {1, 2}⇤

Ir=2
14B Quadratic polynomial systems ẋ = bx+ c(t)y + f(t)y

2, ẏ = y with b 2 {1, 2}⇤

A primitive model of viral infection⇤

2.2. Existence and classification of Lie–Hamilton systems on low-dimensional manifolds. After
defining Lie–Hamilton systems, I tried to determine conditions characterizing when a Lie system can be
considered as a Lie–Hamilton system relative to a certain Poisson structure. The only Lie–Hamilton system
on the real line is X = 0 [CGL.H6]. In general, there exists no easy criterium to check whether a Lie system
on a fixed manifold is a Lie–Hamilton system. This section summarizes my main results on this topic.

The following criterium is useful to determine when a Lie system cannot be considered as a
Lie–Hamilton system.

Proposition 2.6. [CGL.H6, Proposition 5.1] If X is a Lie system on an odd-dimensional manifold N and
DX

x0
= T

x0N for a point x0 in N , then X is not a Lie–Hamilton system on N .

In virtue of the previous proposition certain Lie systems, e.g. third-order Kummer–Schwarz equations
[CGL.H6], cannot be studied as Lie–Hamilton systems. This motivated to study Lie systems with
Vessiot–Guldberg Lie algebras of Hamiltonian vector fields relative to more general structures, e.g.
k-symplectic structures (see [LV.H1, CGL.H6] for details).

The GKO classification allowed me to classify in [BBHL.H2] all Vessiot–Guldberg Lie algebras of
Hamiltonian vector fields on the plane around a generic point of the Lie algebra. The domain of a Lie
algebra of vector fields is the set of generic points of the Lie algebra. My classification along with the
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calculation of domains of Lie algebra of vector fields on the plane and other related notions is shown in
Tables 1, 3 and 4 [BBHL.H2, BHL.H3]. This gave rise to a local classification of Lie–Hamilton systems on
the plane. I hereafter resume my main results on the topic. To simplify the notation, U will hereafter stand
for a contractible open subset of R2.

A volume form ⌦ on an n-dimensional manifold N is a non-vanishing n-form on N . The divergence of
a vector field X on N with respect to ⌦ is the unique function divX : N ! R satisfying L

X

⌦ = (divX)⌦,
where L

X

denotes the Lie derivative in terms of X . An integrating factor for X on U ⇢ N is a function
f : U ! R such that L

fX

⌦ = 0 on U .
The key notion to accomplish the classification of Vessiot–Guldberg Lie algebras of Hamiltonian vector

fields on the plane is given next.

Definition 2.7. ([BBHL.H2, Definition 4.3]) Let V be a vector space of vector fields on U , we say that
V admits a modular generating system (U1, X1, . . . , Xp

) if U1 is a dense open subset of U such that every
X 2 V |

U1 can be brought into the form X|
U1 =

P

p

i=1 giXi

|
U1 for certain functions g1, . . . , gp 2 C

1(U1)
and X1, . . . , Xp

2 V .

Example 2.8. ([BBHL.H2, Example 4.1]) Given the Lie algebra P3 ' so(3) on R2 of Table 1, the vector
fields

X1 = y@

x

� x@

y

, X2 = (1 + x

2 � y

2)@
x

+ 2xy@
y

of P3 satisfy that X3 = g1X1 + g2X2 on U1 := {(x, y) 2 R2 | x 6= 0} for the functions g1, g2 2 C

1(U1)
given by g1 := (x2 + y

2 � 1)/x and g2 := y/x. Obviously, U1 is an open dense subset of R2. As every
element of V is a linear combination of X1, X2 and X3 = g1X1+g2X2, then every X 2 V |

U1 can be written
as a linear combination with smooth functions on U1 of X1 and X2. So, (U1, X1, X2) forms a generating
modular system for P3.

I derived a modular generating system for every Lie algebra of the GKO classification ([BCHL.H7,
Table 1] and Table 1 in this dissertation). My results appear in Table 1. This notion gave rise to the following
theorem and corollary.

Theorem 2.9. ([BCHL.H7, Theorem 4.4]) Let V be a Lie algebra of vector fields on U ⇢ R2 admitting a
modular generating system (U1, X1, . . . , Xp

). We have that:
1) The space V consists of Hamiltonian vector fields relative to a symplectic form on U if and only if:

i) Let g1, . . . , gp be certain smooth functions on U1 ⇢ U . Then,

X|
U1 =

p

X

i=1

g

i

X

i

|
U1 2 V |

U1 =) divX|
U1 =

p

X

i=1

g

i

divX
i

|
U1 . (2.6)

ii) The elements X1, . . . , Xp

admit a common non-vanishing integrating factor on U .
2) If the rank of DV is two on U , then the symplectic form is unique up to a multiplicative non-zero constant.

Corollary 2.10. ([BCHL.H7, Corollary 4.5]) If a Lie algebra of vector fields V on a U ⇢ R2 consists of
Hamiltonian vector fields with respect to a symplectic form and admits a modular generating system whose
elements are divergence free, then every element of V is divergence free.

The application of Theorem 2.9 and Corollary 2.10 to the GKO classification allows for the local
classification of Vessiot–Guldberg Lie algebras of Hamiltonian vector fields on R2. My result is detailed
in Table 3.

Table 3 enables us to determine if X is a Lie-Hamilton system and it details all important structures
related to this fact provided it is possible to determine to which class of the GKO classification V

X is
diffeomorphic to. If so, a change of variables mapping V

X into the Lie algebra given in Table 3 enables
us to derive a symplectic structure turning X into a Lie–Hamilton system. If V X is isomorphic only to one
class of the GKO classification, then it is simple to establish whether X is a Lie-Hamilton system or not.
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TABLE 3. The classification of the 4 + 8 classes of finite-dimensional real Lie algebras of
Hamiltonian vector fields on R2 found in [BBHL.H2]. For I12, I14A and I16, we have j = 1, . . . , r

and r � 1; in I14B the index j = 2, . . . , r.

# Primitive Hamiltonian functions h
i

! Lie–Hamilton algebra

P1 A0 ' iso(2) y, �x,

1
2 (x

2
+ y

2
), 1 dx ^ dy iso(2)

P2 sl(2) �1

y

, �x

y

, �x

2
+ y

2

y

dx ^ dy

y

2
sl(2) or sl(2)� R

P3 so(3)

�1

2(1 + x

2
+ y

2
)

,

y

1 + x

2
+ y

2
,

dx ^ dy

(1 + x

2
+ y

2
)

2
so(3) or so(3)� R

� x

1 + x

2
+ y

2
, 1

P5 sl(2)n R2
y, �x, xy,

1
2y

2
, � 1

2x
2
, 1 dx ^ dy sl(2)n R2 ' h6

# Imprimitive Hamiltonian functions h
i

! Lie–Hamilton algebra

I1 R
R

y

f(y

0
)dy

0
f(y)dx ^ dy R or R2

I4 sl(2) (type II)
1

x� y

,

x+ y

2(x� y)

,

xy

x� y

dx ^ dy

(x� y)

2
sl(2) or sl(2)� R

I5 sl(2) (type III) � 1

2y

2
, � x

y

2
, � x

2

2y

2

dx ^ dy

y

3
sl(2) or sl(2)� R

I8 B�1 ' iso(1, 1) y, �x, xy, 1 dx ^ dy iso(1, 1) ' h4

I12 Rr+1 �
R

x

f(x

0
)dx

0
,�

R
x

f(x

0
)⇠

j

(x

0
)dx

0
f(x)dx ^ dy Rr+1 or Rr+2

I14A Rn Rr (type I) y, �
R

x

⌘

j

(x

0
)dx

0, 1 /2 h⌘
j

i dx ^ dy Rn Rr or (Rn Rr

)� R

I14B Rn Rr (type II) y, �x, �
R

x

⌘

j

(x

0
)dx

0
, 1 dx ^ dy (Rn Rr

)

I16 C

r

�1 ' h2 n Rr+1
y, �x, xy, � x

j+1

j + 1

, 1 dx ^ dy h2 n Rr+1

There are several isomorphic classes of Vessiot–Guldberg Lie algebras in the GKO classification that
are not diffeomorphic, e.g. I5, P2, and I4. The following results permit us to determine to which of them a
Vessiot–Guldberg Lie algebra is diffeomorphic to.

Definition 2.11. ([BHL.H3, Definition 4.3]) Let V be a finite-dimensional real Lie algebra of vector fields
and let S2(V ) be the space of 2-contravariant symmetric tensors of elements on V . We call Casimir tensor
field of V an element R 2 S2(V ) such that L

X

R = 0 for every X 2 V .

Theorem 2.12. ([BHL.H3, Theorem 4.4]) Let V be a Vessiot–Guldberg Lie algebra diffeomorphic to either
P2, I4 or I5. Let R be a non-zero Casimir tensor field for V . Writing R =

P2
↵,�=1R

↵�

@

↵

⌦@

�

with @1 = @

x

and @2 = @

y

, we define
I(V ) := sign

⇣

det(R↵�(x))
⌘

, 8x 2 domV,

where domV is the domain of V . If I(V ) > 0, then V is locally diffeomorphic to P2; when I(V ) < 0, then
V is locally diffeomorphic to I4; if I(V ) = 0, then V is locally diffeomorphic to I5.

Above result was applied by my colleagues and my PhD student to determine to which class of the
GKO classification belong Smorodinsky–Winternitz oscillators, harmonic oscillators, Kummer–Schwarz
equations, and other known and new types of Lie systems on the plane [BHL.H3].

Instead of using a change of variables to map V

X into a class of Table 3, I found that the following
propositions allow us to determine a symplectic structure turning the elements of V

X into Hamiltonian
vector fields without using changes of variables.



18 1. LIE SYSTEMS AND GEOMETRIC STRUCTURES

TABLE 4. Nonexhastive tree of inclusion relations between classes of the GKO classification
[BBHL.H2]. This diagram significantly completes the inclusion relations between the classes of the
GKO classification given in [GKO92]. The Lie algebras appearing out of the dot line are considered
to have dimension bigger than 6. We write A ! B when a subclass of A is diffeomorphic to a Lie
subalgebra of B. Every Lie algebra includes I1. In bold and italics are classes with Hamiltonian Lie
algebras and rank one associated distribution, respectively. Colors help distinguishing the arrows.

dim > 6 P8 I20

dim 6 ! P7 P6

OO

I11 I19

99

I18

OO

dim 5 ! P5

OO

I10

OO

I16

99

I15

dim 4 ! P4

>>OO

I6

OO

I9

44

ff

I7

11

I17

OO

I13 I

r>1
14

OO

dim 3 ! P3

00

HH

P2

??

P1

gg

I3

OO

I8

ff

OO

I5

nn

OO

88

I4

mm

Ir>1
12

OO

dim 2 ! Ir=1
14A ' h2

00

44

00
cc

cc

I2 ' h2

??

88 77

__

OO

DD ::

Ir=1
14B ' R2

ZZ

ff

hh

==

>>

cc

I r=1
12 ' R2

hh

CC

BB

66

EE

Proposition 2.13. ([BHL.H3, Proposition 3.1]) Let V be a Vessiot–Guldberg Lie algebra of planar vector
fields. The vector fields of V are Hamiltonian with respect to a bivector field ⇤ 2 V ^ V \{0} if and only if
V admits a one-dimensional trivial Lie algebra representation within V ^ V .

Theorem 2.14. ([BHL.H3, Theorem 3.6]) If V is a planar Vessiot–Guldberg Lie algebra admitting a
two-dimensional ideal I such that I ^ I 6= {0} and the elements of V act on I by traceless operators,
namely the mappings #

X

: Y 2 I 7! [X,Y ] 2 I are traceless for each X 2 V , then V becomes a Lie
algebra of Hamiltonian vector fields with respect to every element of I ^ I\{0}.

The application of previous results gave rise to the determination of symplectic structures for most
classes of Lie–Hamilton systems on the plane (see Examples 3.4, 3.5, 3.8–3.11 in [BHL.H3]).

2.3. Lie–Hamilton algebras. The other ingredient appearing in the study of Lie–Hamilton systems are
Lie–Hamilton algebras. Their analysis is crucial to derive superposition rules [BCHL.H7] and constants
motion of Lie–Hamilton systems [CGL.H8]. I will now detail my main results on the topic.

Lie–Hamilton algebras are not uniquely defined in general [BBHL.H2, Example 5.1]. Moreover, the
existence of different types of Lie–Hamilton algebras for the same Lie–Hamilton system is important for
their linearization and the use of certain methods [CGL.H8]. For instance, if a Lie–Hamilton system X on
N admits a strong comomentum map, Lie–Hamilton algebra isomorphic to V

X and dimV

X = dimN , then
X can be linearized along with its associated Poisson structure [CGL.H8, Proposition 23].

The following propositions were found and employed in [BBHL.H2] in order to obtain all Lie–Hamilton
algebras for Lie–Hamilton systems on the plane. Their classification is detailed in Table 3.

Proposition 2.15. ([BBHL.H2, Proposition 5.1] A Lie–Hamilton system X on a symplectic connected
manifold (N,!) possesses an associated Lie–Hamilton algebra (H⇤, {·, ·}!) isomorphic to V

X if and only
if every Lie–Hamilton algebra non-isomorphic to V

X is isomorphic to V

X � R.

Proposition 2.16. ([BBHL.H2, Proposition 5.2] If a Lie–Hamilton system X on a symplectic connected
manifold (N,!) admits an associated Lie–Hamilton algebra (H⇤, {·, ·}!) isomorphic to V

X , then it admits
a Lie–Hamilton algebra isomorphic to V

X � R.

Corollary 2.17. ([BBHL.H2, Corollary 5.3] If X is a Lie–Hamilton system with respect to a symplectic
connected manifold (N,!) admitting a Lie–Hamilton algebra (H⇤, {·, ·}!) satisfying that 1 2 {H⇤,H⇤}!,
then X does not possess any Lie–Hamilton algebra isomorphic to V

X .
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Proposition 2.18. ([BBHL.H2, Proposition 5.4] If X is a Lie–Hamilton system on a connected manifold N

admitting a V

X of Hamiltonian vector fields with respect to a symplectic structure ! that does not possess
any Lie–Hamilton algebra (H⇤, {·, ·}!) isomorphic to V

X , then all its Lie–Hamilton algebras (with respect
to the Lie bracket {·, ·}

!

) are isomorphic.

2.4. Constants of motion for Lie–Hamilton systems. Lie–Hamiltonian structures allows one to study
and to derive of constants of motion, Lie symmetries, and other properties of Lie–Hamilton system. Let us
start by the following proposition, constituting an extension of the celebrated result for constants of motion
for autonomous Hamiltonian systems [FM].

Proposition 2.19. [BCHL.H7, Proposition 7] Given a Lie–Hamilton system X on N admitting a
Lie–Hamiltonian structure (N,⇤, h), a t-independent function is a constant of motion for X if and only
if it Poisson commutes with the elements of H⇤. The family IX of t-independent constants of motion of X
form a Poisson algebra (IX

, ·, {·, ·}⇤).

The t-dependent extension of the previous proposition reads as follows.

Proposition 2.20. ([BCHL.H7, Lemma 9 and Proposition 12]) A Poisson manifold (N,⇤) induces a Poisson
manifold (R⇥N, ⇤̄) with Poisson structure

{f, g}⇤̄(t, x) := {f
t

, g

t

}⇤(x), (t, x) 2 R⇥N.

If X is a Lie–Hamilton system on N possessing a Lie–Hamiltonian structure (N,⇤, h), then (IX

, ·, {·, ·}⇤̄),
where IX is the space of t-dependent constants of motion of the system X , is a Poisson algebra.

The Poisson structure accompanying Lie–Hamilton systems allows for powerful methods to obtain
particular types of constants of motion: the Lie integrals and the polynomial Lie integrals defined in
[BCHL.H7] and appearing in physical problems [Ma95]. They will play a relevant role in the description of
superposition rules for Lie–Hamilton systems. Additionally, they are useful in the study of physical systems
as illustrated in coming examples.

Definition 2.21. ([BCHL.H7, Definitions 13 and 16]) Given a Lie–Hamilton system X on N possessing
a Lie–Hamiltonian structure (N,⇤, h), a polynomial Lie integral for X with respect to (N,⇤, h) is
a t-dependent constant of motion f for X of the form f

t

:=
P

I2M �

I

(t)hI , where the I’s are
r-multi-indexes: sets (i1, . . . , ir) of nonnegative integers with r 2 N, the set M is a finite family of
multi-indexes, the �

I

(t) are certain t-dependent functions, and h

I := h

i1
1 · . . . · hir

r

for a fixed basis
{h1, . . . , hr} for the Lie Hamilton algebra H⇤. A Lie integral is a polynomial Lie integral such that �

J

= 0
for every J with |J | :=

P

r

↵=1 i↵ 6= 1.

Proposition 2.22. ([BCHL.H7, Propositions 14 i 15]) Given a Lie–Hamilton system X with a
Lie–Hamiltonian structure (N,⇤, h), the space L

⇤
h

of Lie integrals relative to (N,⇤, h) gives rise to a Lie
algebra (L⇤

h

, {·, ·}⇤̄) isomorphic to (H⇤, {·, ·}⇤). The Lie algebra L

⇤
h

consists of t-independent constants
of motion if and only if H⇤ is Abelian.

We consider S

g

and U

g

to be the symmetric and the enveloping algebras of g [Va84]. Both can be
considered as Poisson Lie algebras, the second begin a non-commutative one, with respect to their natural
associative products and the Lie brackets {·, ·}

Sg and [·, ·]
Ug (see [Va84, CL99, BCHL.H7]). The so-called

symmetrizer map � : S
g

! U

g

is a isomorphism of g-spaces, i.e. �({v, P}
Sg) = [v,�(P )]

Ug for every
P 2 S

g

and v 2 g [Va84].

Proposition 2.23. ([BCHL.H7, Proposition 19]) A function f is a polynomial Lie integral for a
Lie–Hamilton system X with respect to the Lie–Hamiltonian structure (N,⇤, h) if and only if f

t

= D(P
t

)
for every t 2 R, where D : (S

g

, ·, {·, ·}
Sg) ! (C1(N), ·, {·, ·}⇤) is the Poisson algebra morphism

satisfying that its restriction to g is Lie algebra injective mapping with D(g) = H⇤, and the curve P

t

is a
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linear combination with linear t-dependent coefficients of a family of polynomials satisfying the differential
equation

dP

dt
+ {P,w

t

}
Sg = 0, P 2 S

g

, (2.7)

where w

t

stands for a curve in g such that D(w
t

) = h

t

for every t 2 R.

Corollary 2.24. ([BCHL.H7, Corollary 21]) Let X be a Lie–Hamilton system that possesses a
Lie–Hamiltonian structure (N,⇤, h) inducing a Poisson algebra morphism D : S

g

! C

1(N) as in
Proposition 2.23. The function F := D(C), where C is a Casimir element of S

g

, is a t-independent constant
of motion of X . If C is a Casimir element of U

g

, then F = D(��1(C)) is t-independent constant of motion
for X .

Example 2.25. ([BCHL.H7, Section 7.1]) Let us consider the classical Ermakov system [CL.PH12]:
(

d2x
dt2

= �!

2(t)x+ b

x

3 ,

d2y
dt2

= �!

2(t)y,

where !(t) is a non-constant t-dependent frequency and b 2 R. This system appears in a number of
applications related to problems in quantum and classical mechanics [LA08]. By writing this system as
a first-order one

⇢ dx
dt = v

x

,

dv
x

dt = �!

2(t)x+ b

x

3 ,

dy
dt = v

y

,

dv
y

dt = �!

2(t)y,
(2.8)

it becomes a Lie system related to a Vessiot–Guldberg Lie algebra V isomorphic to sl(2) [CL.PH12]. In
fact, system (2.8) describes the integral curves of the t-dependent vector field X = X3 + !

2(t)X1, where
the vector fields

X1 :=�x@

v

x

�y@

v

y

, X2 :=
1

2

�

v

x

@

v

x

+v

y

@

v

y

�x@

x

�y@

y

�

, X3 := v

x

@

x

+v

y

@

y

+
b

x

3
@

v

x

,

satisfy the commutation relations

[X1, X2] = X1, [X1, X3] = 2X2, [X2, X3] = X3. (2.9)

This is a Lie–Hamilton system. Indeed, the vector fields X1, X2, X3 are Hamiltonian with respect to the
Poisson bivector ⇤ = @

x

^ @

v

x

+ @

y

^ @

v

y

. Indeed, their Hamiltonian functions:

h1 =
1

2
(x2 + y

2), h2 = �1

2
(xv

x

+ yv

y

), h3 =
1

2

✓

v

2
x

+ v

2
y

+
b

x

2

◆

,

form a basis for (H⇤, {·, ·}⇤) ' (sl(2), [·, ·]) as they fullfil

{h1, h2} = �h1, {h1, h3} = �2h2, {h2, h3} = �h3. (2.10)

Since X = X3 + !

2(t)X1 and !(t) is not a constant, every t-independent constant of motion f for X
is a common first-integral for X1, X2, X3. Instead of searching an f by solving the system of PDEs given
by X1f = X2f = X3f = 0, we use Corollary 2.24. This easily provides such a first integral through the
Casimir element of the symmetric algebra of sl(2). Explicitly, given a basis {v1, v2, v3} for sl(2) satisfying

[v1, v2] = �v1, [v1, v3] = �2v2, [v2, v3] = �v3, (2.11)

the Casimir element of sl(2) reads C = 1
2(v1e⌦v3 + v3e⌦v1) � v2e⌦v2 2 U

sl(2). Then, the inverse of
symmetrizer morphism [Va84], ��1 : U

sl(2) ! S

sl(2), gives rise to the Casimir element of S
sl(2):

C = �

�1(C) = v1v3 � v

2
2. (2.12)

The isomorphism � : sl(2) ! H⇤ defined by �(v
↵

) = h

↵

for ↵ = 1, 2, 3 induces the Poisson algebra
morphism D in Proposition 2.23. Subsequently, via Corollary 2.24, we obtain

F = D(C) = �(v1)�(v3)� �

2(v2) = h1h3 � h

2
2 = (v

y

x� v

x

y)2 + b

✓

1 +
y

2

x

2

◆

.
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In this way, we recover, up to an additive and non-zero multiplicative constant, the well-known
Lewis–Riesenfeld invariant [LA08]. If !(t) is a constant, then V

X ⇢ V and F is also a constant of motion
for X .

2.5. Superposition rules for Lie–Hamilton systems. One of the reasons to use Lie–Hamilton systems
is that their associated Lie–Hamiltonian structures can be used to derive their superposition rules providing
several advantages with respect to previous methods:

• It avoids the integration for PDEs and ODEs to derive them: this differs from the methods followed
by Winternitz, Cariñena, and their collaborators [CGM07, CGM00],

• There is no need to map the system into a canonical form as needed, for instance, to use previous
Winternitz’s results on superposition rules [PW, SW84, SW84II].

• It naturally provides a geometric understanding of the superposition rule, while other methods focus
only on the expression for the superposition rule.

My method can be applied to Lie–Hamilton systems and its generalizations, like Dirac-Lie systems
[CGL.H6]. As most Lie systems of interest fall into this class, my method is worth of analysis. This
approach requires the use of Poisson coalgebras. Let us briefly introduce this notion.

If (A, ?
A

, {·, ·}
A

) and (B, ?

B

, {·, ·}
B

) are Poisson algebras and ?

A

, ?

B

are commutative, then A ⌦ B

becomes a Poisson algebra (A⌦B, ?

A⌦B

, {·, ·}
A⌦B

) by defining
(a⌦ b) ?

A⌦B

(c⌦ d) := (a ?

A

c)⌦ (b ?
B

d),

{a⌦ b, c⌦ d}
A⌦B

:= {a, c}
A

⌦ b ?

B

d+ a ?

A

c⌦ {b, d}
B

for all a, c 2 A, 8b, d 2 B. Similarly, a Poisson structure on A

(m) :=

m�times
z }| {

A⌦ . . .⌦A can be constructed by
induction.

A Poisson coalgebra is a triple (A, ?
A

, {·, ·}
A

,�) such that (A, ?
A

, {·, ·}
A

) is a Poisson algebra and � :
(A, ?

A

, {·, ·}
A

) ! (A⌦A, ?

A⌦A

, {·, ·}
A⌦A

), the so-called coproduct, is a Poisson algebra homomorphism
which is coassociative [CP95], i.e. (�⌦ Id) �� = (Id⌦�) ��.

Every Lie–Hamilton system X on N can be endowed with a Lie–Hamiltonian structure and an associated
Lie–Hamilton algebra H⇤ ' g. Hence, there exists a natural injective Lie algebra morphism � : g !
C

1(N) mapping every element of g with its corresponding element of H⇤. Additionally, S
g

becomes a
Poisson coalgebra relative to the unique coproduct � : S

g

! S

g

⌦ S

g

satisfying �(v) = v ⌦ 1 + 1⌦ v (cf.
[BCHL.H7]). Moreover,

Lemma 2.26. ([BCHL.H7, Lemma 23]) The map �(m) : (S
g

, ·, {·, ·}
Sg) ! (S

(m)
g

, ·
S

(m)
g

, {·, ·}
S

(m)
g

) , with
m > 1, defined by recursion

�(m) := (

(m�2)�times
z }| {

Id⌦ . . .⌦ Id⌦�(2)) ��(m�1)
, m > 2, (2.13)

where �(2) := � is the natural coproduct on S

g

, is a Poisson algebra morphism.

Lemma 2.27. ([BCHL.H7, Lemma 24]) The Lie algebra morphism � : g ,! C

1(N) gives rise to
a family of Poisson algebra morphisms D

(m) : S

(m)
g

,! C

1(N)(m) ⇢ C

1(Nm ) satisfying, for all
v1, . . . , vm 2 g ⇢ S

g

, that
h

D

(m)(v1 ⌦ . . .⌦ v

m

)
i

(x(1), . . . , x(m))=[D(v1)](x(1)) · . . . · [D(v
m

)](x(m)), (2.14)

where x(i) is a point of the manifold N placed in the i-position within the product N ⇥ . . .⇥N := N

m and
D is the Lie algebra morphism induced by � given in Proposition 2.23.

The above results allow us to prove Theorem 2.29, providing a method to obtain t-independent constants
of motion for the diagonal prolongations of a Lie–Hamilton system. From this result one may obtain
superposition rules for Lie–Hamilton systems in an algebraic way. Additionally, we remark that such a
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theorem is a generalization, only valid in the case of primitive coproduct maps, of the integrability theorem
for coalgebra symmetric systems given in [BR].

Proposition 2.28. ([BCHL.H7, Proposition 25]) If X is a Lie–Hamilton system on N with a
Lie–Hamiltonian structure (N,⇤, h), then the diagonal prolongation e

X

[m+1] to each N

m+1 is also a
Lie–Hamilton system endowed with a Lie–Hamiltonian structure (Nm+1

,⇤m+1
,

e

h) given by

⇤m+1(x(0), . . . , x(m)) :=
m

X

a=0

⇤(x(a)),

where we made use of the vector bundle isomorphism TNm+1 ' TN � · · · � TN (m+1 copies), and
e

h

t

:= D

(m+1)(�(m+1)(h
t

)), where D

(m+1) is the Poisson algebra morphism (2.14) induced by the Lie
algebra morphism g ,! H⇤ ⇢ C

1(N).

Theorem 2.29. ([BCHL.H7, Theorem 26]) If X is a Lie–Hamilton system with a Lie–Hamiltonian structure
(N,⇤, h) and C is a Casimir element of the Poisson algebra (S

g

, ·, {, }
Sg), then:

(i) The functions defined as

F

(k) = D

(k)(�(k)(C)), k = 2, . . . ,m, (2.15)

are t-independent constants of motion for the diagonal prolongation eX of X to N

m. Furthermore, if all the
F

(k) are non-constant functions, they form a set of (m� 1) functionally independent functions in involution.
(ii) The functions given by

F

(k)
ij

= S

ij

(F (k)), 1  i < j  k, k = 2, . . . ,m, (2.16)

where S
ij

is the permutation of variables x(i) $ x(j), are t-independent constants of motion for the diagonal
prolongation eX to N

m.

3. Dirac–Lie systems

The no-go theorem for Lie–Hamilton systems, namely Theorem 2.6, allows us to prove that Schwarz
equations cannot be considered as Lie–Hamilton systems [CGL.H6]. Consider a Schwarzian equation
[Be07, OT09]

{x, t} =
d3x

dt3

✓

dx

dt

◆�1

� 3

2

✓

d2x

dt2

◆✓

dx

dt

◆�2

= 2b1(t), (3.1)

where {x, t} is the refereed to as Schwarzian derivative of the function x(t) in terms of the variable t

and b1(t) is an arbitrary t-dependent function [NM13]. This equation is a particular case of a third-order
Kummer–Schwarz equation [CGL.PH6] and it appears in the study of iterative differential Riccati and
second-order Kummer–Schwarz equations [NM13]. For simplicity, we hereafter assume b1(t) to be
non-constant.

The first-order system of differential equations obtained by adding the variables v := dx/dt and
a := d2x/dt2 to (3.1), i.e.

dx

dt
= v,

dv

dt
= a,

da

dt
=

3

2

a

2

v

+ 2b1(t)v, (3.2)

is a Lie system. Indeed, it is the associated system to the t-dependent vector field

X

3KS

t

= v@

x

+ a@

v

+

✓

3

2

a

2

v

+ 2b1(t)v

◆

@

a

= Y3 + b1(t)Y1,

where the vector fields on O2 := {(x, v, a) 2 T2R | v 6= 0}, with T2R being the second tangent bundle to R
[LM87], given by

Y1 := 2v@
a

, Y2 := v@

v

+ 2a@
a

, Y3 := v@

x

+ a@

v

+
3

2

a

2

v

@

a

, (3.3)
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span a Lie algebra of vector fields V 3KS isomorphic to sl(2) and X

3KS becomes a t-dependent vector field
taking values in V

3KS , i.e. X

3KS is a Lie system. Since D3KS = TO2 and O2 is a three-dimensional
manifold, the no-go theorem for Lie-Hamilton systems, Theorem 2.6, states that this is not a Lie–Hamilton
system and another approach is required. In spite of this, V 3KS consists of Hamiltonian vector fields with
respect to a presymplectic form

!1 :=
dv ^ da

v

3
.

Indeed,

◆

Y1!1 = d

✓

2

v

◆

, ◆

Y2!1 = d
⇣

a

v

2

⌘

, ◆

Y3!1 = d

✓

a

2

2v3

◆

,

The above seems to justify the definition and study of Lie systems with a Vessiot–Guldberg Lie algebra
of Hamiltonian vector fields relative to a presymplectic structure. Nevertheless, it is more appropriate to
consider presymplectic structures as particular cases of Dirac structures [IV] and to study Lie systems with
a Vessiot–Guldberg Lie algebra of Hamiltonian vector fields relative to a Dirac structure. Let us introduce
these notions.

The Pontryagin or generalized tangent bundle over a manifold N is the vector bundle PN := T

⇤
N �

N

TN over N , where �
N

stands for the Whitney sum of vector bundles. The Pontryagin bundle can be
endowed with the natural pairing between forms and vectors. A Dirac manifold is a pair (N,L), where
N is a manifold and L is a subbundle of TN �

N

T

⇤
N such that: a) L is maximally isotropic relative to

the pairing between forms and vectors, b) its space of sections, �(L), is integrable relative to the so-called
Courant bracket [·, ·]

C

on �(PN) (see [Co90] for details on Dirac structures).
Previous example on third-order Kummer-Schwarz equations along with many others developed in

[LV.H1, LTV.H4, HL.H5, CGL.H6] motivates the study of Lie systems admitting a Vessiot–Guldberg Lie
algebra of vector fields of Hamiltonian vector fields relative to a Dirac structure. Recall that a Hamiltonian
vector field relative to a Dirac manifold (N,L), an L-Hamiltonian vector field, is a vector field X on N such
that X + dh 2 �(L) for a certain function h 2 C

1(N) called L-Hamiltonian. We write Adm(N,L) for
the space of L-Hamiltonian functions. If X 2 �(L), then it is sais that X is a gauge vector field. The Dirac
structure allows us to define a Poisson bracket {·, ·}

L

on the space of L-hamiltonian functions. Additionally,
every Dirac manifold induces a Lie algebroid structure (PN, [·, ·]

C

, ⇢ : PN ! TN), where ⇢ is the natural
projection of PN onto TN (see [Ma08] for details on Lie algebroids).

The above example shows the existence of Lie systems that are not of Lie–Hamilton type and admit
a Vessiot–Guldberg Lie algebra of Hamiltonian vector fields relative to a Dirac structure. The previous
and other similar examples can be found in [CGL.H6]. In view of the above, the natural generalization of
Lie–Hamilton systems to the realm of Dirac structures reads as follows.

Definition 3.1. ([CGL.H6, Definition 5.2]) A Dirac–Lie system is a triple (N,L,X), where (N,L) stands
for a Dirac manifold and X is a Lie system admitting a Vessiot–Guldberg Lie algebra of L-Hamiltonian
vector fields.

Definition 3.2. ([CGL.H6, Definition 6.1]) A Dirac–Lie Hamiltonian is a triple (N,L, h), where (N,L)
stands for a Dirac manifold and h represents a t-parametrized family of admissible functions h

t

: N ! R
such that Lie({h

t

}
t2R, {·, ·}L) is a finite-dimensional real Lie algebra. A t-dependent vector field X is said

to admit (or to possess) a Dirac–Lie Hamiltonian (N,L, h) if X
t

+ dh

t

2 �(L) for all t 2 R.

Theorem 3.3. ([CGL.H6, Theorem 6.4]) Every Dirac–Lie system (N,L,X) admits a Dirac–Lie
Hamiltonian (N,L, h).

3.1. Prolongations of Dirac–Lie systems and superposition rules. Let us study the properties of
diagonal prolongations of Dirac–Lie systems. This allows us to apply these structures to obtain superposition
rules and to introduce some new concepts of interest generalizing the diagonal prolongation of t-dependent
vector fields.
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Let ⌧ : E ! N be a vector bundle. Its diagonal prolongation to N

m is the Cartesian product bundle
E

[m] := E ⇥ · · ·⇥ E of m copies of E, viewed as a vector bundle over Nm in a natural way:

E

[m]
(x(1),...,x(m))

' E

x(1)
� · · ·� E

x(m)
.

Every section X : N ! E of E has a natural diagonal prolongation to a section X

[m] of E[m]:

X

[m](x(1), . . . , x(m)) := X(x(1)) + · · ·+X(x(m)) .

Given a function f : N ! R, we call diagonal prolongation of f to N

m the function ef [m](x(1), . . . , x(m)) =
f(x(1)) + . . .+ f(x(m)).

We can consider also sections X(j) of E[m] given by

X

(j)(x(1), . . . , x(m)) := 0 + · · ·+X(x(j)) + · · ·+ 0 . (3.4)

It is clear that, if (X
i

) is a basis of local sections of E, then (X
(j)
i

) is a basis of local sections of E[m].
Since there are obvious canonical isomorphisms

(TN)[m] ' TN

m and (T ⇤
N)[m] ' T

⇤
N

m

,

we can interpret the diagonal prolongation X

[m] of a vector field on N as a vector field e

X

[m] on N

m, and
the diagonal prolongation ↵

[m] of a 1-form on N as a 1-form e↵

[m] on N

m. In the case when m is fixed, we
will simply write eX and e↵.

Proposition 3.4. ([CGL.H6, Proposition 7.1]) The diagonal prolongation to N

m of a vector field X on
N is the unique vector field e

X

[m] on N

m projectable with respect to the map ⇡ : (x(1), . . . , x(m)) 2
N

m 7! x(1) 2 N onto X and invariant relative to the permutation of variables x(i) $ x(j), with
i, j = 1, . . . ,m. The diagonal prolongation to N

m of a 1-form ↵ on N is the unique 1-form e↵[m] on N

m such

that e↵[m]( eX [m]) = ]
↵(X)

[m]
for every vector field X 2 �(TN). We have de↵ = f

d↵ and L e
X

[m]e↵
[m] = ]L

X

↵.
In particular, if ↵ is closed (exact), so is its diagonal prolongation e↵[m] to N

m.

Let (xa) be a local coordinate system on N and let (xa(i)) be the induced coordinate system on N

m. If
X =

P

a

X

a(x)@
x

a and ↵ =
P

a

↵

a

(x)dxa, then

e

X

[m] =
X

a,i

X

a(x(i))@xa

(i)
and e↵

[m] =
X

a,i

↵

a

(x(i))dx
a

(i) . (3.5)

Let us fix m. If X1, X2 are two vector fields on N , then ^[X1, X2]
[m]

= [fX1
[m]

,

f

X2
[m]

]. In consequence,
the prolongations to N

m of the elements of a finite-dimensional real Lie algebra V of vector fields on N

form a real Lie algebra eV [m] isomorphic to V . Similarly to standard vector fields, we can define the diagonal
prolongation of a t-dependent vector field X on N to N

m as the only t-dependent vector field eX [m] on N

m

satisfying that fX
t

[m]
is the diagonal prolongation of X

t

to N

m for each t 2 R.
When X is a Lie–Hamilton system, its diagonal prolongations are also Lie–Hamilton systems in a natural

way [BCHL.H7]. Let us now focus on proving an analogue of this result for Dirac–Lie systems.

Definition 3.5. ([CGL.H6, Definition 7.2]) Given two Dirac manifolds (N,L

N

) and (M,L

M

), we say that
' : N ! M is a forward Dirac map between them if (L

M

)
'(x)=P

'

(L
N

)
x

, where

P

'

(L
N

)
x

:={'⇤xXx

+ !

'(x) 2 T

'(x)M � T

⇤
'(x)M |X

x

+ ('⇤
!

'(x))x2(L
N

)
x

},
for all x 2 N .

Proposition 3.6. ([CGL.H6, Proposition 7.3]) Given a Dirac structure (N,L) and the natural isomorphism

(TNm �
N

m

T

⇤
N

m)(x(1),...,x(m)) ' (T
x(1)

N � T

⇤
x(1)

N)� · · ·� (T
x(m)

N � T

⇤
x(m)

N),
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the diagonal prolongation L

[m], viewed as a vector subbundle in TN

m �
N

m

T

⇤
N

m = PN

[m], is a Dirac
structure on N

m.
The forward image of L[m] through each ⇡

i

: (x(1), . . . , x(m)) 7! N

m ! x(i) 2 N , with i = 1, . . . ,m,
equals L. Additionally, L[m] is invariant under the permutations x(i) $ x(j), with i, j = 1, . . . ,m.

Corollary 3.7. ([CGL.H6, Corollary 7.4]) Given a Dirac manifold (N,L), we have ⇢

m

(L[m]) = ⇢(L)[m],
where ⇢

m

is the projection ⇢

m

: PN

m ! TN

m of the Dirac manifold (Nm

, L

[m]). Then, if X

is an L-Hamiltonian vector field with respect to L, then its diagonal prolongation e

X

[m] to N

m is an
L-Hamiltonian vector field with respect to L

[m]. Moreover, ⇢⇤
m

(L[m]) = ⇢

⇤(L)[m], where ⇢⇤
m

is the canonical
projection ⇢

⇤
m

: PN

m ! T

⇤
N

m.

Corollary 3.8. ([CGL.H6, Corollary 7.4]) If (N,L,X) is a Dirac–Lie system, then (Nm

, L

[m]
,

e

X

[m]) is
also a Dirac–Lie system.

Proposition 3.9. ([CGL.H6, Proposition 7.6]) Let X be a vector field and f be a function on N . Then:
(a) If f is an L-Hamiltonian function for X , its diagonal prolongation ef to N

m is an L

[m]-Hamiltonian
function of the diagonal prolongation eX [m] on N

m.
(b) If f 2 Cas(N,L), then ef [m] 2 Cas(Nm

, L

[m]).
(c) The map � : (Adm(N,L), {·, ·}

L

) 3 f 7! e

f

[m] 2 (Adm(Nm

, L

[m]), {·, ·}
L

[m]) is an injective Lie
algebra morphism.

Note, however, that in the above we cannot ensure that � is a Poisson algebra morphism, as in general
f

fg

[m] 6= e

f

[m]
eg

[m].
Using the above proposition, we can easily prove the following corollaries.

Corollary 3.10. ([CGL.H6, Corollary 7.7]) If h1, . . . , hr : N ! R is a family of functions on a Dirac
manifold (N,L) spanning a finite-dimensional real Lie algebra of functions with respect to the Lie bracket
{·, ·}

L

, then their diagonal prolongations eh[m]
1 , . . . ,

e

h

[m]
r

to N

m close an isomorphic Lie algebra of functions
with respect to the Lie bracket {·, ·}

L

[m] induced by the Dirac structure (Nm

, L

[m]).

Corollary 3.11. ([CGL.H6, Corollary 7.8]) If (N,L,X) is a Dirac–Lie system admitting a Dirac–Lie
Hamiltonian (N,L, h), then (Nm

, L

[m]
,

e

X

[m]) is a Dirac–Lie system with a Dirac–Lie Hamiltonian
(Nm

, L

[m]
, h

[m]), where h

[m]
t

:= eh
[m]
t

is the diagonal prolongation of h
t

to N

m.

Previous results can be employed to study superposition rules for Dirac–Lie systems as illustrated by
the examples in [CGL.H6]. The main idea I had is to extend the Poisson coalgebra method for Poisson
manifolds to Dirac manifolds, which increases the field of application of Poisson coalgebras.

4. k-Symplectic Lie systems

The study of k-symplectic structures was pioneered by M. de León [LMS88, LMS93, LSV16], Awane
[Aw92], and Gunther [Gu87] among others. They appeared as a generalization of symplectic geometry to
study field theories [Gu87]. Formally, a k-symplectic structure can be defined as follows.

Definition 4.1. Let N be an n(k + 1)-dimensional manifold and !1, . . . ,!
k

a set of k closed two-forms on
N . We say that (!1, . . . ,!

k

) is a k–symplectic structure if
T

k

i=1 ker!i

(x) = {0} , for all x 2 N . We call
(N,!1, . . . ,!

k

) a k–symplectic manifold.

A k-symplectic structure (!1, . . . ,!
k

) on an n(k + 1)-dimensional manifold N amounts to a closed
nondegenerate form ⌦ :=

P

k

n=1 !k

⌦ e

k on N taking values in Rk. The ⌦ is called a polysymplectic form
and it allows us to simplify the formalism on k-symplectic structures. The k-symplectic structures present
several problems: they are not naturally associated with a Poisson algebra of functions and cannot be applied
to study all partial differential equations [LSV16, LV.H1].
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Instead of following the standard approach, I proved that k-symplectic structures are useful to analyze
systems of first-order ordinary differential equations and natural tools from k-symplectic geometry can be
used to study them. In particular, a generalization of the Poisson algebras of functions from symplectic
geometry appears, and it gives rise to methods to obtain superposition rules. I also found numerous Lie
systems possessing Vessiot–Guldberg Lie algebras of Hamiltonian vector fields relative to a k-symplectic
structure, and I applied my methods to them. Let us detail my main finding on Lie systems and k-symplectic
structures.

Consider again the Schwarzian equation (3.1). Let us prove that V 3KS consists of Hamiltonian vector
fields with respect to the presymplectic forms of a two-symplectic manifold (O2,!1,!2). To do so, we
look for presymplectic forms ! satisfying that Y1, Y2 and Y3 are Hamiltonian vector fields relative to it, i.e.
L
Y

↵

! = 0 for ↵ = 1, 2, 3 and d! = 0. By solving the latter system of partial differential equations for !,
we find the presymplectic forms

!1 :=
dv ^ da

v

3
, !2 := � 2

v

3
(x dv ^ da+ v da ^ dx+ a dx ^ dv). (4.1)

Since ker!1 = h@
x

i , ker!2 = hx@
x

+ v@

v

+ a@

a

i and v 6= 0 on O2, it turns out that !1 and !2 have
constant rank equal to two and ker!1 \ ker!2 = {0} on O2. Therefore, (!1,!2) forms a two-symplectic
structure.

More interestingly, Y1, Y2 and Y3 are Hamiltonian vector fields relative to !1,!2:

◆

Y1!1 = d

✓

2

v

◆

, ◆

Y2!1 = d
⇣

a

v

2

⌘

, ◆

Y3!1 = d

✓

a

2

2v3

◆

,

◆

Y1!2 = �d

✓

4x

v

◆

, ◆

Y2!2 = d

✓

2� 2ax

v

2

◆

, ◆

Y3!2 = d

✓

2a

v

� a

2
x

v

3

◆

.

(4.2)

Although system (3.2) cannot be studied through a Lie–Hamilton system, the use of the above presymplectic
structures will allow us to study such systems through similar techniques to those developed for
Lie–Hamilton and Dirac–Lie systems [CGL.H6, CGL.H8]. Indeed, the above system possesses a Lie
algebra of Hamiltonian vector fields relative to all the presymplectic forms of a k–symplectic structure.
Although we already know that (3.1) can be studied through a Dirac–Lie system, this approach only takes
into account the existence of a presymplectic compatible form. Nevertheless, the k-symplectic structure is
much richer and allows for more powerful tools.

Table 5 resumes many Lie systems admitting a Vessiot–Guldberg Lie algebra of k-Hamiltonian vector
fields [LV.H1]. This table could be enlarged with other systems such as quaternionic Riccati equations.
These findings suggests us the following definitions.

Definition 4.2. Given a k–symplectic structure (!1, . . . ,!
k

) on an n(k + 1) dimensional manifold N , we
say that a vector field Y on N is k–Hamiltonian if it is a Hamiltonian vector field with respect to the
presymplectic forms !1, . . . ,!

k

.

It also makes sense to say that X is ⌦–Hamiltonian for a polysymplectic form ⌦ if X is k–Hamiltonian
for a k–symplectic manifold possessing ⌦ as an associated polysymplectic form. From now on, we will
talk about k–Hamiltonian and/or ⌦–Hamiltonian vector fields indistinctly. We write Ham(⌦), where ⌦ is a
polysymplectic form induced by (!1, . . . ,!

k

), for the space of k–Hamiltonian vector fields.
In view of previous comments, it is justified to define k–symplectic Lie systems as follows.

Definition 4.3. ([LV.H1, Definition 3.2]) We say that a system X is a k–symplectic Lie system if V X is a
finite-dimensional real Lie algebra of k–Hamiltonian vector fields with respect to a k–symplectic structure
(!1, . . . ,!

k

). We call (!1, . . . ,!
k

) a compatible k–symplectic structure.

The above can be restated by saying that a system X on a manifold N is a k–symplectic Lie system if
and only if it admits a Vessiot–Guldberg Lie algebra of k–Hamiltonian vector fields with respect to a certain
k–symplectic structure on N . Lie–Hamilton systems are a particular type of k–symplectic Lie systems.
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Nevertheless, not every k–symplectic Lie system is a Lie–Hamilton system as shown above by means of
Schwarz equations and the no-go theorem for Lie–Hamilton systems given in [CGL.H6, Theorem 4.4].

Every k–symplectic Lie system can be considered as a Dirac–Lie system [LV.H1]. More specifically,
if X is a k–symplectic Lie system relative to the k–symplectic structure (!1, . . . ,!

k

), then V

X is a family
of Hamiltonian vector fields with respect to each one of the presymplectic forms !1, . . . ,!

k

. So, V X is a
Lie algebra of Hamiltonian vector fields relative to each Dirac structure L

!

r induced by the presymplectic
form !

r

(see [CGL.H6, Co90] for details). Following our previous notation, we say that (N,L

!

r

, X) is a
Dirac–Lie system. Meanwhile, not every Dirac–Lie system can be considered as a k–symplectic Lie system,
e.g. a Lie system given by an autonomous vector field X 6= 0 on the real line gives rise to a Dirac–Lie
system (R, TR, X), but it is not a k-symplectic one. Nevertheless, the main advantage of k–symplectic Lie
systems is that they can be considered as Dirac–Lie systems in different ways. This suggests us to find a
natural approach to the study of these systems, which is given by k–symplectic structures.

Determining whether a Lie system is a k–symplectic Lie system generally requires solving a system of
PDEs to find a compatible k–symplectic structure. It is in general difficult to establish whether this system
of PDEs has enough solutions to construct a compatible k–symplectic structure. It is difficult to establish
whether such a system of PDEs admits enough solutions to obtain a compatible k-symplectic structure. This
motivates to find simple necessary and/or sufficient conditions to ensure or to discard that a Lie system
is a k–symplectic Lie system. I now describe the no-go theorem for k-symplectic structures, which gives
conditions ensuring that a Lie system is not a k–symplectic Lie system (see [LV.H1, Theorem 4.4] for
details). The main idea is that the minimal Lie algebra of the Lie system under study must leave stable,
in the sense given next, the kernels of the presymplectic forms of any k–symplectic structure compatible
with the Lie system. This condition is easier to verify than showing straightforwardly that the system of
PDEs describing the presymplectic forms compatible with a Lie system does not contain enough solutions
to construct a compatible k–symplectic structure.

Definition 4.4. ([LV.H1, Definition 4.1]) A distribution D on N is stable relative to the action of a Lie
algebra V of vector fields on N when [X,Y ] 2 D for every Y 2 D and X 2 V .

Definition 4.5. ([LV.H1, Definition 4.2]) Given a finite-dimensional real Lie algebra V of vector fields on
N , we say that V is s–primitive when there exists no distribution D of rank s stable with respect to the action
of V . We call V odd–primitive when V is s–primitive for every odd value of s < dimN .

Remark 4.6. The above definition is a generalisation of the notion of a primitive Lie algebra of vector fields
on the plane given in [GKO92].

Theorem 4.7. (No-go k–symplectic Lie systems theorem [LV.H1, Theorem 4.4]) If X is a Lie system on
an odd dimensional manifold N and V

X is odd-primitive, then X is not a k–symplectic Lie system.

The above theorem was applied in [LV.H1, Example 1] to show that certain Lie systems are not
k-symplectic Lie systems. For instance, consider the Lie system

dg

dt
= X

G(t, g) :=

r

X

↵=1

b

R

↵

(t)XR

↵

(g) +

r

X

↵=1

b

L

↵

(t)XL

↵

(g), g 2 G, (4.3)

where G is a Lie group, XR

1 , . . . , X
R

r

and X

L

1 , . . . , X
L

r

form basis of right- and left-invariant vector fields
on G respectively, and b

L

1 (t), . . . , b
L

r

(t), bR1 (t), . . . , b
R

r

(t) are arbitrary t-dependent functions. Additionally,
we assume G to be connected. Systems of the type (4.3) appear when searching for transformations mapping
a Lie system into a new one, e.g. in a reduction process [CL.PH14]. Additionally, each Lie system on a
manifold can be solved by means of a particular solution of systems like (4.3) where only right-invariant or
left-invariant vector fields appear. Moreover, such systems appear in control theory and Darboux integrable
systems [CCR03, IV]. It was proved in [LV.H1] that the Lie system (4.3) possesses an odd-primitive
Vessiot–Guldberg Lie algebra of vector fields when dimG is odd and the Lie algebra of G is simple. In
virtue of Theorem 4.7, it is not a k-symplectic Lie system.
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4.1. On ⌦–Hamiltonian functions. Every k–Hamiltonian vector field can be associated with a family
h1, . . . , h

k

of Hamiltonian functions (each one relative to a different presymplectic form of a k–symplectic
structure). It is therefore convenient to introduce some generalisation of the Hamiltonian function notion for
presymplectic forms to deal simultaneously with all h1, . . . , h

k

. Let us resume the main properties of such a
generalisation I described in [LV.H1]. My findings extend to our k–symplectic structures several theorems
devised by Awane in [Aw92] for a more particular type of k–symplectic structures.

Definition 4.8. ([LV.H1, Definition 5.1]) Given a polysymplectic structure ⌦ :=
P

k

i=1 !i

⌦ e

i on N , we
say that h :=

P

k

i=1 hi ⌦ e

i is an ⌦–Hamiltonian function if there exists a vector field X

h

on N such that
◆

X

h

!

i

= dh

i

for i = 1, . . . , k. In this case, we call h an ⌦–Hamiltonian function for X
h

. We write C

1(⌦)
for the space of ⌦–Hamiltonian functions.

Example 4.9. ([LV.H1, Section 7]) In view of the relations (4.2), the vector fields Y1 = 2v@/@a, Y2 =
v@

v

+ 2a@
a

and X3 = v@

x

+ a@

v

+ 3a2/(2v)@
a

given in (3.3) have ⌦–Hamiltonian functions

f = 2
v

⌦ e

1 � 4x
v

⌦ e

2

g = a

v

2 ⌦ e

1 +
�

2� 2ax
v

2

�

⌦ e

2
, h = a

2

2v3
⌦ e

1 +
⇣

2a
v

� a

2
x

v

3

⌘

⌦ e

2
,

relative to the polysymplectic structure ⌦ := !1 ⌦ e

1 + !2 ⌦ e

2 obtained from the two–symplectic structure
(!1,!1) constructed from the presymplectic forms (4.1).

Proposition 4.10. ([LV.H1, Proposition 5.2]) If ⌦ :=
P

k

i=1 !i

⌦ e

i is a polysymplectic structure, then
every ⌦–Hamiltonian vector field is associated, at least, to an ⌦–Hamiltonian function. Conversely, every
⌦–Hamiltonian function induces a unique ⌦–Hamiltonian vector field.

Proposition 4.11. ([LV.H1, Proposition 5.3]) The space C

1(⌦) is a linear space over R with the natural
operations:

h+ g :=

k

X

i=1

(h
i

+ g

i

)⌦ e

i

, � · h :=

k

X

i=1

�h

i

⌦ e

i

where h =
P

k

i=1 hi ⌦ e

i, g =
P

k

i=1 gi ⌦ e

i 2 C

1(⌦) and � 2 R.

Proposition 4.12. ([LV.H1, Proposition 5.4]) The space C1(⌦) becomes a Lie algebra when endowed with
the bracket {·, ·}⌦ : C1(⌦)⇥ C

1(⌦) ! C

1(⌦) of the form

{h1 ⌦ e

1 + . . .+ h

k

⌦ e

k

, h

0
1 ⌦ e

1 + . . .+ h

0
k

⌦ e

k}⌦ = {h1, h01}!1 ⌦ e

1 + . . .+ {h
k

, h

0
k

}
!

k

⌦ e

k

, (4.4)

where {·, ·}
!

i

is the Poisson bracket naturally induced by the presymplectic form !

i

, with i = 1, . . . , k.

We cannot ensure C

1(⌦) to be a Poisson algebra in general. If h :=
P

k

i=1 hi ⌦ e

i and g :=
P

k

i=1 gi ⌦ e

i 2 C

1(⌦), then the function

h · g := (h1g1)⌦ e

1 + . . .+ (h
k

g

k

)⌦ e

k (4.5)

is not in general a C

1(⌦)–function (see [LV.H1] for a particular example). Since we cannot ensure that
(C1(⌦), ·, {·, ·}⌦) is a Poisson algebra, we cannot neither say that {·, h}⌦ : g 2 C

1(⌦) 7! {g, h}⌦ 2
C

1(⌦), with h 2 C

1(⌦), is a derivation with respect to the product (4.5) of ⌦–Hamiltonian functions.
This shows that k–symplectic geometry becomes quite different from Poisson and presymplectic geometry,
where previous analysed properties hold. Nevertheless, we can still ensure that {h, g}⌦ = 0 for every locally
constant function g and, moreover, we can still prove other properties of this Lie algebra. For instance, we
have the following results.

Proposition 4.13. ([LV.H1, Proposition 5.5]) Consider a polysymplectic manifold (N,⌦). Every
⌦–Hamiltonian vector field X acts as a derivation on the Lie algebra (C1(⌦), {·, ·}⌦) in the form

Xf = {f, h}⌦, 8f 2 C

1(⌦),

where h is an ⌦–Hamiltonian function for X .



4. k-SYMPLECTIC LIE SYSTEMS 29

Theorem 4.14. ([LV.H1, Theorem 5.6]) Given a polysymplectic form ⌦ :=
P

k

i=1 !i

⌦ e

i on a manifold N ,
we can define an exact sequence of Lie algebras:

0 ,!
k

z }| {

H0
dH(N)� . . .�H0

dH(N),! C

1(⌦)
B⌦�! Ham(⌦) ! 0, (4.6)

where B⌦(f) := �X

f

is the ⌦–Hamiltonian vector field corresponding to f and H0
dH(N) is the first De

Rham cohomology group of N .

4.2. Derived Poisson algebras. Starting from a k–symplectic manifold (N,!1, . . . ,!
k

), I constructed
several Poisson algebras on certain subsets of C1(N), the hereafter called derived Poisson algebras. This is
very important to study the geometric properties of superposition rules for k–symplectic Lie systems. This
structure passed so far unadvised since it becomes relevant only to study systems of ordinary differential
equations, which were not very much analyzed through k-symplectic structures previously to my works.

The k–symplectic structure (!1, . . . ,!
k

) along with a basis e1, . . . , ek for Rk, and an element ✓ 2 (Rk)⇤

allow us to define a polysymplectic form ⌦ =
P

k

i=1 !i

⌦ e

i. The contraction ⌦
✓

:= h⌦, ✓i =
P

k

i=1 ✓(e
i)!

i

is a presymplectic form on N . We call Adm(⌦
✓

) the set of admissible functions with respect to (N,⌦
✓

). We
hereafter denote by X

f

, where f is an admissible function on N relative to ⌦
✓

, a Hamiltonian vector field
of f relative to the presymplectic form ⌦

✓

. Recall that when f is a k–Hamiltonian function, X
f

denotes the
k–Hamiltonian vector field associated to f .

Proposition 4.15. ([LV.H1, Proposition 6.1]) Let ⌦ :=
P

k

i=1 !i

⌦ e

i be a polysymplectic structure and
✓ 2 (Rk)⇤. Every ⌦–Hamiltonian function h gives rise to an admissible function h

✓

:= hh, ✓i with respect
to (N,⌦

✓

).

Proposition 4.16. ([LV.H1, Proposition 6.2]) Let (!1, . . . ,!
k

) be a k–symplectic structure and let
{e1, . . . , ek} be a basis of Rk. The k–symplectic structure induces a k-polysymplectic form ⌦ :=

P

k

i=1 !i

⌦
e

i and a family of Poisson algebras (Adm(⌦
✓

), ·, {·, ·}
✓

), where {·, ·}
✓

is the Poisson bracket induced by the
presymplectic form ⌦

✓

, with ✓ 2 (Rk)⇤, on its space of admissible functions.

Proposition 4.17. ([LV.H1, Proposition 6.3]) Given a polysymplectic form ⌦ :=
P

k

i=1 !i

⌦ e

i, every
⌦–Hamiltonian vector field X

h

is a derivation on all the Lie algebras (Adm(⌦
✓

), {·, ·}
✓

) with ✓ 2 (Rk)⇤ of
the form X

h

f = {f, h
✓

}
✓

, 8f 2 Adm(⌦
✓

). Additionally,

�

✓

: (C1(⌦), {·, ·}⌦) ! (Adm(⌦
✓

), {·, ·}
✓

)
h 7! h

✓

= hh, ✓i

is a Lie algebra morphism. Hence, every finite-dimensional Lie algebra (W ⇢ C

1(⌦), {·, ·}⌦) is a Lie
algebra extension of the Lie algebra (�

✓

(W), {·, ·}
✓

)1.

1The following diagram can be found in [LV.H1] and summarises different structures, which I found while analyzing k-symplectic
Lie systems. The arrows of the form A ,! B mean the inclusion of A in B.
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Finally, we have the commutative exact diagram aside, where W0 = H0(N)k \ W and

0 ◆ s

%%

� � //
i 

��

H0
dR(N)k◆ s

%%

r R

⌅⌅
H0

dR(N)k
◆ s

&&

W0

* J

WW

_?
oo

◆ s

%%

C

1(⌦)

�✓

⇧⇧

B⌦

$$
Adm(⌦✓)

⇤✓

$$

W
( H

VV

_?�✓|W
oo

B⌦|W

%%

Ham(⌦)

⇡✓|Ham(⌦)

⇧⇧   
Ham(⌦✓)

G(⌦✓) <<B⌦(W)

+ K

XX

⇡✓|B⌦(W)

oo // 0

we recall that G(⌦
✓

) is
the space of gauge vector
fields of ⌦

✓

, we call
⇡

✓

: X 2 Ham(⌦
✓

) 7! [X] 2
Ham(⌦

✓

)/G(⌦
✓

) the quotient
map onto Ham(⌦

✓

)/G(⌦
✓

),
and ⇤

✓

: Adm(⌦
✓

) !
Ham(⌦

✓

)/G(⌦
✓

) is the Lie
algebra morphism mapping
each f 2 Adm(⌦

✓

) to the
class [�X

f

].

4.3. k-symplectic Lie–Hamiltonian structures. A k–symplectic Lie system is associated with many
different Lie algebras of functions which can be employed to study the properties of the system.

Consider again the Schwarzian equations in first-order form (3.2). Remind that Y1, Y2 and Y3 are
Hamiltonian vector fields (3.3) with respect to the presymplectic structures !1 and !2. In particular, from
the relations (4.2), the vector fields Y1, Y2 and Y3 have Hamiltonian functions

h

1
1 =

2

v

, h

2
1 =

a

v

2
, h

3
1 =

a

2

2v3
, (4.7)

and

h

1
2 = �4x

v

, h

2
2 = 2� 2ax

v

2
, h

3
2 =

✓

2a

v

� a

2
x

v

3

◆

, (4.8)

with respect to the presymplectic forms !1 and !2 given by (4.1), correspondingly. Moreover,
�

h

1
i

, h

2
i

 

!

i

= �h

1
i

,

�

h

1
i

, h

3
i

 

!

i

= �2h2
i

,

�

h

2
i

, h

3
i

 

!

i

= �h

3
i

, i = 1, 2.

Consequently, the functions h↵
i

, with ↵ = 1, 2, 3 and a fixed i, span a finite-dimensional real Lie algebra
of functions isomorphic to sl(2). The same applies to h

↵

1 +h

↵

2 , with ↵ = 1, 2, 3, and in general for any linear
combination µ1h

↵

1 + µ2h
↵

2 , with fixed (µ1, µ2) 2 R2\{(0, 0)}.
Now, we consider the space C1(⌦) of ⌦–Hamiltonian functions related to the two-symplectic structure

(!1,!2). From the relations (4.2), the functions

h

↵ := h

↵

1 ⌦ e

1 + h

↵

2 ⌦ e

2
,

with ↵ = 1, 2, 3, span a finite-dimensional Lie algebra when endowed with the Lie bracket (4.4).
Thus, every X

3KS

t

is an ⌦–Hamiltonian vector field with ⌦–Hamiltonian function

h

3KS

t

= (h31 + b1(t)h
1
1)⌦ e

1 + (h32 + b1(t)h
1
2)⌦ e

2
.

Since we assume b1(t) to be non-constant, the space Lie({h3KS

t

}
t2R, {·, ·}⌦) becomes a real Lie algebra

isomorphic to sl(2). Similarly, every system in Table 5 can be associated with a t-dependent ⌦-Hamiltonian
function of the form

P

k

↵=1 a↵(t)h↵. It makes therefore sense to provide the following definitions and the
important Theorem 4.20, which associates every k-symplectic Lie system with a t-dependent ⌦-Hamiltonian
function as previously.

Definition 4.18. ([LV.H1, Definition 7.1]) A k–symplectic Lie–Hamiltonian structure is a triple (N,⌦, h)
where (N,⌦) is a polysymplectic manifold and h represents a t-parametrised family of ⌦–Hamiltonian
functions h

t

: N ! Rk such that Lie({h
t

}
t2R, {·, ·}⌦) is a finite-dimensional real Lie algebra.
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TABLE 5. Lie systems admitting a Lie algebra of Hamiltonian vector fields relative to a k-symplectic form (for further details see [LV.H1]). For
simplicity, we define !

ij

:= dx

i

^ dx

j

, @
xi = @

i

.

Application Basis of vector fields X
i

⌦-Hamiltonian functions h
i

k-symplectic structure !

i

Superposition rules
P4

i=1 @i

⇣
1

x1�x2
+

1
x3�x4

⌘
⌦ e1 +

⇣P4
i<j=1

1
xi�xj

⌘
⌦ e2

!12
(x1�x2)2

+

!34
(x3�x4)2

for Riccati equations
P4

i=1 xi

@

i

1
2

⇣
x1+x2
x1�x2

+

x3+x4
x3�x4

⌘
⌦ e1 +

1
2

⇣P4
i<j=1

xi+xj

xi�xj

⌘
⌦ e2

P4
i<j=1

!ij

(xi�xj)2

P3
↵=1 a↵

(t)X

↵

P4
i=1 x

2
i

@

i

⇣
x1x2
x1�x2

+

x3x4
x3�x4

⌘
⌦ e1 +

⇣P4
i<j=1

xixj

xi�xj

⌘
⌦ e2

Control system @1, x2 ⌦ e1 + x3 ⌦ e2 + x4 ⌦ e3 +
1
3x

3
2 ⌦ e4 !12

P2
↵=1 a↵

(t)X

↵

@2 + x1(@3 + x1@4 + 2x2@5) �x1 ⌦ e1 � 1
2x

2
1 ⌦ e2 � 1

3x
3
1 ⌦ e3 +(x5 �x1x

2
2)⌦ e4. !13

@3 + 2x1@4 + 2x2@5 x1 ⌦ e2 � x

2
1 ⌦ e3 � x

2
2 ⌦ e4 !14

@4 �x1 ⌦ e3 !25 + x

2
2 !12

@5 �x2 ⌦ e4

Control system @1 � x2@3 + x

2
2@5, x2 ⌦ e1 � 1

3x
3
2 ⌦ e2 + x4 ⌦ e3 + (x1x2 + x3)⌦ e4 !12

P2
↵=1 a↵

(t)X

↵

@

x4 x1 ⌦ e1 + x5 ⌦ e2 � 1
3x

3
1 ⌦ e3 � x

2
1 ⌦ e4 !25

@5
1
2x

2
2 ⌦ e2 � 1

2x
2
1 ⌦ e3 � x1 ⌦ e4 !13

@2 + x1@3 + x

2
1@x4 �x1 ⌦ e3 !13 + x1!12

@3 + x1@x4 � x2@5 �x2 ⌦ e2

Diffusion equations 4x

2
1@1 + 4x1x2@2 + x

2
2@3, (4x1x3 � 8

x

2
1x

2
3

x

2
2

� x

2
2
2 )⌦ e1 + (x1 � 4

x

2
1x3

x

2
2

)⌦ e2
!23
x2

+

4x2
3!12

x

3
2

� 4x3!13

x

2
2P3

↵=1 a↵

(t)X

↵

, 2x1@1 + x2@2 �2

x

2
3

x

2
2
⌦ e1 � 4

x3

x

2
2
⌦ e2 � 4!13

x

2
2

+

8x3!12

x

3
2

.

@1 (x3 � 4

x1x
2
3

x

2
2

)⌦ e1 � 8

x1x3

x

2
2

⌦ e2

Lotka-Volterra system
P5

i=1 xi

@

i

(

x1+x2
x1�x2

+

x3+x4
x3�x4

)⌦ e1 + (

x1+x2
x1�x2

+

x3+x5
x3�x5

)⌦ e2
!12

(x1�x2)2
+

!34
(x3�x4)2

a(t)X1 + b(t)X2, (

x1+x2
x1�x2

+

x4+x5
x4�x5

)⌦ e3 + (

x1+x3
x1�x3

+

x4+x5
x4�x5

)⌦ e4
!12

(x1�x2)2
+

!35
(x3�x5)2

P5
i=1 x

2
i

@

i

⇣
x1x2
x1�x2

+

x3x4
x3�x4

⌘
⌦ e1 +

⇣
x1x2
x1�x2

+

x3x5
x3�x5

⌘
⌦ e2

!12
(x1�x2)2

+

!45
(x4�x5)2⇣

x1x2
x1�x2

+

x4x5
x4�x5

⌘
⌦ e3 +

⇣
x1x3
x1�x3

+

x4x5
x4�x5

⌘
⌦ e4

!13
(x1�x3)2

+

!45
(x4�x5)2
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Definition 4.19. ([LV.H1, Definition 7.2]) A t-dependent vector field X is said to admit a k–symplectic
Lie–Hamiltonian structure (N,⌦, h) if B⌦(ht) = �X

t

, for all t 2 R.

Theorem 4.20. ([LV.H1, Theorem 7.3])A system Xadmits a k–symplectic Lie–Hamiltonian structure if and
only if it is a k–symplectic Lie system.

4.4. On general properties of k–symplectic Lie systems. Let us describe the analogue for
k–symplectic Lie systems of the basic properties of general Lie systems found in [LV.H1]. Additionally,
we show how the derived algebras enable us to investigate their t-independent constants of motion.

Recall that, as for every Lie system, the general solution x(t) of a k–symplectic Lie system X on N

can be brought into the form x(t) = '(g(t), x0), where x0 2 N and ' : G ⇥ N ! N is a Lie group
action. If G is additionally connected, every curve ḡ(t) in G induces a t-dependent change of variables
mapping a Lie system X taking values in a Lie algebra V X into another Lie system Y , with general solution
y(t) = '(ḡ(t), x(t)), taking values in the same Lie algebra V

X [CGL09, CRG]. If X is a k–symplectic
Lie system, then V

X consists of k–Hamiltonian vector fields with respect to some k–symplectic structure.
Since the vector fields {Y

t

}
t2R belong to V

X also, they are k–Hamiltonian vector fields and Y is again a
k–symplectic Lie system.

Each particular solution of a Lie system X is contained within an orbit S of '. Then, it makes sense
to define the restriction X|

S

of X to each orbit S. Therefore, the integration of a Lie system X reduces
to integrating its restrictions to each orbit of ', which are Lie systems also. If X is a k-symplectic Lie
system, then it is interesting to know whether X|

S

is again a k–symplectic Lie system. This requires to
study the notion of l–symplectic submanifold (l  k) of a k–symplectic manifold (N,!1, . . . ,!

k

), which
was developed by S. Vilariño and M. de León in [LV13].

Definition 4.21. Given a k–symplectic manifold (N,!1, . . . ,!
k

), a submanifold S ⇢ N is said to be an
l–symplectic submanifold with respect to (N,!1, . . . ,!

k

), (l  k) if dimS = n

l

(l+1) for an integer n
l

and

(T
p

S)?,l \ T

p

S = {0}, 8p 2 S, (4.9)

where (T
p

S)?,l is the l–th orthogonal complement of T

p

S relative to the k–symplectic structure
(N,!1, . . . ,!

k

), i.e. T
p

S

?,l := {v 2 T

p

N : !1(v, w) = . . . = !

l

(v, w) = 0, 8w 2 T

p

S}.

Condition (4.9) is equivalent to
T

l

i=1(Tp

S)?i \T

p

S = {0}, 8p 2 S,where (T
p

S)?i is the presymplectic
annihilator of T

p

S, i.e. T

p

S

?
i = {v 2 T

p

N : !
i

(v, w) = 0, 8w 2 T

p

S}. If a submanifold S ⇢ M is
endowed with an l–symplectic structure (◆⇤!1, . . . , ◆

⇤
!

l

) with l < k, then for all l0 such that l  l

0  k (it is
necessary that there exists n

l

0 such that dimS = n

l

0(l0 + 1)), (◆⇤!1, . . . , ◆
⇤
!

l

0) is an l

0–symplectic structure
on S. Taking into account the above, the following results follow.

Proposition 4.22. ([LV.H1, Proposition 8.4]) Let (!1, . . . ,!
k

) be a k–symplectic structure on N and let X
be a k–symplectic Lie system relative to it. Given an l–symplectic submanifold S such that DX ⇢ TS, the
restriction of X to S is an l–symplectic Lie system.

Proposition 4.23. ([LV.H1, Proposition 8.5]) Let X be a k–symplectic Lie system on N with k–symplectic
Lie–Hamiltonian structure (N,⌦, h). For each ✓ 2 (Rk)⇤, the space IX

✓

of t-independent constants of
motion of X admissible relative to ⌦

✓

is a Poisson algebra with respect to each Poisson bracket {·, ·}
✓

induced by ⌦
✓

.

Proposition 4.24. ([LV.H1, Proposition 8.6]) Let X be a k–symplectic Lie system on a manifold N with
k–symplectic Lie Hamiltonian structure (N,⌦, h). For each ✓ 2 (Rk)⇤, the function f : N ! R is a
constant of motion for X admissible relative to ⌦

✓

if and only if f Poisson commutes with all elements of
each �

✓

(Lie({h
t

}
t2R, {·, ·}⌦)).

Every autonomous Hamiltonian system is a k–symplectic Lie system with respect a symplectic form
!. It also possesses a k–Hamiltonian structure (N,⌦, h), where h is a t-independent Hamiltonian. In
consequence, the above proposition shows that the t-independent constants of motion for a Hamiltonian
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system are those functions that Poisson commute with its Hamiltonian, recovering as a particular case this
well-known result.

4.5. Diagonal prolongations of k–symplectic Lie systems. This section surveys my results on
superposition rules for k–symplectic Lie systems. In short, the k-symplectic structure related to these
systems provides us with methods to work out these superposition rules far more efficiently than standard
methods or by using Dirac or symplectic structures. The fundamental result on our study is the following
one:

Proposition 4.25. ([LV.H1, Proposition 9.1]) If X is a k–symplectic Lie system relative to (!1, . . . ,!
k

),
then eX [m] is a k–symplectic Lie system relative to (!

[m]
1 , . . . ,!

[m]
k

).

Let us illustrate the above notion through a remarkable example I developed along with one of my
collaborators in [LV.H1]. Consider again the Schwarzian equation (3.1) as a first-order system. The works
[CGL.H6, LS13] derived a superposition rule for such equations by solving a system of PDEs to obtain three
functionally independent t-independent constants of motion for the diagonal prolongation of (3.2) to O[2]

2 .
Let us derive such constants of motion through k-symplectic structures in order to show their advantages.

Schwarzian equations admit a Vessiot–Guldberg Lie algebra of Hamiltonian vector fields related to
a two-symplectic structure (!1,!2) on O2 given by (4.1). Proposition 4.25 ensures that their diagonal
prolongations to O[2]

2 , i.e. the presymplectic forms

!

[2]
1 =

2
X

i=1

dv(i) ^ da(i)

v(i)
, !

[2]
2 = �

2
X

i=1

2

v

3
(i)

(x(i)dv(i) ^ da(i) + v(i)da(i) ^ dx(i) + a(i)dx(i) ^ dv(i)),

give rise to a two-symplectic structure on O[2]
2 . Their kernels are given by

ker!
[2]
1 =

⌧

@

@x(1)
,

@

@x(2)

�

, ker!
[2]
2 =

2
M

i=1

⌧

x(i)
@

@x(i)
+ v(i)

@

@v(i)
+ a(i)

@

@a(i)

�

.

Both kernels have zero intersection as expected.
Recall that given a polysymplectic form ⌦ :=

P

k

i=1 !i

⌦ e

i on N , its diagonal prolongation to N

m is
the polysymplectic form ⌦[m] =

P

k

i=1 !
[m]
i

⌦ e

i. Using (4.2), we obtain that the k–Hamiltonian functions
for the diagonal prolongations of the vector fields (3.3) to (O2)

2 read

h

1,[2] =
2
X

i=1

✓

2

v(i)
⌦ e

1 �
4x(i)

v(i)
⌦ e

2

◆

, h

2,[2] =
2
X

i=1

"

a(i)

v

2
(i)

⌦ e

1 +

 

2�
2a(i)x(i)

v

2
(i)

!

⌦ e

2

#

and

h

3,[2] =

2
X

i=1

"

a

2
(i)

2v3(i)
⌦ e

1 +

 

2a(i)

v(i)
�

a

2
(i)x(i)

v

3
(i)

!

⌦ e

2

#

.

It follows that
n

h

1,[2]
, h

2,[2]
o

⌦[2]
= h

1,[2]
,

n

h

1,[2]
, h

3,[2]
o

⌦[2]
= 2h2,[2],

n

h

2,[2]
, h

3,[2]
o

⌦[2]
= h

3,[2]
.

So, these functions close a Lie algebra isomorphic to sl(2). Next, we will use the derived algebras to obtain
several t-independent constants of motion for these systems.

We can induce from ⌦[2] several presymplectic structures ⌦[2]
⇠

:= h⌦[2]
, ⇠i, for an arbitrary ⇠ 2 (R2)⇤.

For instance, let {✓1, ✓2} be the dual basis to {e1, e2}. We therefore have

⌦
⇠1 ⌘ h⌦[2]

, ✓1i = !

[2]
1 , ⌦

⇠2 ⌘ h⌦[2]
, ✓2i = !

[2]
2 .

From Proposition 4.17, the Hamiltonian functions (h1,[2])
⇠

, (h2,[2])
⇠

, (h3,[2])
⇠

, for every ⇠ 2 (R2)⇤, span a
real Lie algebra W such that sl(2) is a Lie algebra extension. Since sl(2) is simple, W is isomorphic to sl(2)
or zero.
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If W is isomorphic to sl(2), it was proved in [CGL.H6, BCHL.H7] that {C
⇠

, (h
i

)
⇠

}
⇠

= 0, where
i = 1, 2, 3, the bracket {·, ·}

⇠

is the Poisson bracket on the space of admissible functions of ⌦[2]
⇠

, and

C

⇠

= (h1,[2])
⇠

(h3,[2])
⇠

� (h2,[2])2
⇠

.

It is relevant that C
⇠

can be obtained from a Casimir element of a Lie algebra isomorphic to sl(2) constructed
induced by h

1,[2]
, h

2,[2]
, h

3,[2]. Observe that C
⇠

is a t-independent constant of motion for the prolongated
system e

X

[2]
3KS

. More generally, a similar procedure can be developed for other Lie algebras of functions
associated with k–symplectic Lie systems. If we write ⇠ = �1✓1 + �2✓2, with �1,�2 2 R, then we have
C

⇠

= �

2
1C⇠1 + �

2
2C⇠2 + �1�2F

⇠1⇠2 , where C

⇠1 , C
⇠2 , and F

⇠1⇠2 are three constants of motion given by

C

⇠1 = (h1,[2])
⇠1(h

3,[2])
⇠1 � (h2,[2])2

⇠1
=

(a2v1 � a1v2)
2

v

3
1v

3
2

,

C

⇠2 = (h1,[2])
⇠2(h

3,[2])
⇠2 � (h2,[2])2

⇠2
= �4

✓

�x1x2 +
2v1v2(v1x2 � v2x1)

a1v2 � v1a2

◆

(a2v1 � a1v2)
2

v

3
1v

3
2

� 42,

F

⇠1⇠2 = (h1,[2])
⇠1(h

3,[2])
⇠2 + (h3,[2])

⇠1(h
1,[2])

⇠2 � 2(h2,[2])
⇠2(h

2,[2])
⇠1

= �2(a2v1 � v2a1)
2

v

3
1v

3
2

✓

x1 + x2 �
2v1v2(v1 � v2)

a1v2 � v1a2

◆

.

Using that C
⇠1 is a t-independent constant of motion, we obtain that C

⇠2 , F⇠1⇠2 allow us to define three
simpler t-independent constants of motion F1, F3, F4:

F1 = x1x2 �
2v1v2(v1x2 � v2x1)

a1v2 � v1a2
, F3 = x1 + x2 �

2v1v2(v1 � v2)

a1v2 � v1a2
,

F4 =

s

F

2
3 � 4F1 +

16

C

⇠1

= x1 � x2 �
2v1v2(v1 + v2)

a1v2 � v1a2
.

The t-independent constants of motion C

⇠2 , F3 and F4 are the first-integrals employed in [CGL.H6, LS13] to
obtain the superposition rule for Schwarzian equations in first-order form. In those works, C

⇠2 , F3, F4 were
obtained by means of several geometric methods. In [LS13] they were derived by means of the method of
characteristics, which is quite long and tedious. In [CGL.H6], the techniques for Dirac–Lie systems enabled
us to obtain F1 and C

⇠2 . Meanwhile, F4 had to be obtained through a Lie symmetry. Meanwhile, C
⇠2 , F3, F4

appear simultaneously from the k–symplectic structure of Schwarzian equations. This is the key point of the
usefulness of this approach to obtain superposition rules. The k–symplectic structure provides a framework
to exploit the geometric properties of k–symplectic Lie system better than Dirac–Lie systems. My techniques
were employed further in [LTV.H4] for obtaining superposition rules to study diffusion equations through
k-symplectic structures.

5. Jacobi–Lie systems

Let us finally introduce Jacobi–Lie systems as Lie systems admitting a Vessiot–Guldberg Lie algebra
of Hamiltonian vector fields relative to a Jacobi manifold (for a detailed account on Jacobi manifolds see
[Ki76, IV, Li77]). A Jacobi manifold is a triple (N,⇤, R), where ⇤ is a bivector field on N and R is a
vector field on N , the so-called Reeb vector field, satisfying [⇤,⇤]

SN

= 2R^⇤ and [R,⇤]
SN

= 0. A vector
field X on N is Hamiltonian relative to the Jacobi manifold (N,⇤, R) if there exists f 2 C

1(N) such that

X = [⇤, f ]
SN

+ fR = b⇤(df) + fR.

It is therefore said that f is a Hamiltonian function of X , and we write X = X

f

. I defined f to be a good
Hamiltonian function and X

f

a good Hamiltonian vector field if f is a first-integral of the Reeb vector field
[HL.H5, Definition 3.4].
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The space Ham(N,⇤, R) of Hamiltonian vector fields relative to (N,⇤, R) is a Lie algebra with respect
to the standard Lie bracket of vector fields. Additionally, a Jacobi manifold allows us to define a Lie bracket
on C

1(N) given by
{f, g}⇤,R = ⇤(df, dg) + fRg � gRf.

This Lie bracket becomes a Poisson bracket if and only if R = 0. Moreover, the morphism �⇤,R : f 2
C

1(N) 7! X

f

2 Ham(⇤, R) is a Lie algebra morphism. It is important to emphasize that it may not be
injective.

Similarly to previous sections, I found that it makes sense to propose the following definition.

Definition 5.1. ([HL.H5, Definition 4.1]) A Jacobi–Lie system (N,⇤, R,X) consists of a Jacobi manifold
(N,⇤, R) and a Lie system X satisfying that V X ⇢ Ham(N,⇤, R).

Example 5.2. ([HL.H5, Example 4.3]) Consider the Lie group G := SL(2) of matrices 2 ⇥ 2 with real
entries ↵,�, �, � satisfying ↵� � �� = 1. Close to its neutral element, {↵,�, �} form a local coordinate
system for G. A short calculation shows that

X

R

1 = ↵@

↵

+ �@

�

� �@

�

, X

R

2 = �@

↵

+
1 + ��

↵

@

�

, X

R

3 = ↵@

�

is a basis of the space of right-invariant vector fields on G. If we define

⇤G := ↵�@

↵

^ @

�

� (1 + ��)@
�

^ @

�

, RG := ↵@

↵

� �@

�

+ �@

�

, (5.1)

we obtain that [⇤G,⇤G]SN = �2↵@
↵

^ @

�

^ @

�

= 2RG ^ ⇤G and [RG,⇤G]SN = 0. So,
(G,⇤G, RG) is a Jacobi manifold. Consider now the system on G given by dG

dt =
P3

i=1 bi(t)X
R

i

(G),
G 2 G, for any t-dependent functions b

i

(t). Since X

G =
P3

i=1 bi(t)X
R

i

takes values in the Lie
algebra V

G = hXR

1 , X
R

2 , X
R

3 i, the system X

G is a Lie system. System X

G occurs in the study
of Briosche–Darboux–Halphen equations, Kummer–Schwarz equations, Milne–Pinney equations, etcetera
[CGL.H6, EHL.PH1, CL.PH12].

We now prove that (G,⇤G, RG, X
G) is a Jacobi–Lie system. In fact, XR

1 , X
R

2 , X
R

3 are Hamiltonian
relative to (G,⇤G, RG) with good Hamiltonian functions

h1 = 1 + 2��, h2 =
�

↵

(1 + ��), h3 = ��↵. (5.2)

These functions are first-integrals of XR

1 , X
R

2 , X
R

3 , respectively, and RG. This allows us to use X

R

i

+ dh
i

with i = 1, 2, 3, and RG to span a sub-bundle LG of TG�G T

⇤G originating a Dirac structure on G [Co90].
Vector fields X

R

1 , X
R

2 , X
R

3 are Hamiltonian relative to LG giving rise to a Dirac–Lie system (G, LG, X
G)

[CGL.H6].

5.1. Jacobi–Lie Hamiltonian systems. Similarly to Lie systems admitting a Vessiot–Guldberg Lie
algebra of Hamiltonian vector fields relative to other structures, Jacobi–Lie systems can be related to a
t-dependent Hamiltonian function relative to a Jacobi manifold.

Definition 5.3. ([HL.H5, Definition 5.1]) We call Jacobi–Lie Hamiltonian system a quadruple (N,⇤, R, h),
where (N,⇤, R) is a Jacobi manifold and h : (t, x) 2 R ⇥ N 7! h

t

(x) 2 N is a t-dependent function
such that Lie({h

t

}
t2R, {·, ·}⇤,R) is finite-dimensional. Given a system X on N , we say that X admits a

Jacobi–Lie Hamiltonian system (N,⇤, R, h) if X
t

is a Hamiltonian vector field with Hamiltonian function
h

t

(with respect to (N,⇤, R)) for each t 2 R.

Example 5.4. ([HL.H5, Example 5.3]) Relative to the Lie bracket induced by (G,⇤G, RG) given in (5.1),
the functions (5.2) satisfy that

{h1, h2}⇤G,RG = �2h2, {h1, h3}⇤G,RG = 2h3, {h2, h3}⇤G,RG = �h1.

So, (G,⇤G, RG, h :=
P3

i=1 bi(t)hi) is a Jacobi–Lie Hamiltonian system for XG.

The analogues for Jacobi–Lie systems of Theorems 2.5, 3.3, 4.20 were devised in [HL.H5] and read as
follows.
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Theorem 5.5. ([HL.H5, Theorem 5.4]) If (N,⇤, R, h) is a Jacobi–Lie Hamiltonian system, then the system
X of the form X

t

:= X

h

t

, 8t 2 R, gives rise to a Jacobi–Lie system (N,⇤, R,X). If X is a Lie system and
the {X

t

}
t2R are good Hamiltonian vector fields, then X admits a Jacobi–Lie Hamiltonian.

Jacobi–Lie Hamiltonian systems can be employed for the study of Jacobi–Lie systems.

Proposition 5.6. ([HL.H5, Proposition 1]) Let (N,⇤, R,X) be a Jacobi–Lie system admitting a Jacobi–Lie
Hamiltonian (N,⇤, R, h) of good Hamiltonian functions {h

t

}
t2R. Then, f 2 C

1(N) is a t-independent
constant of motion for X if and only if f commutes with all the elements of Lie({h

t

}
t2R, {·, ·}⇤,R) relative

to {·, ·}⇤,R.

Example 5.7. ([HL.H5, Example 5.5]) Consider again the functions h1, h2, h3 given in (5.2) and the Jacobi
manifold (G,⇤G, RG), with ⇤G and RG given by (5.1). Then, {h21 + 4h2h3, hi}⇤G,RG = 0 for i = 1, 2, 3.
So, C = h

2
1 + 4h2h3 is a constant of motion for XG.

5.2. Jacobi–Lie systems on low dimensional manifolds. This section summarises my findings
concerning the classification of Lie algebras of Hamiltonian vector fields relative to Jacobi structures on
R and R2 obtained in [HL.H5]. My main results are detailed in Table 6.

I proved in [HL.H5] that a Riccati equation (1.2) can be associated with a Jacobi–Lie system (R,⇤ =
0, R = @

x1). Indeed, the elements of the basis X1, X2, X3 2 V of the Vessiot–Guldberg Lie algebra of (1.2)
admit Hamiltonian functions h1 = 1, h2 = x1, h3 = x

2
1. Hence, (R,⇤ = 0, R = @

x1 , a0(t)X1 + a1(t)X2 +
a2(t)X3) is a Jacobi–Lie system. Since every Lie system on R can be brought into this form through a
local diffeomorphism on R [GKO92, Lie1880, LS], every Lie system on the real line can be considered as
a Jacobi–Lie system.

We now classify Jacobi–Lie systems (R2
,⇤, R,X), where we may assume ⇤ and R to be locally equal

or different from zero. There exists just one Jacobi–Lie system with ⇤ = 0 and R = 0: (R2
,⇤ = 0, R =

0, X = 0).
Jacobi–Lie systems of the form (R2

,⇤ 6= 0, R = 0) are Lie–Hamilton systems, whose Vessiot–Guldberg
Lie algebras were obtained in [BHL.H3]. In Table 4 we indicate these cases by writing P (Poisson). A
Jacobi–Lie system (R2

,⇤ = 0, R 6= 0, X) is such that if Y 2 V

X , then Y = fR for certain f 2 C

1(R2).
All cases of this type can easily be obtained out of the bases given in Table 6. We describe them by writing
(0, R) at the last column.

Propositions 5.8 and 5.9 below show that the Vessiot–Gulbderg Lie algebras of Table 6 that do not
fall into the mentioned categories are not Vessiot–Guldberg Lie algebras of Hamiltonian vector fields with
respect to Jacobi manifolds (R2

,⇤ 6= 0, R 6= 0). So, every (R2
,⇤, R,X) admits a Vessiot–Guldberg Lie

algebra belonging to one of the previously mentioned classes2.

Proposition 5.8. ([HL.H5, Proposition 2]) Let V be a Vessiot–Guldberg Lie algebra on R2 containing
X1, X2 2 V \{0} such that [X1, X2] = X1 and X1 ^ X2 = 0. Then V does not consist of Hamiltonian
vector fields relative to any Jacobi manifold with R 6= 0 and ⇤ 6= 0.

Proposition 5.9. ([HL.H5, Proposition 3]) There exists no Jacobi manifold on the plane with ⇤ 6= 0 and
R 6= 0 turning the elements of a Lie algebra diffeomorphic to V := h@

x

, @

y

, x@

x

+ ↵y@

y

i with ↵ /2 {0,�1}
into Hamiltonian vector fields.

6. Outlook

The results of this habilitation can be extended in many ways. Indeed, I have now three papers under
review developing different aspects of this dissertation [GL17, CCJL17, LHT17]. My previous PhD student
continues studying the Lie systems I proposed her during her PhD [LS16]. I am continuing my research and
I found even more interesting results. Additionally, my research concerns now a larger set of topics: Lie
bialgebras, quantum groups, infinite-dimensional jets, differential equations on supermanifolds, stochastic
differential equations, BRST symmetries, and their applications in mathematics and physics.

2To exclude P1 with ↵ 6= 0 and I17, we need a trivial modification of Proposition 5.9 using exactly the same line of thought.
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TABLE 6. Vessiot–Guldberg Lie algebra of Hamiltonian vector fields on R2 relative to a Jacobi manifold
(see [HL.H5] for details). P means Poisson. Functions 1, ⇠1(x), . . . , ⇠r(x) are linearly independent, and
⌘1(x), . . . , ⌘r(x) form a basis of solutions for a d

r

f/dx

r

=

P
r�1
↵=0 c↵d

↵

f/dx

↵

, c

↵

2 R.

# Lie algebra Basis of vector fields X
i

Jacobi
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' Rn R2
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x

, @
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� x@
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x
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x
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2 � y

2
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x

+ 2xy@

y

P
P3 so(3) y@

x

� x@

y

, (1 + x

2 � y

2
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x

+ 2xy@

y

,

2xy@

x
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2 � x
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x
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� x@
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2�x
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The first paper [CCJL17] concerns the applications of Lie-Hamilton systems and Dirac-Lie systems
to non-autonomous Schrödinger equations. This works establishes that many quantum systems admit a
non-linear superposition rule depending on fewer solutions than the standard linear one. This works also
concerns the study of Lie systems possessing a Vessiot–Guldberg Lie algebra of Kähler vector fields.

In my second work under review [GL17], I proved that all differential equations of the Riccati hierarchy,
which frequently appear in the study of integrable systems, can be studied through Lie systems admitting
a Lie algebra of conformal vector fields relative to a Riemannian metric. This means that one can apply
Winternitz’s methods to obtain their superposition rules.

The last paper under review, i.e. [LHT17], shows how to obtain superposition rules for Lie-Hamilton
systems admitting a Vessiot–Guldberg Lia algebra of Killing vector fields relative to a certain metric of
constant curvature.

Nowadays, I am working on obtaining an analogue of the Marsden-Weinstein reduction for Lie
systems possessing a compatible Vessiot–Guldberg Lie algebra of Hamiltonian vector fields relative to
a multisymplectic structure. Additionally, I am using Lie bialgebras and quantum groups to construct
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integrable systems, which can be understood as a quantum deformation of a Lie-Hamilton systems. More
specifically, I am working on a quantum deformation of a Milne–Pinney equation.



CHAPTER 2

Other scientific achievements and activities

1. Research forming a continuation of the PhD thesis

During my postdoctoral research I also studied the basic properties and applications of Lie systems
without compatible geometric structures. Additionally, I also searched for generalizations of Lie systems
that could be led to the study of more general differential equations. Next, I provide a list of my works as a
postdoc concerning the above-mentioned topics.

GHL.PH1. P. Garcia-Estevez, F.J. Herranz, J. de Lucas and C. Sardón, Lie symmetries for Lie systems:
Applications to systems of ODEs and PDEs, Appl. Math. Comp. 273, 435–452 (2016). IF =
1.014 (2015), (Q1 - 56/312 w Mathematics), citations = 1(0). My contribution is about the 15% of
the work.

LT.PH2. J. de Lucas, M. Tobolski and S. Vilariño, Geometry of Riccati equations over normed division
algebras, J. Math. Anal. Appl. 440, 394–414 (2016). IF = 1.014 (2015), (Q1 - 56/312 w
Mathematics), citations = 1(1). My contribution is about the 40% of the work.

CL.PH3. J.F. Cariñena and J. de Lucas, Quasi–Lie families, schemes, invariants and their applications to
Abel equations, J. Math. Anal. Appl. 430, 648–671 (2015). IF = 1.014 (2015), (Q1 - 25/53 w
Physics, Mathematical), citations = 0. My contribution is about the 80% of the work.

CL.PH4. J.F. Cariñena, J. de Lucas and P. Guha, A quasi-Lie schemes approach to the Gambier equation,
SIGMA 9, 026 (2013). IF = 1.299 (2013), (Q2 - 25/55 w Physics, Mathematical), citations = 5(4).
My contribution is about the 75% of the work.

GL.PH5. J. Grabowski i J. de Lucas, Mixed superposition rules and the Riccati hierarchy, J. Differential
Equations 254, 179–198 (2013). IF =1.570 (2013), (Q1 - 13/302 w Mathematics), citations = 6(2).
My contribution is about the 70% of the work.

CL.PH6. J.F. Cariñena, J. de Lucas and J. Grabowski, Superposition rules for higher-order systems and their
applications, J. Phys. A: Math. Theor. 45, 185202 (2012).IF = 1.766 (2012), (Q2 - 13/55 w Physics,
Mathematical), citations = 14(4). My contribution is about the 60% of the work.

CL.PH7. J.F. Cariñena and J. de Lucas, Superposition rules and second-order Riccati equations, J. Geom.
Mech. 3, 1–22 (2011). IF = 0.812, (Q2 - 101/245 w Physics, Mathematical), citations = 24(13).
My contribution is about the 75% of the work.

CL.PH8. J.F. Cariñena and J. de Lucas, Integrability of Lie systems through Riccati equations, J. Nonl. Math.
Phys. 18, 29–54 (2011). IF = 0.543 (2011), (Q4 - 47/55 w Physics, Mathematical), Cytowania =
5(3). My contribution is about the 70% of the work.

CL.PH9. J.F. Cariñena, J. de Lucas and M.F. Rañada, A geometric approach to integrability of Abel
differential equations, Int. J. Theor. Phys. 50, 2114–2124 (2011). IF = 0.845 (2011), (Q3 -
48/84 w Physics, Multidisciplinary), Cytowania = 8(3). My contribution is about the 30% of the
work.

CGL.PH10. J.F. Cariñena, J. Grabowski and J. de Lucas, Lie families: theory and applications, J. Phys. A: Math.
Theor. 43, 305201 (2010). IF =1.641 (2010), (Q2 - 17/54 w Physics, Mathematical), citations =
6(0). My contribution is about the 60% of the work.

FL.PH11. R. Flores, J. de Lucas and Y. Vorobiev, Phase splitting for periodic Lie systems, J. Phys A. 43,
205208 (2010). IF = 1.641 (2010), (Q2 - 17/54 w Physics, Mathematical), citations = 7(1). My
contribution is about the 20% of the work.
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CL.PH12. J.F. Cariñena and J. de Lucas, Lie systems: theory, generalizations, and applications, Diss Math.
479, 1–169 (2011). IF = 0.214, (Q4 - 279/289 w Mathematics), citations = 28(13). My contribution
is about the 90% of the work.

AC.PH13. F. Avram, J.F. Cariñena and J. de Lucas, A Lie systems approach for the first passage-time of
piecewise deterministic processes, w: Modern Trends of Controlled Stochastic Processes: Theory

and Applications, Luniver Press, 2010, pp. 144–160. Swój układ oceniam na 50% of the work.
CL.PH14. J.F. Cariñena, J. de Lucas and M.F. Rañada, Lie systems and integrability conditions for t-dependent

frequency harmonics oscillators, Int. J. Geom. Methods Mod. Phys. 7, 289–310 (2010). IF =
1.612, (Q2 - 18/47 w PHYSICS, Mathematical), citations = 5(2) . My contribution is about the
60% of the work.

2. Other postdoctoral research

I have studied the general properties of differential equations, e.g. the infinite-dimensional jet formalism,
Jacobi multipliers, non-local symmetries, etc. I applied my results to systems of mathematical of physical
relevance, like types of an-harmonic oscillators [CL.PH14].

E1. J.F. Cariñena, J. de Lucas and M.F. Rañada, Jacobi multipliers, non-local symmetries, and nonlinear
oscillators, J. Math. Phys. 56, 063505 (2015). My contribution is about the 80% of the work.

E2. P.G. Estevez, M.L. Gandarias and J. de Lucas, Classical Lie symmetries and reductions of a
nonisospectral Lax pair , J. Nonlinear Math. Phys. 18, 51–60 (2011). My contribution is about the
30% of the work.

3. Editor in books

I was editor of the proceedings book: Geometry of Jets and Fields - in honour of Professor Janusz

Grabowski (eds. K. Grabowska, M. Jóźwikowski, J. De Lucas and M. Rotkiewicz), Banach Center
Publications 18, Vol. 110, Warsaw, 2016.

4. Prizes, scholarships and research grants

• 2016 - Award in recognition of achievements affecting the development and prestige of the
University of Warsaw, University of Warsaw.

• 2015 - Individual prize of third degree, Faculty of Physics, University of Warsaw.
• 2014 - Best teacher of the Faculty of Physics, University of Warsaw (UW Student council).
• 2013 - Didactic Award for outstanding classes and lectures, Summer term, University of Warsaw.
• 2011 - Postdoc fellowship for young researchers, IMPAN.
• 2010 - Special Award for Doctoral Theses, University of Zaragoza, year 2009/2010.
• 2010 - Postdoc fellowship for young researchers, IMPAN.
• 2009 - Postdoc fellowship for young researchers, IMPAN.

5. Other research activity

5.1. Longer research visits.
• August 6-September 6, 2016: Centre Recherches Mathématiques, CRM, University of Montreal,

Canada.
• August 9-September 6, 2015: Centre Recherches Mathématiques, CRM, University of Montreal,

Canada.
• August 28-September 29, 2012: University of Burgos, Burgos, Spain.
• October 1-December 31, 2011: University of Zaragoza, Zaragoza, Spain.
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5.2. Chosen short (up to 3 weeks) research visits.
• École Normale Supérieure, Paris, France, February, 2017.
• University of Burgos, Burgos, Spain, December, 2016.
• University of Saragossa, Spain, June, 2015.
• Polytechnic University of Catalonia, Barcelona, Spain, December, 2015.
• University of Salamanca, Salamanca, Spain, May, 2010.
• University of Salamanca, Salamanca, Spain, September, 2010.

5.3. Conference and seminar lectures.
(1) Talk: Control Lie systems and applications, Geometry of constraints and control, IMPAN,

Warsaw, Poland, October 25–31, 2009.
(2) Talk: Lie families: theory and applications, IV International Summer School on Control,

Geometry and Mechanics, University of Santiago de Compostela, Santiago de Compostela, Spain,
July 5–9, 2010.

(3) Poster:Lie systems:theory, generalizations, and applications., IV International Summer School
on Control, Geometry and Mechanics, University of Santiago de Compostela, Santiago de
Compostela, Spain, July 5–9, 2010.

(4) Poster: Superposition rules and second-order Riccati equations, University of Porto, Porto,
Portugal, September 6–9, 2010.

(5) Invited talk: Teoria y aplicaciones de los sistemas de Lie y los esquemas de quasi-Lie, Faculty of
Mathematics, University of Salamanca, Salamanca, Spain, September 22, 2010.

(6) Talk: Geometric structures and superposition rules, Centennial congress of the Spanish Royal
Mathematical Society R.S.M.E. 2011, Ávila, Spain, February 1–5, 2011.

(7) Talk: Lie–Hamilton systems: theory and applications, 5th Summer School on Geometry,
Mechanics and Control, La Cristalera, Miraflores de la Sierra, Spain, July 4–8, 2011.

(8) Invited talk: Lie–Hamilton systems, Congreso de la Sociedad Matematica Mexicana, University
of San Luı́s de Potosı́, San Luı́s de Potosı́, Mexico, October 9–14, 2011.

(9) Invited talk: Superposition rules and Lie systems, University of Sonora, Hermosillo, Mexico,
October 16, 2011.

(10) Invited talk: Superposition rules and Lie systems, University of Salamanca, Salamanca, Spain, May
15, 2012.

(11) Talk: Mixed Superposition rules: theory and some applications., XXI Fall workshop on
Geometry and Physics, University of Burgos, Burgos, Spain, August 30–September 1, 2012.

(12) Invited talk: Lie-Hamilton Systems: theory and applications, Faculty of Physics, University of
Burgos, Burgos, Spain, September 2, 2012.

(13) Invited talk: Mixed Superposition rules: theory and applications, University of Burgos, Burgos,
Spain, October 16, 2012.

(14) Talk: Dirac–Lie systems: theory and applications, Thematic day on Dirac Structures and
Applications, University of Zaragoza, Zaragoza, Spain, February 2, 2013.

(15) Talk: Dirac–Lie systems: theory and applications, I Meeting on Lie systems: theory,
generalisations, and applications, IMPAN, Warsaw, May 20–24, 2013.

(16) Invited Talk: Dirac–Lie systems: theory and applications, XXIII Meeting on Differential
Equations and Applications CEDYA, University Jaume I, Castellon, Spain, September 9–13,
2013.

(17) Invited Talk: Geometric structures and Lie systems: Theory and applications, University of Burgos,
Burgos, Spain, December 20, 2013.

(18) Talk: New trends on Lie systems, II Meeting on Lie systems: theory, generalisations, and
applications, IMPAN, Poland, September 22–27, 2014.

(19) Invited talk: Lie–Hamilton systems: theory and applications, University of Łódz, Łódz, Poland,
May 24, 2015.
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(20) Talk: Geometry and applications of Lie–Hamilton systems on the plane, III Meeting on Lie
systems: theory, generalisations, and applications, IMPAN, Warsaw, September 21–26, 2015.

(21) Invited talk: k-symplectic Lie systems: theory and applications, III Young researchers conference
of the RSME, University of Murcia, Murcia, Spain, September 7–11, 2015.

(22) Talk: A Lie systems approach to the Riccati hierarchy and PDEs, 50th Sophus Lie Seminar,
Research and Conference Centre IMPAN, Bȩdlewo, Poland, September 26–October 1, 2016.

(23) Invited talk: Applications of Lie systems to Bernoulli-type equations, University of Burgos, Burgos,
Spain, December 16, 2016 r.

6. Attendance to conferences, courses, congresses.

(1) School on Combinatorics and Control, Benasque, Spain, from April 11–17, 2010.
(2) XIII Winter Meeting on Geometry, Mechanics and Control Theory, Saragossa, Spain, January

26–27, 2011.
(3) XIII Thematic day on: Classic Field Theory, Saragossa, Spain, January 28, 2011 r.
(4) Geometry of Manifolds and Mathematical Physics, Crakow, Poland, June 27–July 1, 2011.
(5) III Iberoamerican meeting on Geometry, Mechanics and Control, Salamanca, Spain,

September 3–7, 2012.
(6) XV Winter meeting on Mechanics, Geometry and Control, Saragossa, Spain, January 30–31,

2013.
(7) 8th Symposium on Integrable Systems, Department of Physics and Applied Mathematics,

University of Łódź, Łódź, Poland, July 3–4, 2015.
(8) Quantum Spacetime ’16, Zakopane, Poland, February 6–12, 2016.
(9) Geometry of Jets and Fields, Bȩdlewo Conference Center, Bȩdlewo, Poland, May 10–16, 2016.

7. Organization of conferences

• I Meeting on Lie systems: theory, generalisations, and applications, IMPAN, Warsaw, Poland,
May 20–24, 2013.

• II Meeting on Lie systems: theory, generalisations, and applications, IMPAN, Warsaw, Poland,
September 22–27, 2014.

• III Meeting on Lie systems: theory, generalisations, and applications, IMPAN, Warsaw,
Poland, September 21–26, 2015.

• Geometry of Fields and Jets, Bȩdlewo Conference Center, Bȩdlewo, Poland, May 10–16, 2016.
• 50th Sophus Lie Seminar, Research and conference centre IMPAN, Bȩdlewo, Poland, September

26–October 1, 2016.

8. Activity as a referee, memberships, etc.

• Referee for projects of the Portuguese Foundation for Science and Technology.
• Referee for J. Phys. A, Adv. Math. Phys., Rep. Math. Phys., J. Dyn. Contr. Systems, Annals of

Physics, Proc. Royal Soc. A, Int. J. Geom. Methods Mod. Physics, Advances in Mathematical
Physics, Symmetry, EPJP and others.

9. International collaborations

I work with researchers from the Universities of Saragossa and Burgos (Spain), the Centre de Recherches
Mathématiques of the University of Montreal (Canada), the Politechnic of Catalunya (Spain), IMPAN
(Poland), ICMAT (Spain), Universidad Complutense de Madrid (Spain), etc. I previously worked with
researchers from the S.N. Bose National Centre for Basic Sciences (India), the University of Hermosillo
(Mexico) and the University of Pau (France).

I took part as a member of a HARMONIA project of international collaboration with title: ‘Lie systems:
theory, generalizations and applications’. Among the duties of this collaboration, I accomplished the
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organization along with Prof. Janusz Grabowski of three conferences in Warsaw conglomerating researches
from Poland and Spain.

10. Languages

• Spanish: mother tongue
• English: advanced level.
• Polish: advanced level.
• German: basic level.
• Russian: basic level.
• French: basic level.
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[CGL.H6] J.F. Cariñena, J. Grabowski, J. de Lucas, and C. Sardón. Dirac-Lie systems and Schwarzian equations. J. Differential

Equations, 257(7):2303–2340, 2014.
[CGM00] J.F. Cariñena, J. Grabowski, and G. Marmo. Lie-Scheffers systems: a geometric approach. Napoli Series on Physics

and Astrophysics. Bibliopolis, Naples, 2000.
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