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4.1 Introduction

Turbulence is a common phenomenon in nature. In particular, atmospheric �ows are to a substantial extent
turbulent.
The Latin word �turbulentum� translates as: violently disturbed, stormy, unruly, violent and riotous.
The related word �turbidus�, on the other hand, describes, among others, something confusing, unclear
and troublesome. These two meanings anticipate the di�culties one encounters when describing turbulent

�ows in the statistical sense. The purpose of this description is to characterize the apparent disorder and
chaos by means of universal scaling laws for ensemble averaged quantities (statistics of turbulence). These
laws can take a simple form and often are related to the invariance of statistics with respect to certain
transformations of variables, or in other words: the symmetries.

The phenomenon of turbulence is usually associated with symmetry breaking. An example is the laminar-
turbulent transition in a pipe �ow. An ordered laminar �ow is characterized by axial symmetry. When
the pressure di�erence between the ends of the pipe is su�ciently large, the �ow becomes turbulent. The
velocity of the �uid changes in time and space, axial symmetry is therefore broken. Turbulence, however,
is characterized by a tendency to restoring symmetries in the statistical sense [1]. This is usually the case
for large Reynolds numbers and su�ciently far from the boundaries. For example, in turbulent �ow in a
pipe, the mean velocity is again axisymmetric. In the description of turbulence, an important role is played
by the solutions of equations that remain invariant with respect to symmetries. The best example are the
Kolmogorov scaling laws, which are a consequence of the scale invariance. They are commonly used in the
analysis of measurement data of (among others) atmospheric turbulence.

The works presented as the scienti�c achievement are based on the common assumption that the mathe-
matical analysis of the structure of the underlying equations is key to improve description of turbulence,
even if these equations are not solved explicitly. The analysis leads to the applications of the theory in
the description of atmospheric �ows, including �ows with strati�cation and �ows in the quasi-geostrophic
approximation. The goal is to propose new methods to parameterize these phenomena.

The works H1, H2, H5, H6 concerned the determination of the symmetries of the equations
describing turbulent �ows in a statistical sense. In H1 and H2, one of the scaling groups was linked
to the phenomenon of the external intermittency, where turbulent �ow can alternate with laminar one. The
papers H8 and H9 present an application of this analysis to describe �ows in the atmospheric
boundary layer (ABL) with stable strati�cation that occurs due to the rapid cooling of the
Earth's surface after sunset [2]. In this case, turbulent �ow is suppressed and locally laminar areas
can be formed.
The works H5 and H6 deal with two-dimensional turbulence, which approximates �ow of the
largest scales in the atmosphere. Such �ows are characterized by distinctive physical properties. In the
three-dimensional turbulence, the classical Richardson-Kolmogorov model of the energy cascade assumes
that the production of turbulence kinetic energy occurs at the the largest eddies, followed by a transfer of
energy in the space of scales, from the large eddies to the smallest ones, where it is converted into internal
energy in a process of dissipation [3]. On the other hand, in two-dimensional �ows an inverse energy transfer
is observed, from small to large scales. This leads to the formation of large vortex structures.
The rate of dissipation of kinetic energy is one of the basic quantities characterizing turbulence. The
dissipation occurs at the the smallest eddies, in the atmospheric boundary layer they are of the order
of millimeters or centimeters, therefore it is di�cult to determine the rate of dissipation on the basis of
direct measurements. The disspation is estimated indirectly, using the scaling law of the velocity structure
functions. In works H3 and H4 alternative ways of determining the dissipation rate were
proposed, based on the time series of velocity �uctuations, measured with low resolution.
The methods use telegraphic approximation of the signal and the variance of the signal
derivatives.
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In H7 the dissipation scaling in strongly non-stationary �ows was addressed. Therein, it was
shown based on theoretical analysis, that the so-called dissipation factor can be used as an indicator to
assess turbulence states. The dissipation coe�cient has a certain �xed value in stationary turbulence,
increases when turbulence decays, and decreases when turbulence becomes stronger due to intense produc-
tion. The method has been applied in the analysis of measurement data in ABL.

In the following section, methods of statistical description of turbulence will be presented in Section 4.2
and the concept of invariance with respect to symmetry is addressed in Section 4.3. Section 4.4 deals with
the symmetries of the transport equations for the probability density function and Section 4.5 with the
application of symmetries to derive invariant solutions in the atmospheric boundary layer. Section 4.6 is
devoted to the scaling of turbulence kinetic energy dissipation rate. This is followed by the conclusions and
perspectives (Section 4.7).

4.2 Statistical description of turbulence

Turbulent �ows are described mathematically by the closed system of the Navier-Stokes equations. This
system can be solved using appropriate numerical methods, however the problem is the enormous compu-
tational cost of such simulations and the high sensitivity of the solutions to small changes in the initial
and boundary conditions. Because of this, turbulent �elds can be treated as random �elds [3]. For their
complete description in the statistical sense, we need the knowledge of the mutual correlations of velocity,
temperature and other variables describing the the �ow at its various points.
After applying the averaging operator to the Navier-Stokes equations, one obtains the Reynolds equations
which contain mutual correlations of two velocity components. These correlations become new unknowns.
The transport equations for these correlations can be derived in the analogous way, by using the Navier-
Stokes equations, performing further manipulations and applying the averaging operation. However, the
derived equations will contain further unknowns - the third-order correlations and two-point correlations.
Proceeding further, one �nally obtains an in�nite system of equations, the so-called Friedmann-Keller
hierarchy [4].
Alternatively, on the basis of the Navier-Stokes equations, it is possible to derive the transport equation for
the probability density function of velocity [5]. Analogously to the previous case, it will contain the unknown
two-point probability density function. By deriving the subsequent equations for two-, three- point etc.
functions one obtains an in�nite system of Lundgren-Monin-Novikov (LMN) transport equations [5, 6, 7].
A third way, which provides the full description of turbulence in the statistical sense, by E. Hopf [8], uses a
single transport equation for the characteristic functional. All multipoint statistics of the turbulent velocity
can be derived by calculating the functional derivatives of the Hopf function. However, this concise way of
describing turbulence is di�cult to use in practical applications. Although more than seventy years have
passed since the seminal paper by E. Hopf, numerical methods to solve the derived functional equation
have been proposed only recently [9].
Due to the large number of independent variables, it is also problematic to solve equations for multi-point
probability density functions and multi-point statistics. Therefore, in most of the Reyolds-Averaged-Navier-
Stokes (RANS) turbulence closures in use, only the single-point statistics are considered. Unknowns in the
equations are replaced by proper functions (models) of the known quantities [10]. Single-point statistics
relevant to turbulence modelling include: the mean velocity vector 〈u〉, where u = [u, v, w], or in the index
notation u = [u1, u2, u3], and the components of the Reynolds stress tensor which can be written using
index notation as

〈u′iu′j〉, i, j = 1, 2, 3.

Above, 〈·〉 denotes the ensemble-average operator and terms with the upper index ′ stand for the �uctua-
tions, e.g. u′i = ui−〈ui〉. The mean kinetic energy is de�ned as the half of the trace of the Reynolds-stress
tensor

k =
1

2
〈u′2 + v′2 + w′2〉 =

1

2
〈u′iu′i〉,
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where the Einstein index summation convention is used.
Apart from this, in RANS turbulence models additional equation for the dissipation rate of the turbulence
kinetic energy is solved. The dissipation rate is de�ned as

ε = 2ν〈sijsij〉, (1)

where ν is the kinematic viscosity and the gradient tensor sij is de�ned as

sij =
1

2

(
∂u′i
∂xj

+
∂u′j
∂xi

)
.

Due to the presence of �uctuating derivatives in the above formula for ε, information on �ne-scale structure
of turbulence, where the process of dissipation takes place, is needed to determine this quantity. The size of
the smallest eddies can be estimated with the use of dimensional analysis, by using the kinematic viscosity
ν and the dissipation rate ε

η =

(
ν3

ε

)1/4

. (2)

Another useful length scale is the Taylor microscale de�ned as

λ =

√
10
ν

ε
k =

√
15
ν

ε
U , (3)

where U2 = 2/3 k.
Having k and ε, or U and ε one can determine the characteristic size of large structures L. The three
variables are connected by the Taylor's law [44], which serves as the cornerstone for many turbulence
models

ε = Cε
U3

L
, (4)

where Cε is the dissipation coe�cient.
In spectral models of turbulence, transport equations for the spectral energy density or the second-order
structure function de�ned as

〈δu2i 〉 = 〈(ui(x + r, t)− ui(x, t))2〉, i = 1, 2, 3.

are solved. Both functions are the two-point statistics that provide information on what portion of the
total kinetic energy is contained in eddies of certain sizes. However, even this does not provide the full
description of turbulence in the statistical sense. For a complete description, it would be necessary to know
the Hopf functional, from which it is possible to determine all multipoint statistics, including the structure
functions of any order.

4.3 Invariance, symmetries and scaling laws

The concept of invariance is used in the solutions of many problems in physics, meteorology and engineering,
even without direct reference to the symmetry theory. An example is the well-known work by Monin and
Obukhov [11] in which, based on the invariance of statistics with respect to transformations of variables,
a logarithmic pro�le for the mean velocity near the atmospheric surface layer was derived.
Let us assume that the independent variables z and t, where z denotes the distance to the surface of
the Earth, are transformed such that new independent variables z∗ and t∗ are formed. Additionally, the
dependent variable θ(z, t) is transformed into a new variable θ∗(z∗, t∗). An invariant is a function C(θ, z, t),
which conserves its form after the change of variables

C(θ, z, t) = C(θ∗, z∗, t∗).

6



Monin and Obukhov [11] argued that di�erences of the wind speeds in the atmospheric surface layer are
invariant with respect to the following scaling

x∗ = λx, y∗ = λy, z∗ = λz, t∗ = λt. (5)

The velocity di�erence at the two heights is a function of both z1 and z2, but because it should be invariant
with respect to the scaling transformation (5), it must be a function of z2/z1

〈u(z2)〉 − 〈u(z1)〉
uτ

= f

(
z2
z1

)
, (6)

where uτ is a velocity scale. Relation (6) is satis�ed if the pro�le of the mean wind speed in the atmospheric
surface layer is logarithmic.
In Ref. [11] the invariance of statistics was not linked to the underlying system of equations which describes
�ow in the atmospheric surface layer. This link can be found by analysing symmetries of the equations,
i.e. such transformations of independent and dependent variables which do not change the functional form
of the equation. The transformations can be called a Lie group if they form a set with an operation which
is associative, every element in the set has an inverse and an identity element exists. [12].
All properties of the group are satis�ed by the scaling (5), which can be presented in the following expo-
nential form z∗ = λz = eεz, where ε ∈ R. Combination of two transformations z∗∗ = eε1 (eε2z) is a new
transformation from the same set z∗ = eε1+ε2z. The unitary element is ε = 0. The element inverse to exp(ε)
is exp(−ε), such that z∗ = eεe−εz = z. The associativity is also satis�ed, as z∗ = (eε1eε2)eε3z = eε1(eε2eε3)z.
The Lie group analysis allows to derive the set of symmetries of equations under consideration, invariants
and invariant solutions. It has found numerous applications in the analysis of processes described by partial
di�erential equations [12].
The Navier-Stokes equations are invariant with respect to time and space translations

t∗ = t+ t0, (7)

x∗ = x + f(t), u∗ = u +
df(t)

dt
, p∗ = p− x · d2f(t)

dt2
, (8)

where f(t) is an arbitrary vector function of time, with respect to rotations of the coordinate system and
the pressure translations p̄∗ = p̄+ g(t), where g(t) is an arbitrary function of time. In the limit of negigible
viscosity (ν → 0) two independent scaling groups of space and time are found

t∗ = t, z∗ = eazz, u∗ = eazu, p∗ = e2azp (9)

t∗ = eatt, z∗ = z, u∗ = e−atu, p∗ = e−2atp, (10)

which are of particular importance for the derivation of the scaling laws. With non-zero viscosity the scaling
groups (9) and (10) are reduced to one scaling symmetry, with at = 2az.
After the ensemble averaging, the aforementioned symmetries become transformations of mean variables.
The viscosity ν can be assumed negligible e.g. in a transport equation for structure function, in a restricted
range of scales. In this case one can consider invariance with respect to both scaling groups (9) and (10). As
an example, the transformation (5), discussed in the paper by Monina and Obukhov [11], is a combination of
the scaling groups (9) and (10) under the assumption at = az, which imposes certain kind of self-similarity
of statistics in the atmospheric surface layer. In this case we obtain λ = eaz = eat .
A. N. Kolmogorov is the author of the best-known turbulence theory [13]. The �rst hypothesis of Kol-
mogorov states that, under the assumption of local isotropy, there exists a certain range of scales, much
smaller than the characteristic size of large, energy-containing eddies, where statistics (in particular, the
structure functions) take a self-similar form and depend on the turbulence kinetic energy dissipation rate
ε and viscosity ν. The second Kolmogorov's hypothesis assumes that within the aforementioned range of
scales one can identify a subrange (called the inertial subrange), where �ow statistics depend only on the
dissipation rate ε, but not on the viscosity ν.
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U.Frisch [1], paraphrased Kolmogorov's hypotheses using the concept of symmetry of the Navier-Stokes
equations. The �rst hypothesis, according to U. Frisch, assumes that in the limit of in�nitely large Reynolds
numbers all the symmetries of the Navier-Stokes equations, usually broken by mechanisms of turbulence
production, are restored in a statistical sense and at su�ciently large distances from the boundaries of
the �ow region. For example, the statistical homogeneity of the �ow is due to the invariance of statistics
with respect to translations (7), isotropy is related to invariance with respect to rotations. In the case of
isotropy, structure functions and other two-point statistics will depend only on the distance between points
r. Invariance with respect to scaling (9) and (10) results in the following form of the velocity structure
function of order p

〈δupi 〉
∗ = ep(az−at)〈δupi 〉, i = 1, 2, 3. (11)

U. Frisch assumed that at su�ciently small scales turbulent �ow is self-similar, which also implies that
there exist a relation between parameters az and at. Another hypothesis states that the rate of dissipation
ε in turbulent �ow has a �nite, non-zero value even for ν → 0. Dimensional analysis then leads to the
following relation:

〈δupi 〉 ∝ (εr)p/3, i = 1, 2, 3, (12)

which together with Eq. (11) determines the value of the ratio at/az = 2/3.
In turbulent �ows Eq. (12) is satis�ed only for low-order functions. As p increases, it becomes apparent that
the scaling symmetry is broken, which is related to the phenomenon of internal intermittency. The velocity
�eld generated by the smallest eddies is highly inhomogeneous. Areas of high activity occur alternately with
�smooth� areas. In determining the structure function, the share of �active� areas increase with the order
of the function p. In addition, at small scales, viscosity plays an important role, so the assumptions made
to determine the function (12) are not met. Equation (12) is, however, satis�ed with a good approximation
for second- and third-order structure functions, which is used extensively, among others, in the analysis of
atmospheric measurement data.
The Lie group theory and, particularly, derived invariant solutions were applied in numerous studies of
turbulent �ows. A series of scaling laws for near-wall �ows was derived in [14]. Similar approach was used
in Refs. [15, 16]. In Ref. [17] an in�nite Friedmanna-Keller hierarchy of equations for turbulence statistics
was considered. The authors showed that due to their linearity, the equations are invariant with respect to
additional scaling and translation symmetries. This allowed to derived new solutions, cf. the review work
[18]. The studies on symmetry invariant solutions in near-wall turbulence were continued, among others,
in Refs. [19, 20]. Another methodology was used in Refs. [21, 22]. Therein, authors introduced the concept
of a random scaling coe�cient, which allows e.g. to scale the mean �ow di�erently than the turbulence
intensity. The subject of symmetries in the statistical approach is also addressed in the works included in
the habilitation achievement, presented in the next section.

4.4 Symmetries of transport equations for probability density functions

Works H1 and H2, included in the habilitation achievement, concern the symmetries of
a system of equations for the multi-point probability density functions of velocity. In this
approach turbulent �eld is treated as the stochatic �eld. Its n-point probability density function is denoted
as

fn = fn({vi,xi}, t) = fn(v1, . . . ,vn;x1, . . . ,xn, t), (13)

where vi, i = 1, . . . , n are variables from the sample space of velocity at points xi and in time t: u(xi, t).
Based on fn we can determine arbitrary n-point statistics of velocity, by multiplying fn by a function of
the arguments {vi} and integrating over the sample space. Transport equation for fn, derived from the
Navier-Stokes equations, is written symbolically as [23]

∂fn
∂t

+

n∑
i=1

vi · ∇ifn = Hn+1fn+1, (14)

8



where ∇i is the gradient operator at point xi, and Hn+1 is an integro-di�erential operator. The right hand
side of Eq. (14) contains n+ 1-point probability density function. A transport equation for the n+ 1-point
probability density functions contains terms with n+2-point probability density function. Hence, the LMN
system contains in�nite number of equations.
The motivation for undertaking the research topic was connected with results of previous works on the
symmetries of the Friedmann-Keller system [17]. These equations are invariant with respect to additional
translation and scaling groups, which are not symmetries of the Navier-Stokes equations. In the following
description, they will be referred to as �statistical transformations�. The question was whether it is possible
to �nd their counterparts in the system of LMN equations and how invariance under these transformations
can be interpreted.
First, in H1, invariance of the LMN equations under symmetries of the Navier-Stokes equa-
tions was shown. Next, the applicant derived transformations corresponding to the additional,
statistical translation and scaling transformations of the Friedmann-Keller hierarchy. For this,
the probability density function f1 was expressed in terms if its characteristic function Φ1 as follows

f1(v;x, t) =
1

(2π)3

∫
Φ1(s;x, t)e

−iv·sdv. (15)

n-th order velocity statistics are calculated as derivatives of the characteristic function Φ1 at s = 0. Hence,
the statistics form coe�cients of the Taylor series expansion of the function Φ1 around s = 0. With this
representation it was possible to calculate the transformed characteristic function Φ∗ by substituting the
transformed velocity statistics, known from Ref. [17], into its Taylor series expansion. Next, the correspond-
ing transformed probability density function f∗1 was calculated using the relation (15). This transformed
function is of the form

f∗n = easfn + (1− eas)δ(v1 − u0) · ... · δ(vn − u0), (16)

where as ≤ 0 is the scaling parameter. Due to its restriction to non-positive numbers the scaling trans-
formation forms a semi-group. The term δ(vn − u0) is a Dirac-delta, and u0 is a given, constant velocity.
The probability density function of the form (16) is used to describe the external intermittency, i.e. al-
ternating laminar/turbulent �ows, see e.g. Ref. [3], Eq. (5.301) therein. The probability density function
of non-�uctuating, laminar velocity �eld is described by the Dirac delta function. Hence, the parameter
eas = γ can be interpreted as the intermittency factor, which expresses the probability of appearance of
turbulent �ow. In H1, an example of plane channel �ow was discussed. In a somewhat simpli�ed approach
(by ignoring intermediate states) it can be assumed, that the �ow can be either laminar or turbulent, with
certain probability which depends on the Reynolds number.
The condition (16) expresses the fact that the Navier-Stokes equations can have two distinct types of
solutions: ordered (laminar) and turbulent, which appear with probailities 1− γ and γ, respectively. This
gives statistical transformations an interpretation, even though there are no corresponding symmetries
of the Navier-Stokes equations. The problem of laminar-turbulent transition and the dependence of the
coe�cient γ on the Reynolds number were recently investigated experimentally, e.g. in [24].
The form (15) satis�es the normalisation condition of the probability density function, however the separa-
tion condition, which states that velocity �uctuations at very distant points are statistically independent,
is not satis�ed by (15). According to the separation condition, e.g. the two-point probability density
function should be a product of two one-point functions f2(v1,v2;x1,x2, t) = f1(v1;x1, t)f1(v2;x2, t) for
|x1−x2| → ∞. However, in case of intermittent �ows, consider conditional averages should be considered.
The separation condition is satis�ed separately for turbulent �eld and for laminar �eld (with the Dirac
delta probability density function), but not for their weighted average. The applicant used this argument in
the discussion in Ref. [25]. Statistical transformations follow from the linearity of the transport equations
for turbulence statistics. It should be noted that the functional Hopf equation [8], which fully describes
the turbulent �eld in the statistical sense, is also linear.

Despite the derivation of the transformations corresponding to the symmetries of the Friedmann-Keller
equations in H1, an open question was whether the set of symmetries is complete and whether the equations
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under consideration are invariant with respect to yet other transformations. Symmetries of equations can
be derived with the Lie group analysis. This procedure is well established in case of partial di�erential
equations and the details can be found in textbooks, e.g. [12]. Less standard is the Lie group analysis of
integro-di�erential equations. A formal problem is also caused by the incompleteness of each of the LMN
equations due to the presence of higher-order probability density function.To �nd transformation which
do not change the form of the LMN system, in H2 its systematic analysis was performed.
(The applicant and Dr. V. N. Grebenev contributed equally to this analysis.) For this the �rst and the
second equation from the in�nite hierarchy were presented as the following conservation laws

∂f1
∂t

+
∂Ji

∂y
(1)
i

= 0, i = 1, . . . , 6 (17)

∂f2
∂t

+
∂Ii

∂y
(2)
j

= 0, i = j, . . . , 12, (18)

where y(1)i and y
(2)
j are independent variables. Components of the vectors Ji and Ij were determined

by relations, part of which are integral relations. Symmetries of the conservation laws (17) and (18) are
known, see e.g. [26], hence, their form was a starting point of the analysis. We used the methodology of
Lie-Bäcklund operators, introduced in Ref. [27]. During the analysis, the integral relations which determine
the components Ji and Ii were taken into account one by one. This led to the �nal set of symmetry trans-
formations of the �rst LMN equation. It included all symmetries of the Navier-Stokes equations and the
statistical transformations already known from H1. Apart from this, the Lie symmetry analysis of LMN
equations for velocity did not reveal any additional symmetries.

The same methodology was used in work [28] (coauthored by the applicant) and therein it was shown
that under particular conditions the �rst equation from the LMN system for vorticity is invariant under
conformal transformation of space. This subject was continued in works H5 and H6, which concerned two-
dimensional turbulence, which serves as an approximation of turbulent �ow in thin layers. It is believed
that large synoptic scales (of the order of thousands of kilometers) in the Earth's atmosphere may also
exhibit certain properties of 2D turbulence. When transport equations for vorticity are reduced from three
to two dimensions, the so-called �vortex stretching� term cancels out. This fact is usually interpreted as
the reason for substantial di�erences in the dynamics of turbulent �ows in two and three dimensions. The
vortex stretching mechanism contributes to the formation of the energy cascade, from large to small scales.
In 2D turbulence the energy is transferred in the inverse cascade, from small to large eddies. As a result
of this process, either the largest scales, or the mean �ow, become enhanced.
In 2D turbulence one observes also the direct enstrophy cascade (i.e. towards small scales), where the
enstrophy is de�ned as the mean square of the vorticity Z = 〈ω2〉. The existence of the double energy
and enstrophy cascade was predicted analytically by R. Kreichnan [30]. The theory was also con�rmed in
later numerical experiments by [31]. As viscosity does not a�ect the inverse cascade, a perfect Kolmogorov
scaling (12) is observed in 2D turbulence, even for higher-order structure functions. The existence of inverse
energy cascade in the atmosphere is a subject of debate, e.g. in Ref. [32] only the direct enstrophy cascade
towards smaller scales was con�rmed, whereas in the recent paper [33], the mechanism of inverse energy
transfer, possible at scales as small as 15km, was described.
In Ref. [29] it was suggested that some statistics of turbulence in 2D remain invariant with respect to
a transformation more general than the scaling (8), namely the conformal transformation. It is a scaling
which depends on the position

x∗ = λ(x), (19)

which changes distances but preserves angles. In Ref. [29] an analysis of a numerical experiment was
performed. It turned out that zero vorticity lines bounding large vortex structures are invariant to conformal
transformations. However, this property was not exhibited by the lines bounding the �ne structures of the
turbulence �eld. Hence the conjecture that invariance with respect to conformal mappings is related to the
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inverse energy cascade. A question which remained open was whether the observed properties of turbulence
in 2D could be explained by analyzing the structure of underlying equations.
The question was addressed in works H5 and H6, where procedures developed in H2 and
Ref. [28] were further applied. In H5 the applicant conducted the Lie group analysis of a transport
equation for the probability density function of a scalar Φ. The evolution in time and space of this scalar
is described by hydrodynamic models of the form

∂Φ

∂t
+ u · ∇Φ = κ∇2Φ− γΦ, (20)

where x = (x, y) and u = (u, v), κ denotes molecular di�usivity, and the component −γΦ, where γ > 0
was introduced to model the large-scale friction, which removes energy from the system. The velocity
components in Eq. (20) read

u = β

∫
dx′Φ(x′, t)

(y − y′)
|x− x′|m

, (21)

v = −β
∫

dx′Φ(x′, t)
(x− x′)
|x− x′|m

, (22)

where β is a constant, which depends on a model and the exponent m > 1. When m = 2, the scalar Φ
is the vorticity in 2D turbulence, for m = 3, Eq. (20) describes buoyancy in the surface quasi-geostrophic
model, which is used to mimic dynamics of synoptic scales in mid-latitudes [34, 35]. This model takes into
account the strati�cation and the Coriolis force, due to the Earth's rotation. Physical interpretation can
also found for the case m = 6, [36].
In H5, the transport equation for the probability density function f1(φ;x, y, t) was considered,
where φ denotes a variable from the sample space of the scalar Φ(x, y, t). This equation is of
hyperbolic type and its charcteristics can be interpreted as Lagrangian trajectories of particles moving
in a conditionally-averaged velocity �eld. In H5 it was show that, for arbitrary m > 1, the probability
measure f1(0;x, y, t)dφ that the scalar is contained within 0 < Φ(x, y, t) < dφ, is invariant with respect to
conformal transformations.
A link to the work [29] is that therein the conformal symmetry was observed for the zero-vorticity lines.
In H5 it was further shown that the conformal invariance was retained for γ 6= 0, but broken for non-zero
di�usivity κ 6= 0. This could explain the fact that in Ref. [29] the conformal invariance was only present
at large scales, which are not a�ected by molecular di�usivity.
The conformal invariance is present only if the two-point probability density function f2(φ1, φ2;x1,x2, t)
transforms in a particular way. It was further shown in H5 that because of this condition statistics calculated
based on the conformal transformations could be only approximations of real solutions, up to the �rst order
term of Taylor series expansion. To assess accuracy of this approximation, detailed analysis of numerical or
experimental data would be necessary. Possibly, statistics of large synoptic scales in the atmosphere could
also be used for this purpose. The conjecture, that they can be conformally invariant was stated in Ref. [37].

A di�erent interpretation of the derived transformations was discussed in paper H6. Therein,
the applicant presented examples of two-point and one-point probability density functions, which satis�ed
the conditions derived in H5 and assured the conformal invariance of the considered transport equation.
This held only for a certain form of two-point correlations of the variable Φ. It was argued that invariance
with respect to conformal transformations implies that certain statistics of a non-homogeneous vorticity
�eld could be obtained by transforming the statistics determined for a homogeneous �eld, without having
to solve the equations again. The question whether the derived form of the two-point correlations is in-
deed observed in the considered classes of turbulent �ows requires further research and detailed analysis
of numerical or experimental data.
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4.5 Invariant solutions in the stable atmospheric boundary layers

Works H8 and H9 concerned application of the Lie symmetry theory in the analysis of
atmospheric boundary layer �ows, under stable strati�cations. Since turbulence is characterized by
a tendency to restore symmetries in the statistical sense, the mean velocity and Reynolds stress components
can be expected to take some characteristic form close to invariant solutions in a given class of �ows. An
example is the well-known logarithmic pro�le of mean velocity near the wall. It is observed in various
types of �ows, including atmospheric surface layer turbulence at neutral conditions (when temperature
changes are small enough and do not a�ect the velocity �eld). The logarithmic pro�le can be derived as an
invariant solution taking into account scaling symmetries and translation of the mean velocity. The latter
has no counterpart in the symmetries of the Navier Stokes equations, yet the Friedmann-Keller equations
are invariant with respect to this translation. The translation of the mean velocity was indirectly used
in the aforementioned work by Monin-Obukhov [11]. Its authors considered velocity di�erences that were
invariant to the translation of the mean velocity.
Buoyancy forces play an important role in the ABL �ows. ABLs take on two characteristic forms: the
typical, �convective� daytime state caused by solar heating, and the typical night-time state, with density
decreasing with altitude, leading to the formation of a �stable� layer. The latter is particularly dominant
over the ice-covered regions of the Arctic Ocean, especially during the long polar night. The heat budget of
the Arctic is a key component of climate predictions. At the same time, the boundary layer is so thin that
typical atmospheric models do not resolve the details of its structure. Therefore, the physical description
of the ABL must rely on statistical approaches. The basic statement of the Monin-Obukhov theory is that
the complex vertical structure of the ABL can be characterized by a single length scale, called the Obukhov
scale. This theory remains one of the guiding principles in the studies of ABLs. Speci�cally, for a stable
atmospheric layer, the theory predicts that the �uxes of momentum 〈u′w′〉 and the potential temperature
〈w′θ′〉 are approximately constant, and the gradients of mean velocity and mean temperature are expressed
by the formulas

φm =
κz

u∗

∂〈u〉
∂z

= 1 + β
z

L
, φh =

κz

θ∗

∂〈θ〉
∂z

= 1 + β
z

L
, (23)

where u2∗ = −〈u′w′〉 = const, θ∗ = −〈w′θ′〉/u∗ = const, β = 5 is a constant, and the Obukhov scale L is
de�ned as L = u2∗θ̄0/(κgθ∗), where θ̄0 is a reference temperature (e.g. surface temperature or vertically-
averaged temperature). Small L (hence large z/L� 1) indicates strong strati�cation. On the other hand,
large L mean that the temperature does not a�ect the velocity �eld in any signi�cant manner. In this case
Eqs. (23) describe approximately logarithmic pro�les of mean velocity and temperature.
The assumptions behind Monin-Obukhov theory are satis�ed only for weak strati�cations. However, as
the degree of strati�cation increases, an increasing discrepancy between the predictions and measurement
data is observed. In particular, in a stable ABL turbulence can locally collapse, such that the �ow becomes
intermittent (laminar-turbulent). Given the high degree of complexity of �ows in the stable AWG, its
parameterisation remains a current and open research topic.
The work H8 used the methodology of Lie group theory to describe statistics in ABL.
The applicant's contribution was the derivation of invariant solutions based on the symmetries of the
equations, and her participation in the interpretation of the results. For neutral �ows, i.e., those in which
temperature is a passive scalar and does not a�ect the velocity �eld, the temperature transport equation
is invariant with respect to the temperature scaling group with coe�cient aθ. On the other hand, when
temperature a�ects the velocity �eld, the Boussinesque approximation is used. The temperature appears
in the momentum transport equation, which leads to the breaking of the independent scaling group, so
that the parameter aθ is related to the scaling parameters of velocity, i.e. az and at in Eqs. (9), (10).
In H8, invariant solutions for the velocity, temperature, and the �uxes of momentum and
temperature were derived. They contain the scaling parameters az and at, aθ and the as parameter
associated with statistical scaling (16). The assumptions for the �uxes determine the scaling of the of

12



mean wind speed and mean temperature. Thus, in the neutral case when one assumes that the �uxes in
the surface layer are approximately constant with height and as = 0, logarithmic solutions are obtained,
as predicted by the Monin-Obukhov theory [11]

κz

u∗

∂〈u〉
∂z

= Cu,
κz

θ∗

∂〈θ〉
∂z

= Cθ, (24)

where Cu and Cθ are constants. When the temperature a�ects the velocity �eld, the same condition (on
constant �uxes) leads to the linear solutions

κz

u∗

∂〈u〉
∂z

= C ′u
z

L
,

κz

θ∗

∂〈θ〉
∂z

= C ′θ
z

L
. (25)

where again C ′u and C ′θ are constants. Hence, equations (23) proposed by Monin and Obukhov [11] are
weighted sums of the invariant solutions (24) and (25).

Deviations from linear scaling at large strati�cations are observed in numerous experiments, e.g. [38]. They
are caused by locally vanishing turbulence. In the context of scaling groups, this means that the statistical
scaling factor (associated with intermittency) must be di�erent from zero. In another paper H9, the
applicant derived the so-called local similarity theory as an invariant solution. This theory
accounts for the variability of �uxes and Obukhov length with height, cf. Ref. [39]. In H9,
the dependence of turbulence statistics on time was additionally considered. The derived
solutions include the scaling factor as 6= 0 related to the intermittency. It was shown in H9 that
its role increases in the case of strong strati�cation.
Classical Monin-Obukhov theory assumes constancy of statistics over time. It also follows from the formula
(23) that the turbulent Prandtl number Prt = φh/φm should be constant in the stable ABL. In H9, another
relation for the turbulent Prandtl number was derived, where Prt was presented as a function of the ratio
of the components of the Reynolds stresses uw/w2. Analysis of the experimental data showed that, indeed,
the Prandtl number changes (decreases) with increasing strati�cation. The values of Prt under strong
strati�cation were well correlated with the values of the argument uw/w2.

4.6 Scaling of the turbulence kinetic energy dissipation rate

In the works H3, H4 the Kolmogorov scaling laws (11) was applied to estimate the dissipation
rate of turbulence kinetic energy in atmospheric turbulence. In H7 the problem of non-
stationarities, which cause deviations from the law (11), was addressed.
The �rst hypothesis of Kolmogorov, mentioned in Section 4.1, assumes the existence of a range of scales,
where turbulence statistics take a universal form, which depends on the rate of dissipation ε and viscosity
ν. In particular, the second order structure function in this range of scales takes the following form

〈δu2i 〉 = ε2/3r2/3Fi

(
r

η

)
, i = 1, 2, 3 (26)

where Fi is a function of its argument r/η, and η is the Kolmogorov microscale, de�ned in Eq. (2). The
same can be expressed in terms of the spectral energy density E(κ). It follows from Kolmogorov's �rst
hypothesis and from dimensional analysis that there is a certain range of scales where it takes the universal
form

E(κ) = ε2/3κ−5/3f(ηκ), (27)

where κ denotes the wavenumber and f is a function, which is assumed to be universal. According to
the second hypothesis of Kolmogorov, within the considered range of scales one can identify an inertial
subrange, where turbulence statistics depend only on the rate of dissipation ε. In the inertial subrange,
equations (26) and (27) are reduced to the form

〈δu2i 〉 = Ciε
2/3r2/3, E(κ) = Ckε

2/3κ−5/3, i = 1, 2, 3. (28)
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The rate of dissipation of the turbulence kinetic energy ε is described by the formula (1). In order to
estimate it directly from measurements, one would need to use high frequency sensors, able to record
the smallest scales of turbulence. In case of airborne measurements in the atmosphere, this is practically
impossible. Wind speeds are measured with a resolution of metres or tens of centimetres, while the smallest
eddies are of the order of millimetres. For this reason, the dissipation rate is estimated indirectly, usually
using the scaling laws for the second-order structure function and the spectral energy density (28), under
the assumption that the coe�cients Ci and Ck are universal.
Indirect methods for determining the dissipation rate are not perfect. First of all, the assumptions behind
them about stationarity and local isotropy of small scales are not always ful�lled, and the question of the
universality of the constants Ci and Ck remains open. Errors also result from the low resolution of the signal
under study and relatively short time series. Therefore, the estimated values of ε may vary depending on
the method used, although the structure functions and frequency spectra are mathematically equivalent.
Using several di�erent methods allows a more accurate estimate of ε. This was the motivation
for the research in H3. Therein, the applicant proposed new methods for determining the
dissipation rate on the basis of the so-called telegraphic approximation of low- and moderate-
resolution time series of velocity �uctuations. The telegraphic approximation determines the number
of intersections of the signal with the zero level. It turns out that such information is su�cient to estimate
the rate of dissipation of turbulence kinetic energy.
K. Sreenivasan [40] derived the following relation between the number of zero-crossings and the value of ε:

ε = 15π2ν〈u′2〉N2, (29)

where N stands for the number of zero-crossings per unit length of the longitudinal (i.e. parallel to the
direction of measurements) component of velocity �uctuations. Apart form the dissipation rate, other
turbulence statistics can be estimated based on N , e.g. the length scale of large eddies or information on
eddy clustering.
Equation (29) is satis�ed exactly only for velocity time series of high resolution. In spite of this, it was
observed in Ref. [41] that zero-crossing statistics calculated from low-resolution airborne measurements
were correlated with estimated values of the dissipation rates. This suggested that Eq. (29) could be
modi�ed appropriately and allow to determine ε from such signals.
This problem was addressed in H3. The �rst method proposed in H3 involves �ltering the time series of
velocity �uctuations several times with a low-pass �lter. The ε-value is estimated using a scaling law for
the number of zero-crossings in the inertial range. The second method is based on the �rst hypothesis of
Kolmogorov (27). It reconstructs the unmeasured part of the spectral energy density by assuming the form
of the function f(κη) in equation (27). This function describes the contribution of the smallest viscosity-
a�ected eddies. In the proposed method, an initial value of the dissipation rate ε0 is assumed, and then
the Kolmogorov microscale η and the shape of the missing part of the spectrum f(κη) are determined. On
this basis, a correction factor CF to Eq. (29) can be calculated

ε = 15CFπ2ν〈u′2〉N2
cut, (30)

where Ncut is the number of zero-crossings of a signal of low-resolution. The dissipation rate calculated
from Eq. (30) is next used to correct the value of η in the following iteration. After a few iterations the
method converges to the �nal value of the dissipation rate, independent of the initial condition ε0.
The new methods were tested in the work H4, where data from numerical experiment of
stratocumulus-topped boundary layer [42], were investigated. The characteristic Reynolds num-
ber of the simulations was around 300 times smaller than the typical Reynolds numbers of atmospheric
�ows.
Nevertheless, on the basis of data analysis it is possible to draw conclusions about the processes taking
place inside the clouds. Since smallest turbulence scales were resolved in the numerical simulations, it
was possible to determine the value of the dissipation from its de�nition (1) and compare it with the ε
values estimated by indirect methods. In H4, data were analysed from a perspective of a �virtual� aircraft

14



�ying through a cloud and measuring velocity along its trajectory. The dissipation rate was estimated
from the frequency spectrum, second- and third-order structure functions and the methods proposed in
H3. Additionally, the applicant proposed a modi�ed version of the iterative method, in which instead of the
number of zero-crossings, the mean square of the velocity �uctuation gradient was used. The dissipation
was then calculated from the formula

ε = 15ν

〈(
∂u′

∂x

)2
〉
CF , (31)

where x denotes direction along the �ight and the correcting factor CF is calculated analogously as in
H3. Having the detailed numerical data at hand, it was also possible to compare di�erent models for the
high-wavenumber part of the energy spectrum f(ηκ). The model proposed in Ref. [3] proved to be the
most universal one.
The work H4 showed that deviations from Kolmogorov scaling (28) are present in the upper part of the
startocumulus cloud, where the turbulent �ow was strongly inhomogeneous. The use of indirect methods
based on the assumption of local isotropy is not justi�ed in such a case and leads to a signi�cant underes-
timation of the dissipation rate. The values of ε determined from the one-dimensional spectra of vertical
velocity inside the cloud were, in turn, overestimated, even though a clear inertial range with Kolmogorov
scaling was present. The reason for the discrepancy was the anisotropy of the �ow which possibly changed
the value of a constant in Eq. (28).
Breaking of the scaling symmetry (12) was addressed in H7 in the context of strongly non-
stationary turbulence in a statistical sense. According to the classical energy scenario of the eddy
cascade, the rate of energy transfer in the space of scales is constant and equal to both the turbulence
energy production at the largest scales and the rate of dissipation at the smallest scales.
Hence, statistics of the largest scales, that is their characteristic velocity scale U and the length scale L
are related to the dissipation rate ε through the Taylor's law (4). It further follows from Eq. (4) that the
ratio of the integral L and the Taylor length scale λ (de�ned in Eq. (3)) can be expressed in terms of Cε
and the Reynolds number

L
λ

=
Cε
15
Reλ, Cε = 0.5, (32)

where Reλ = Uλ/ν. Until recently, it was assumed that the value of the coe�cient Cε = 0.5 is universal.
However, this has been contradicted by a number of recent research papers (see review article [45]). In
particular, it was found that in the case of decaying turbulence coe�cient Cε increases, reaching the limit
value Cε = 1. In the initial stages of turbulence decay Cε varied inversely proportional to the local Reynolds
number Reλ. This suggested the existence of a di�erent, non-classical, although universal scaling law
describing such states. Authors of the works [46, 47] linked the observed changes in the dissipation coe�cient
with deviations from Kolmogorov's scaling law. The states in which such deviations were observed were
called �non-equilibrium� states. They typically occur after sudden changes in the forcing term, before the
turbulent �ow reaches a new equilibrium state.
The authors of Ref. [46] derived the following relations for the ratio L/λ and the dissipation coe�cient Cε
in non-equilibrium states

L
λ

=
Cε0
15

Re
15/14
λ0

(
1

Reλ

)1/14

, Cε = Cε0

(
Reλ0
Reλ

)15/14

, (33)

where Cε0 = 0.5 and Reλ0 are equilibrium values, before the change in forcing. They can also represent
the initial conditions. Relationships close to the derived equations (33) have been observed in controlled
laboratory and numerical experiments.
Flows in the atmosphere are highly dynamic, however, sensors placed on an aircraft or on a platform hung
below it measure only the current state of turbulence. It does not provide direct information about time
changes.
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The idea of the applicant was to use the results of the theoretical works discussed above to
evaluate states of the atmospheric turbulence. Equations (33) are qualitatively di�erent from their
corresponding classical counterparts (32). Hence, they can be used to detect non-equilibrium states.
Analysis of atmospheric measurement data is di�cult due to their limited amount. In H7, it was shown
that the resolution and the length of the investigated time series of velocity �uctuations was su�cient for
estimating ε, the kinetic energy, length scale L and Taylor scale λ. This allowed to determine the coe�cient
Cε from the formula (4), the ratio L/λ, and to study their variability with the Reynolds number Reλ. This
was the �rst application of this new methodology in the study of turbulence in the atmosphere.
In H7, data from the ACORES measurement campaign conducted over the North Atlantic area near
Graciosa Island were analysed [48]. The purpose of the campaign was to study the atmospheric properties
of a stratocumulus-topped boundary layer. Low stratocumulus clouds play an important role in the Earth's
radiation balance, as they cover about 20% of the sky above our planet and at the same time re�ect a
signi�cant portion of the solar radiation reaching Earth. Despite the greenhouse e�ect of clouds related
to the absorption of the Earth's infrared radiation, their resultant e�ect on the Earth's energy balance
is cooling [49]. Data from the ACORES campaign were analysed in Ref. [50]. In particular, its authors
studied the phenomenon of the �decoupling� of stratocumulus cloud associated with an increase in its
altitude, cooling and a change in the nature of the organization of convection. It was speculated in [50]
that turbulence in the �decoupled� cloud may decay in some areas. The phenomenon of �decoupling� and
the simultaneous decrease in the temperature of the cloud top also changes its radiation balance and may
lead to a change in the resultant e�ect to a warming one.
The goal of the work H7 was to analyse measurements from the ABL topped by two types
of stratocumulus clouds - �coupled� with strong exchange of heat and water vapor with
the ocean surface through a convection system and the �decoupled� one, and to investigate
di�erences between turbulent states in the two cases.
It follows from relations (33) that during the decay of turbulence, when Reλ decreases, Cε/Cε0 > 0, on the
other hand Cε/Cε0 < 1 indicate states with strong turbulence production. By analysing the dependence of
Cε and L/λ on the Reynolds number Reλ it is possible to asses whether turbulence is in its equilibrium
state, according to Eqs. (32) or the non-equilibrium one, governed by Eqs. (33). The latter case would
indicate rapid changes in �ow conditions (e.g., due to changes of energy production). Sample results from
the decoupled stratocumulus-topped ABL are presented in Fig. 1. It turned out that the smallest values
of Cε/Cε0 in both types of ABL corresponded to �ight sections made closest to the Earth's surface. In
this area, the production of turbulence kinetic energy by buoyancy and the mechanical production due
to the shear were the largest. Cε/Cε0 were larger at altitudes of 500�600m, which correspond to half of
the ABL, where rising thermals or descending currents of cool air lose kinetic energy. In contrast, when
analyzing data from �ights through clouds, we found that areas of high turbulence production and areas
of turbulence decay alternated, indicating strong �ow intermittency.
In H7 it was found that for all corresponding �ight segments, values of Cε/Cε0 in the decoupled stratocumulus-
topped BL were higher than in the coupled one. This suggested that turbulence in the decoupled BL is
weaker.
Moreover, in the �decoupled� cloud, most of the data indicated the presence of non-equilibrium turbulence.
This phenomenon may have been related to a change in the organization of convection during the process
of decoupling [50]. The analysis in H7, performed by the present applicant, provided additional information
on the processes taking place in the ABL's under study. This was possible by applying the theoretically
derived scaling laws in the analysis of atmospheric measurement data.

4.7 Conclusions and perspectives

The presented series of works is based on the mathematical analysis of equations describing turbulent �ow
in the statistical sense. The problem of this description is the lack of closure, associated with the presence
of unknown higher-order statistics in the equations under study. Despite this, the very structure of the
equations and resulting invariance with respect to the transformation of variables, provide important infor-
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Figure 1: (Left panel) Cε as a function of Reλ in the decoupled stratocumulus-topped ABL. (Right panel):
Ratio of the longitudinal integral length scale L11 = L and the Taylor microscale. Data from experiment:
black and red symbols, equilibrium relations (32): black solid lines, non-equilibrium relations (33): red,
dashed lines.

mation about the investigated phenomenon and allow to derive some characteristic relationships (scaling
laws).
The best-known example is Kolmogorov's scaling law of the structure function in the inertial range. In this
range, turbulent �ow is characterized by self-similarity - regardless of the observed scales, it has similar
statistical properties. For example, it follows from the theory of Kolmogorov, that the energy transfer rate
from large to small eddies should be constant across the scales.
The symmetry analysis of the transport equations for the probability density function of velocity per-
formed in papers H1 and H2 showed that they are invariant with respect to the symmetries of the Navier-
Stokes equations and, because of their linearity, with respect to the additional scaling and translation.
The proposed interpretation links this invariance to the phenomenon of intermittency, understood as the
alternations of turbulent and laminar �ow. It occurs, for example, in a stable atmospheric boundary layer
that forms after sunset. The air near the cooled surface of the Earth becomes denser, so that turbulent
�uctuations become suppressed.
The symmetries of the equations were used in paper H8 to derive the vertical pro�les of the mean wind
velocity, mean temperature and turbulent �uxes as invariant solutions. The paper H9, in turn, derives
a local similarity theory for a stable atmospheric layer, where an additional scaling associated with �ow
intermittency plays a crucial role. It introduces the dependence of statistics on the height of the boundary
layer. In H9 the non-stationarity of the �ow was also taken into account. This work is currently being con-
tinued within a project �nanced by the Polish National Science Centre. An interesting further perspective
is to consider the role of horizontal transport and account for the Coriolis force e�ects in the analysis.
It is known from experimental studies that they a�ect �ow statistics in the surface layer at very strong
strati�cations, however, the relationships were derived mostly through dimensional analyses. Symmetry
analysis allows a more methodical derivation of relationships between variables describing the �ow.
The works H5 and H6 were also devoted to symmetry analysis. They concern a class of hydrodynamic
models in two dimensions. Flows of large synoptic scales in the Earth's atmosphere have some features of
two-dimensional turbulence. The papers H5 and H6 prove that the transport equations for the probabil-
ity density functions of the scalar are invariant to the conformal transformation of space, under certain
conditions. If these conditions are satis�ed, then it would be possible, for example, to determine certain
statistics of inhomogeneous turbulence based on solutions for statistically homogeneous �ow. The interpre-
tation of the derived properties and their practical applications require further research, including analysis
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of observational or numerical data.
Kolmogorov's scaling law is widely used in the analysis of atmospheric measurements. It can be used
to estimate the turbulence kinetic energy dissipation rate, even if the available instruments record only
large eddy motions of the size of meters or tens of meters. Typically, second-order structure functions
or the frequency spectrum of the measured time series are used for this purpose. Alternative methods
have been proposed in papers H3 and H4. They are based on the scaling law for the number of signal's
zero-crossings, or on determining the variance of the derivatives of the measured wind speed. Although the
methods should ideally give the same results, in practice they can respond di�erently to errors related to,
for example, insu�cient signal resolution or too short averaging time windows. The use of several di�erent
methods simultaneously allows to increase the accuracy of the estimates.
Another source of problems in determining the rate of dissipation is that assumptions of stationarity and
local isotropy are not always met. This was shown in the work H4 based on the analysis of numerical
data of a startocumulus cloud. Its upper layers are stably strati�ed and turbulence therein is strongly
inhomogeneous. The values of ε determined by indirect methods were underestimated in this region. In
the area of strong convection, on the other hand, the rate of dissipation was overestimated. The same
problem applies to measurements in the atmosphere. Dissipation rate values determined in di�erent parts
of the atmospheric boundary layer can be overestimated or underestimated depending on the degree of
strati�cation. An interesting perspective is to consider e�ects of buoyancy force on velocity structure
functions. Work related to this topic is currently underway, as part of a research collaboration with Prof.
J. C. Vassilicos of the University of Lille (France).
The spectral energy density of turbulence is also modi�ed by non-stationarity of the �ow. This issue was
addressed in paper H7. The non-stationarity can be assessed by analysing the value of the dissipation
coe�cient Cε. Small values of Cε indicate high production of turbulence kinetic energy. It can grow in time
or be transported in physical space to other areas of the �ow. Large values of this parameter, on the other
hand, mean that turbulence is locally decaying. Such analysis provides important information about the
processes taking place in the ABL on the basis of very sparse measurement data. Further applications of
this method concern the analysis of turbulence shortly before sunset. The rapid decay of convection leads
to changes in kinetic energy and dissipation rate. These changes can be described by new scaling laws of
non-equilibrium turbulence, which can provide a better parameterization of processes occurring shortly
before and after sunset.

4.8 Description of selected additional works, not included in the habilitation achievement

In addition to the papers described in Sections 4.1�4.7, after completing my Ph.D., I was the co-author of
other articles. Selected additional works are listed at the end of the Literature section (below) as papers
[D1]�[D12]. This chapter provides a brief description of these papers together with a description of my
contribution.

One of the topics was the modelling of the dynamics of large eddies (so-called coherent structures), us-
ing the Proper Orthogonal Decomposition (POD) method. In this method, the optimal functional basis
is determined from the results of laboratory or numerical experiments. The velocity �uctuation �eld is
then developed in series using the determined basis. The dynamics of coherent structures is modelled by
numerically solving a system of equations for time-varying coe�cients of expansion. In Ref. [D1], the near-
wall turbulence velocity �eld was modelled numerically using the POD method and the temperature �eld
was modelled using the Lagrangian particle method. With this, the problem of the coupled heat transfer
between the solid wall and the �uid was solved. My contribution to this work was to write the numerical
code, perform the calculations and analyses, and contribute to the editing of the paper. In Ref. [D2], the
POD method was used to simulate dispersed near-wall �ows containing small particles. Together with Dr.
Cyrille Allery, I participated in the development of the numerical code for the velocity �eld.

Another research topic was the parameterisation of turbulence in two-phase �ows with a surface separation
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(water-air �ows). In the presence of turbulent eddies, the position of the surface is disturbed; on the other
hand, gravity and surface tension forces have a stabilizing role and prevent the �uctuations. The interaction
of the two mechanisms leads to the development of an intermittent zone, where the probability of �nding
water or air is non-zero. Within the work [D3], I proposed a model in which the width of the intermittent
region was determined by the interaction of two components in the equation for the intermittency factor.
One of them was di�usive and was responsible for the increase in the thickness of the intermittent layer due
to the presence of turbulent eddies disturbing the surface. The other term of the equation was responsible
for the contraction, i.e. the decrease in the thickness of the layer due to the stabilizing action of the gravity
and surface tension forces. The coe�cients of the model have been related to the results of experimental
observations, classifying �ows with a separation surface into several characteristic types, (including the
case of a �at undeformed surface, a surface with �ne capillary waves, and a surface with gravity waves).
My contributions to the paper [D3] were also the numerical calculations and the editing of the text. In
yet another article [D4], in collaboration with Dr. Tomasz Wacªawczyk we proposed together a di�erent,
conservative model of turbulence-interface interactions. In addition, I performed analysis of the numerical
data, compared results with the model predictions and contributed to the editing of the text.

After obtaining my doctoral degree, I also worked on the topic of statistical description of turbulence. The
work [D5], which I carried out together with Prof. Martin Oberlack, was devoted to the symmetry analysis
of the Hopf equation for the characteristic functional, which contains information about all multi-point
velocity statistics. My contribution was to perform the calculations and write the text.
In addition to the articles included in the habilitation achievement, I was a co-author of the papers [D6]�
[D9] on the symmetry theory. I contributed to the editing of the review article [D6] and performed a
signi�cant part of the calculations in the papers [D7]�[D9].

A new direction of research I undertook at the Faculty of Physics, University of Warsaw, concerned the
estimation of the turbulence kinetic energy dissipation rate. Three of the published papers on this topic are
part of the habilitation achievement. In addition, an error analysis and comparison of di�erent methods
for the estimation of the dissipation rate were carried out in the paper [D10]. I was the initiator of this
research and I supervised the work of students.
As co-supervisor of Mr Emmanuel O. Akinlabi, I collaborated with him and with Prof. Szymon Malinowski
on the modelling of sub-grid (unresolved) scales in the Large Eddy Simulation (LES) method. The LES
method is commonly used in cloud turbulence simulations. Because the available computer power is not
su�cient to track the dynamics of all turbulent structures, in LES the Navier-Stokes equations are �l-
tered (spatially averaged). The equations are then solved on a computational grid with a characteristic
size 2 to 4 orders of magnitude larger than the Kolmogorov scale. The e�ect of unresolved scales on the
dynamics of large eddies is took into account by means of an appropriate closure assumptions. The work
[D11] concerned the fractal reconstruction model of subgrid scales. I proposed the research direction and
participated in the development of the methods and in the editing of the text.

The recent research direction I have undertaken connects methods of theoretical analysis with the de-
scription of turbulence in the stable atmospheric boundary layer. In addition to papers H8 and H9 in-
cluded in the habilitation achievement, together with Dr. Jun-Ichi Yano we worked on the method of
non-dimensionalization of the transport equations, cf. Ref. [D12]. The purpose was to determine the char-
acteristic scales based on it, including the Obukhov scale. I contributed to the discussion and interpretation
of the results and participated in the editing of the article.

5 Presentation of signi�cant scienti�c or artistic activity carried out at more than one uni-
versity, scienti�c or cultural institution, especially at foreign institutions

After receiving my doctoral degree in the Institute of Fluid Flow Machinery in Gda«sk, I continued to
work with the supervisor of my PhD thesis, Prof. Jacek Pozorski. I also cooperated with Dr. Cyrille
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Allery and Dr. Claudine Béghein from the University of La Rochelle (France). I was involved in turbulence
modeling using the probability density function method and modeling of large vortex structures in turbulent
�ow based on the Proper Orthogonal Decomposition (POD) method. The results of the work have been
published in [D1, D2].
In 2008, I was awarded the Alexander von Humboldt Scholarship, which I held at the Technical University
of Darmstadt (Germany) in the group of Prof. Martin Oberlack. During my stay in Darmstadt (until 2015),
I worked on several topics. The �rst was the modelling of turbulence in two-phase air-water �ows with a
separation surface (papers [D3] and [D4]). I continued this topic within a university scholarship and next
as the principal investigator (PI) of the project:

�Modelling of turbulence-interface interaction in two �uid systems�, �nanced by
DFG (Deutscher Forschungsgemeinschaft), projekt number 220504256.

From January 2015 to September 2015, I was a leader of the research group �Turbulence and symmetries�
at the Chair of Fluid Dynamics, Faculty of Mechanical Engineering, Technical University of Darmstadt.
I also collaborated with Dr. Vladimir N. Grebenev (Federal Research Center for Information and Com-
putational Technologies, Russian Academy of Sciences, Novovibirsk, Russia). I continued the work after
returning to Poland as the principal investigator of the project

�Description of turbulence as a stochastic �eld and its symmetry-based modelling. �nanced by the National
Science Center, Poland (project number 2014/15/B/ST8/00180)

carried out �rst at the Institute of Fluid Flow Machinery of the Polish Academy of Sciences in Gda«sk, and
since April 2016 at the Faculty of Physics, University of Warsaw. This collaboration resulted in a number
of papers, some of them are included in the habilitation achievement, others are described in section 4.8,
as supplementary papers [D5]�[D9].
In 2017�2020, I was the co-supervisor of the PhD work of Mr. Emmanuel O. Akinlabi, employed at the
University of Warsaw within the COMPLETE - Cloud MicroPhysics Turbulence Telemetry project (pro-
gramm Horizon 2020). His doctoral thesis, �Analysis and Modelling of Small-Scale Turbulence� concerned
the estimation of the turbulence kinetic energy dissipation rate and modeling of sub-grid scales in the
Large Eddy Simulation (LES) method. After completing his Ph.D. in 2020, Dr. Emmanuel O. Akinlabi
was a postdoctoral fellow at Boston University (USA), where he is currently continuing his research.
In 2020 I started a cooperation with Dr. Jun-Ichi Yano from Météo-France, (Tuluse, France) which is
currently continuied within the scinenti�c project, of which I am the principal investigator:

�Stable atmospheric boundary layer: beyond Monin-Obukhov theory�
National Sciance Centre, Poland, project number 2020/37/B/ST10/03695

The ongoing work concerns the parameterization of turbulence in the stable atmospheric layers. Involved
in the project were (or are) the following students and co-investigators: Mr. Jackson Nzotungishaka,
M.Sc. Paweª J¦drejko, who started his doctoral studies at the Faculty of Physics in October 2023, M.Sc. Grze-
gorz Florczyk and Dr Jakub Nowak.
After the publication of the article H7, together with Prof. Szymon Malinowski, Dr. Jakub Nowak and
M.Sc. Stanisªaw Król, I was invited to participate in the Lille Turbulence Program 2023 at the University
of Lille (France). Since then, we have been continuing our cooperation with Prof. John Christos Vassilicos
on the scaling of velocity and temperature structure functions in atmospheric turbulence.
Apart from the above-mentioned works, I was involved, as a co-investigator, in the following projects
�Turbulent dynamics and microphysics in a Stochastic Lagrangian Cloud Model� (National Science Center,
Poland), �Next Generation Earth Modelling Systems (NextGEMS)� (European Commission, HORIZON
2020), both led by Prof. Hanna Pawªowska and �Particle �uxes in urban environment with remote sensing
(PURER-SENS)� led by Dr. Pablo Ortiz Amezcua. Within this latter project I cooperated with the group
of Prof. Iwona Stachlewska on the analysis of data of decaying ABL turbulence short before the sunset.
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6 Presentation of teaching and organizational achievements as well as achievements in pop-
ularization of science or art

6.1 Teaching

After completing my PhD I thaught the following classes:

Dept. Mechanical Engineering, Technical University of Darmstadt, Germany:

� Summer semester 2014/15

� Fundamentals of Turbulence � Excercises

� Summer semester 2012/13 � Summer semester 2014/15

� Student seminar � Individual student projects.

Faculty of Physics, University of Warsaw:

� Winter semester 2017/18

� Turbulence and atmospheric boundary layer � Lecture

� Winter semester 2019/20

� Turbulence and atmospheric boundary layer � Lecture: 30h

� Mathematics I � Tutorial: 90h

� Statistical Physics A � Tutorial: 45h

� Winter semester, 2020/21

� �Fizyka na start��advanced course � Tutorial: 30h

� Mathematics I � Tutorial: 90h

� Statistical Physics A � Tutorial: 45h

� Summer semester 2020/21

� Turbulence and atmospheric boundary layer � Lecture: 30h

� Winter semester 2021/22

� Statistical Physics A � Tutorial: 45h

� Mathematics III for opticians � Tutorial: 30h

� Summer semester 2021/22

� Turbulence and atmospheric boundary layer � Lecture: 30h

� Thermodynamics with elements of statistical physics � Tutorial: 45h

� Winter semester, 2022/23

� Statistical Physics A � Tutorial: 45h
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� Mathematics III for opticians � Tutorial: 30h

� Summer semester 2022/23

� Turbulence and atmospheric boundary layer � Lecture: 30h

� Thermodynamics with elements of statistical physics � Tutorial: 45h

� Geophysical Laboratory � Laboratory

� Winter semester 2023/24

� Statistical Physics A � Tutorial: 45h

� Mathematics III for opticians � Tutorial: 30h

� Geophysical Laboratory � Laboratory

� Summer semester, 2023/24

� Turbulence and atmospheric boundary layer � Lecture: 30h

� Thermodynamics with elements of statistical physics � Tutorial: 45h

� Geophysical Laboratory � Laboratory

� Selected topics in �uid mechanics � Tutorial: 30h

I was a supervisor or co-supervisor of the following master theses

1. D. Ciesielski: �LES simulations of turbulent jets�, Faculty of Technical Physics and Applied Math-
ematics, Gda«sk University of Technology, (2007)

2. S.V. Kraheberger: �Numerical Study of the Intermittency Region in Two-Fluid Turbulent Flow �,
Dept. Mechanical Engineering, Technical University of Darmstadt, Germany (2014)

3. D. Janocha: �Lie symmetry analysis of the Hopf functional-di�erential equation for turbulence�,
Dept. Mechanical Engineering, Technical University of Darmstadt, Germany, (2015)

4. P. J¦drejko: �Formation of thermal vortex rings�, Interdisciplinary Centre for Mathematical and
Computational Modelling, University of Warsaw, (2023)

and the co-supervisor of the PhD thesis
1. E. O. Akinlabi �Analysis and Modelling of Small-Scale Turbulence�, Faculty of Physics, University

of Warsaw (2020)

6.2 Organizatinal activity

� Member of the �Local Organising Committee� of the Interdisciplinary Turbulence Conference (iTi),
Bertinoro/Italy, 2014

� Associate Member of the Fluid Mechanics Section, Commitee of Mechanics, Polish Academy of
Sciences, from November 2018 till now

� Member of the local organizing commitee of the 3rd Workshop of COMPLETE (Cloud-MicroPhysics-
Turbulence-Telemetry) ITN - ETN Network 04-08.02.2019

� Member of the Faculty Council, at the Faculty of Physics, UW 2020�2024
� Member of the selection commitee for the Doctoral School of Exact and Natural Sciences at the
Faculty of Physics, University of Warsaw, in 2022

6.3 Dissemination of science

In 2017 and 2019�2022 within the Science Festival at the University of Warsaw I prepared:

� A workshop for children titled �What kind of cloud is it?�
� Lessons for school children �Are turbulences dangereous?�, �Why it's so di�cult to predict the
weather?�

� Short movies (online on the youtube platform) �Van Gogh and others: physics meets art�, �What
kind of cloud is it?�, �Short movie about sailing�.
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After the 2020 Science Festival, I was invited to Kampus Radio, where I gave an interview about the
relationship between physics with art. I also wrote popular science articles for the journal �Fizyka w
Szkole� (Physics at School):

� Wacªawczyk M., Wacªawczyk Z., Van Gogh i inni, czyli �zyka spotyka sztuk¦. Fizyka w Szkole z
Astronomi¡: czasopismo dla nauczycieli. no. 1, pp. 26�27, 2021.

� Wacªawczyk M., Czy turbulencje s¡ niebezpieczne? Fizyka w Szkole z Astronomi¡: czasopismo dla
nauczycieli. no. 3, pp. 15�17, 2021.

� Wacªawczyk M., O �zyce »eglowania. Fizyka w Szkole z Astronomi¡: czasopismo dla nauczycieli. no.
6, pp. 28�30, 2021.

In cooperation with the �Ask a Physicist� website, I provided answers to several questions from �everyday
physics�.

In 2023, I participated, together with Dr. Jakub Nowak, in a promotional video for the article H7, included
in the habilitation achievement, published within the NextGems project:

� Wacªawczyk M., Nowak J. L., How Can We Detect Non-Stationarities of Turbulence in the Atmo-

sphere?, Latest Thinking, 2023 https://doi.org/10.21036/LTPUB101137

7 Apart from information set out in 1-6 above, the applicant may include other information
about his/her professional career, which he/she deems important.

Funding obtained (as principal investigator)

� Projekt �Modelling of turbulence-interface interaction in two �uid systems�, �nanced by the DFG
(Deutscher Forschungsgemeinschaft) in years 2012�2014, project number 220504256

� �Description of turbulence as a stochastic �eld and its symmetry-based modelling� �nanced by the
National Science Center, Poland in years 2015�2019 (project number 2014/15/B/ST8/00180)

� �Stable atmospheric boundary layer: beyond Monin-Obukhov theory� �nanced by the National Sci-
ence Center, Poland in years 2021�2024 (project number 2020/37/B/ST10/03695)

Invited lectures on scienti�c conferences/workshops:

� Interdisciplinary Turbulence Conference 2014, Bertinoro/Wªochy organizers: Prof. M. Oberlack, Prof.
J. Peinke, Prof. A. Talamelli

� Summer School of Multiphase Flows 2015, Jantar/Poland organizor: Prof. J. Pozorski
� Symposium �Perspectives on turbulence and wind energy research�, 2017, Oldenburg/Niemcy, orga-
nizors: Prof. M. Kühn, Prof. J. Peinke,

� Workshop �OpeningWorkshop on turbulent �ows� within Lille Turbulence Program 2023, Lille/Francja,
organizor: prof. J. C. Vassilicos

Member of the Advisory Commitee of the conferences:

� �Eleventh International Symposium on Turbulence and Shear Flow Phenomena� (TSFP11), 2019
� �Twelfth International Symposium on Turbulence and Shear Flow Phenomena (TSFP12), 2022

In 2024 I was asked to be a member of the Programme Board of the conference

� Sympozjum Mªodych Naukowców Wydziaªu Fizyki, Warsaw 2024

and to co-organize the Session S10-Turbulence and Reactive Flows on the conference
� 95th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM),

which will take place in Pozna«, in April 2025.

Reviews of PhD theses:
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� Mina Golshan Kovi �Cloud Turbulence Microphysics At Interfaces: A DNS model with phase change
and droplet� Politecnico di Milano, Italy, 2023.

Scholarships and awards

� Individual Third Degree Award of the Rector of the University of Warsaw, 2023
� Status IOP Trusted Reviewer, awarded by the Institute of Physics, 2019
� Prime Minister's Award for Outstanding Doctoral Dissertation, 2009
� Scholarship of TU Darmstadt �Wiedereinstiegsstipendium� 2010-2011
� Alexander von Humboldt scholarship 2008-2009
� Scholarship of Foundation for Polish Science for young researchers in 2005
� Scholarship Deutcher Akademischer Austauschdienst (DAAD) 2003-2004

..............................................
(Applicant's signature)
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