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1 Introduction
The governing equations in many of the physically impońant a,reas are intrinsically nonlinear' The

distinguished amongst these are integrable equations characterised by the very specific mathematical

prop"iti.r. In additńn, solitonic phenomena described by the equations of that kind have been observed

in widely diverse areas in nature. In mathematical physics solitonic equations appeax in theory of

relativity, field theory, nonlinear optics, elasticity, hydrodynamics, magnetohydrodynamics, plasma

physics and many others.
There is no widely accepted precise definition of complete integrability. Hitchin in [1] proposed

that integrability of a systóm of differential equations should manifest itself through the following

features: li) the existence of marry conserved quantities, (ii) the presence of algebraic geometry, (iii)

the ability to give explicit solutions. In practice, the last feature is of great importance. Indeed,

Bd.cklund transformation has proved to be important tool in the generation of solutions to solitonic

equations. Moreover, a nonlinear superposition principles provide purely algebraic algorithms for the

generation of new solutions. The next property of integrable equations is the presence of Lax pair,

which constitutes a linear system with compatibility conditions given by nonlinear equations under

consideration.
At the present time almost all solitonic equations appear in physics. Moreover, the same equation

occurs sometimes in completely difierent branches of physics. An adequate example is provided by the

sin-Gordon equation t 
,a,,:fts,ntw (tci

examined by distinguished mathematicians such as Bour [2], Bianchi [3],[a] and Bd,cklund [5] who

analysed thó pseudospherical surfaces. In the physical context sin-Gordon equation appears in crystal

dislocation theory [6], study of the tunnelling in superconductors [7], propagation of ultrashort light

pulses [8] and nónhnear theory of particle interaction [9]. one of the most important facts is that

a nonlinóar superposition principle, now termed a permutability theorem is not only a mathematical

curiosity but allows to generate solutions of considerable physical importance. Lamb [10] applied

the permutability theorem for the above mentioned sin-Gordon equation in the theory of ultrashort

optióal propagation' In the context ofsolitonic solutions of (sG) he analysed the decomposition of2ly'zr

lĘht pu1ses into lr stable 2z' pulses. This decomposition phenomena was observed experimentally in

rubidium vapour by Gibbs and Slusher [11].
Until recently the nonliheał equations which describe solitons have typically been derived by ap_

proximation and expansion methods. Obvious example is the famous Korteweg-de Vries [12] equation

u1 ł 6uua ł ulrr, :0, (Kdv)

admitting solution u(x,t) : $ cosh-2 l#t" - oź)] which models a solitary long wave travelling with

constant speed o in a rectangular channil. The (KdV) equation arises foom the hydrodynamic equations

in the case of irrotational 2-dimensional motion of an incompressible inviscid fluid, bounded above by

a free surface and below by a rigid horizontal plane. To derive (KdV) it is necessary to make many

approximations, e.g. the releva.nt length scale in the direction of movement is much longer than the

fluid depth, the wave amplitudes are small, etc. Other solitonic equations are obtained in.a similar

manner. The prime exception is the integrable Ernst equation

(Er)

which arises out of Einstein's vacuum equations Rp, :0 in general relativity in the case when the

spacetime admits two commuting Killing vectors which are hypersurface-orthogonal. The integrable

properties of (Er) were discoverń by Mui'oo in late seventies of the XX century [14]'[15]' It is not

tivesaredenotedbytheproperindicesu,u,rr,y,t,ą,a'..,
e'g' uu, - k

(e + E) (r,,*)e,*r,,) :2ę3 + e2), € : €(p,z)



surprising, because Ernst equation (Er) nowadays may be viewed as a so-called Lelieuwe system

[16]'[17] for 2-dimensional surfaces embedded in 3_dimensional Minkowski space [18]'[19]. Neveńheless,
it is an open question whether the full Einstein's equations are integrable. We still do not know the
answer but the linear system which compatibility conditions reduce to vacuum Einstein's equations
with cosmological constant Rp, : lvgp, is known. It is provided by linear Rarita-Schwinger equation

Y trVo'b: 0 governing the spinor field VABC which seems to describe spin-3f2 particles.
The solitonic equations which we are concerned in series of ańicles [H1]-[H5] were all discovered by

the reduction techniques in the similar manner as the Ernst equation.

1-.1 Geometry of 2-dimensional surfaces embedded in 3-dimensional Eu-
clidean space

There exists a strong connection between integrable equations and differential geometry of 2-dimensional
surfaces embedded in 3-dimensional flat space. Soliton equations appear in this context as the re-
ductions of compatibility conditions of system describing embedding, i.e. Gauss-Mainardi-Codazzi
equations.

Below we give a short description of sin-Gordon equation (sG) which is the most prominent example
among soliton equations. This also allows us to introduce notation and geometric quantities which will
be used later.

The sin-Gordon equation (sG) appears naturally in analysis of 2-dimensional surfaces with constant
Gauss curvature embedded in 3-dimensional Euclidean space IE3. The geometry of 2-dimensional
surfaces plays an important role in discussed articles.

Let E c lE3 be a 2-dimensional surface,

t : (u,u) '+ r(u,o) e lE3 (1)

parametrized in terms of local coordinates u, u € lR. In a generic point p, the vectors ru otaz ru axe

tangential to E at p and, at such points,

N: !:jJ:- (2)' 
lru x rrl

determines the unit normal to E. According to Bonnet theorem, the surface E is defined up to its
position in space IE3 by tho first fundamental form

9t : d,r . d,r : E d,u2 ł 2F d'ud'u * G duz

and second fundamental form

9tl:_d'r.d.lV: ed'uz+2f dudułgduz, (4)

where . denotes the usual scalar product in lE3. It is known [lfl that there always exist local coordinates
(o, p) (called curvature coordinates) in which both fundamental forms are diagonal, namely

u: A?do2 + AZdg2, grt: ntA?d,az + n2AldBz' (5)

Functions At, Az, K1, K2 ŻxE not arbitrary' but satisfy the compatibility conditions (given in (9))' The
third fundamental form

łrru : d,N 'dN (6)

defines the metric on a sphere given by Gauss map which assigns to every point p € E a normal vector

1V in this point. It is noted that the third fundamental form grrr is not an auxiliary geometric quantity

necessary to describe the embedding of E C IE3. It can be easily checked that 9111 :2Hgtr - Kgt,
where ?{ : ł(or+łc2) is mean curvature and K : KIn2 is Gauss curvature. Nevertheless, |ttl wiII
play the fundamental role in succeeding sections.

(3)



As it was mentioned before, the sin-Gordon equation (sG) appears as a compatibility condition of

a system associated with psedosphere which is a surface with nógative Gauss curvature K : -Llp' :
cońst. lf.now E is pseudospherical surface parametrized in terms of (u,u) such that both fundamental

forms read gt: dł2 łZcosud,udałd,uz,9lt: }sinwd,udu, then function cł necessarily fulfi]s sin-

Gordon equation (sG). Moreover, Gauss and Weingarten equations are linear systems vrhich are

compatible modulo 1sC;. ffre Bd.cklund transformation and permutability theorem for sin-Gordon

equation can now be obtained by means of the geometric methods'

2 Integrable equations in the theory of elasticity
The series of a,rticles tH1]-tH5] constitutes a contribution to the project Hi,d.den Geometńc Str'ucture i'n

Nonlinear Phgsźcal Systóms, which aims to searching, recogrrition and description of integrable systems

obtaining from mathematical physics. It is emphasized that all integrable systems considered as part

of this project are dervied wilhout using approximation or expansion methods. They axe obtained

by the suitable reductions, usually by imposing the additional geometric constraints' The equations

anatysed in series of articles have been derived exactly in this way. In [H1] the system of equilibrium

.q.rrtioo, for membranes under the assumption that the internal stress distributions are not uniquely

determined by their shape has been considered. A detailed study of this case leads to the algebraic and

geometric characterization of these surfaces [H1]. It turns out that the surfaces which correspond to

such membranes are necessarily L-isothermic, more precisely they are L-isothermic surfaces subject to

additional constraint. The algebraic description introduced in [H1] allowed to distinguish and examine

the special type of L-isothermic surfaces on which the lines of curvatures are planar (they are subclass

of so called Enneper surfaces). The prominent examples of the latter are generalized Dupin cyclides

[H2]. The method of description of L-isothermic surfaces has proved to be very successful and it was

subsequently developed in [H3]-[Ha]. The main advantage of this method being that the problem is

gorrerned by complex no.'hómogó.'"ous linear equation. To the author knowledge this approach does

not appear to be widely known. In [H3] this method has been used to analyse Bźicklund transformation

for L-isothermic surfaces. It turns out that this transformation corresponds to Darboux transformation

of linear equation associated with a surface. The main result of [H4] is a construction of Weierstrass

representation for special subclass of L-isothermic surfaces, which are called L-minimal. The developed

approach proved to be very fruitful in this case. In [H5] the telegraphy equation has been analysed.

It is shown to be related to the equation describing a propagation of stress in a class of model ideally

hard inhomogeneous elastic materials with the special equation of state. The construction of Bii'cklund

transformation shows the integrable character of the equation in question. The main result of [H5] was

the discovery of a novel 'exchange particle' phenomenon. This was made by performing the detailed

analysis of a two-loop soliton solution.
It is worth mentioning that there are no general algorithms for obtaining integrable systems. There-

fore, any new solitonic equation is welcome.
The remaining pań of this section is concerned with a detailed consideration a,nd description of

results obtained in series of articles tH1]-tH5]. These results (with suitable references to formulae) are

summarized in the last section.

We start with the short description of classical shell and membrane equilibrium equations [21].

It will be subsequently shown that the appropriate reduction of these equations leads to complete

integrable system.
In the theory of elasticity, the term shell is applied to bodies bounded by two curved surfaces E-,

E., (see figure 1). It is also assumed that the distance between these surfaces is small in comparison

with the other dimensions and that all properties of shell can be described by a 2-dimensional middle

surface placed between X- and E,'.
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Figure 1: A model of shell. Figure 2: Forces acting on the surface l.

In the study of the theory of elasticity, the investigation of the geometrical properties of the de-

formations of shells are followed by that of the corresponding stresses. It is then convenient to intro-
duce instead of these stresses, statically equivalent forces and bending moments. The corresponding
forces2(per unit length) Tt, Ttz, Nt, Tz, Tzt, Nz acting on E are depicted in figure 2. In addition
there exist four momenta which, together with the above mentioned forces, constitute the system of six
classical shell equilibrium equations. We are going to consider the shell membrane theory which allows
us to reject the momenta from the latter system' This reduction leads to Ą : Nz : 0, T12 : T21 1: $
and the equilibrium equations read

(AzTr)" + (A1S) B + AtpS - AzoTz I A1A2p1 : Q,

(A[z) p ł (AzS). ł Az-S - A'BT1 l A1A2p2 : Q,

KtTLlKzTzłPs:0,

where (p1,p2,p3) are coefficients of surface loading, i.e. external pressure acting on the membrane. For
any given membrane geometry, which means that fundamental forms gt, gtr are known, and prescribed

external surface loading, the membrane equilibrium equations (7) constitute a well-determined linear
system for stresses T1, T2 atd',s. It iS recalled that the functions At, Az, K1 and łc2 have to obey

Gauss-Mainardi-Codazzi equations (9).
In articles [H1]-[H2] the equilibrium system (7) in the absence of shear (S : 0) with constant purely

normal loading (pe : Z : const.) has been considered. The system reduces in this case to

Tn ł (Iog Az)"(Tt _ Tz) :0,
T2B'| (IogA1)B(T, _ ł) : 0, (8)

rctTtł n2T2| Z:0,

where functions A1, A2, nt i nz satisfu the Gauss-Mainardi-codazzi equations (GMC)

nzo ł (|og Az).(oz _ łcl) : 0,

n1B ł (logA1)B@, - nz) :0, 
(9)

(*) "- (#) ,ł n1n2A1A' : g'

The equations (8) and (9) form a well-determined coupled nonlinear system which indicates that

the shape of a membrane in equilibrium is restricted. In the simplest case of a constant stresses

Tt : Tz : c: const. the equilibrium equations (8) reduce to Young-Laplace equation

'ł1 : tąt l nz : -c'7 Z : CoTLłt.l

which clearly shows that the membrane is of constant mean curvature while when p3 : 0 then the

membrane is minimal.

(7)

2lndex 1 corresponds to coordinate a, index 2 to B, while 3 correspond.s to the direction normal to the surface



It should be noted that the nonlinear system comprised of the equilibrium equations (8) augmented

by the Gauss-Mainar di-Codazzi equations (9) for the membranes may be located in a large class of

integrable systems which has been derived in the context of so-called O surfaces [22]. Moreover, the

nonlinear system was shown to be embedded in a more general elastic shell system of revelance to

liquid crystal theory [23].

By performing in [H1] a detailed analysis of system (a)-(9) (for Z + 0) it has been shown that

i) the membranes for which internal stress distribution are not uniquely determined by their shape

may be characterize in geometric and algebraic manner'

ii) many examples of the membranes from i) can be explicitly constructed

In generic case the stress resulta,rrs ł and T2 can be found by the following procedure. By dif-

ferentiation (8)3 with respect to o and B we obtain two additional equations from which we get ĄB
and T2o' Having all differentials of Ę (remaning differentials are given in (8)1,2) we can calculate the

following compatibility conditions
pT1ł uT2 : Q, (10)

wherefunctiorLsp,u areexpressedinterms of.A1rA2,Kt,K2. Unlessboth p,andu arenonvanishing
the pair (8)3 i (10) may be solved for ł and T2' If' p,: u :0 there exists a one'pa,ra,meter family of

stress distribution. This case is described by the following conditions

[.- (##)] op:0, (1 1)

log(n1n2)oB + (log,41)p(lo8nr)o + (log.42).(logń2)p _ (logłc1)"(lo8nz)B :0'

A detailed analysis shows in fact that the condition (11)2 is a consequence of (11)r, (8)3 and (10).

This means that both constraints (11) may be replaced by (11)1 which in turn indicates that the third
fundamental fotm 9711is conformally flat when written in appriopriate rescaled curvature coordinates

(o,B), namely
srtr : e20 (aa2 + ap2) . (12)

Hence we obtain te following [H1]

Fact t. The stress d,i,stńbutźon oJ a membrane is uniquely ćIetermined by i'ts geometry unless the

thi'rd 'fund,amental form oJ the membmne i,s anJormally ffat with respect to suźtablg scaled curvature

coord,inates.

There is also a possibility of geometric characterization in terms of Combescure transformation of

the membrane to a minimal surface.
It turns out that the membranes under consideration can be also characterized algebraically' The

following fact holds:

Fact 2. Membrane geometńes lor which there ex'ists a one-pararneter Jam,ilg oJ stress resultants T1

anil T2 are d,etermined by common solut'ions of the Li,ouui,lle and the Moutard equat'ions

0oo * gpp : -"'o , ("_').p: _Ę#ffie_,, (13)

(14)

where f : l(ą), g: g(B).

It is noted that functions / and g are not arbitrary. The combatibility of both equations (13) leads

@,.+a3) ffi:0,
which means that in generic case / and 9 are elliptic functions. The Fact 2 can be reformulated in such

a way that the nonlinear equations (13) are replaced by a linear one and explicit expression for position



vector r is available. The first step to achieve that is to integrate the Gauss-Weingarten system

(i)":$ -3,' 
f) ffi) (i),:(*" 's *') (i) , (lb

where {X,)a, If} is an orthonormal frame with.IV : X x Y. The latter can be solved and solution
may be expressed in terms of holomorphic function p(z), such that

"o - -2l,p'l-, p : p(r), z : ałi,0
L-r pp

fulfils Liouvile equation (13)1. Now, the direct method of finding the position
integrate the following system

ro:AtX, Tp:AzY,

(16)

vector r requires to

(17)

which are quite difficult to solve (e.g. we need to calculate ,41 and ,42 first). Surprisingly, integration
of the latter may be replaced by differentiation. To show that let us introduce the new quantity

b:r.AI ( 18)

which measures the distance from the origin in IEB to the tangent plane to the membrane E at the point
r. On use of b, the equations (9), (15), (fZ) may be rewritten which allows us to proof the following

lHll
Fact 3. The posi,ti,on uector of the membrane with undetermined stresses reads

r: e_qbooX + e-qbgBY ł (bo ł b)1V,

where b : cott,st.t functi,on bs i,s gi,uen bg

a:ffi;P
antl Tg is any partźcular real soluti,on o! the i,nhomogeneous Lamć equat'ion

ł1 r Pr.,+|nok)+C)T-:Ż, C:const' (21)

Here, function P(a, B) is i,n the form P2 : l@) + S(0), functions A1Q), Q2(z) fulfil the homogeneous

uers'ion ol (21) and orlhonormal lrame (X,Y,N) i,s d,efined' by

(1e)

(20)

X +iY: lo,d.or ('.:ŁiJ*,)

^r_- 
1 / o'o'+ó1o2 \

/v : - loil2 + |o2r (,"l;ft_-'ŁrP 
)

(22)

The above fact is one of the main results of [H1].
The function p which appears in potential v: źp-fC of equation (21) is a Weierstrass elliptic

function. It is worth mentioning that according to many mathematicians the presence of elliptic
functions suggests the integrable character of equations discussed here (the elliptic funcion p occurs

sometimes in algebraic geometry, e.g. in problems associated with an algebraic curve of third order

u2 :4r3 - gzr - gs).

The Fact 3 is of considerable importance in the sequel. It will be shown that it allows to construct
many interesting examples including so.called generalized Dupin cyclides [H2]. Moreover, the position



vector (19) does not describe a single surface but the set of parallel surfaces. This clearly indicates

that if r is a position vector of the surface E then the parallel surface Xll with a position vector

rll - r t b/V is also a solution of the problem. To summa,rise, the solution appears always as a set

of parallel surfaces. It is noted that this result could be also obtained at the beginning of analysis of

equations (8)-(9).- 
The matńematical approach contained in Fact 3 can be used to examine more general surfaces. The

dependence of potential U on Weierstrass function 5c is a consequence of condition (11)2. If we consider

the surfaces with conformally flat tbird fundamental form then it is necessary to relax the conditions

and assume that only (11)1 is satisfied. In this ca^se we obtain the linear equation of type (21) with
arbitrary complex potential U. The surfaces of that kind were analysed in [H3]-[Ha].

The case when the discriminant Sg -2793:0 and the Weierstrass p(z;92,gs) functions reduce to

elementary functions was considered in detail. Accordingly, we have

(23)

where c : const. Explicit examples of surfaces related to the above degenerate Weierstrass p functions

were constructed in [H1]. The solutions 76 and iDr, Qz of equation (21) were found for all functions in
(23). Two surfaces of this kind are depicted in figure 3).

Figure 3: Sets of parallel surfaces associated with functions (23)r and (23)2.

The important class of surfaces for which equation (13)2 reduces to

(e-o)oB : o (24)

has been analyzed in [H2]. The condition (24) arises by setting at lest one of the functions / or g equal

to constant. On the other hand, this condition is equivalent to assuming that all lines of curvature on

a surface are planar. Such surfaces are special cases of Enneper surfaces l24l on which there exists one

family of planar lines of curvature. The physicial meaning is that the stress resultants tangent to the

given curvature line o : const. or B : const.lie on the same plane. The mathematical consequence of
(24) is that potential U is constant and function P depends only on a single variable. Hence, this case

is governed by the following inhomogeneous linear equation

,:ź, ,:"'(#--*) ' ,:ł({,ę1**) ,

(25)

Geometrically, we are concerned with subclass of canal surfaces which are the envelopes of a one'

parameter family of spheres of radius r with centers located on a curve 'y. In our case (for C > 0) the

curve is given by
1: eagĄ(a),Ą(o),0)T, (26)

where

Ą(o): I ,r"rsinodo, F2(a): I ,r"rcosad'a, 7 : |cgĄ(a) ł p|, p : const. (27)



Constants oo' ą obey the relation o3_ ą: I.
By introducing a new local coordinate u: u(B) the position vector of the surface yields

r(a,u) :

where ry'(o) : ąFl + p, e_9 : aO _ ą cos o cos u. The surfaces (28) are called the generalised Dupin
cyclides [H1]-[H2]. Dupin cyclides are special subcases of (28) and can be obtained if. P : const'
Usually they are defined by the property that all lines of curvature thereon are circles. The Dupin
cyclides were introduced in 1882 by the mathematician and naval architect Dupin [25]' They were

also extensively investigated in the nineteenth century by Maxwell [26] and Cayley [27]' In recent
years, it was demonstrated that Dupin cyclides could be even used in computer-aided design. They
also arise in connection with integrable Hamiltonian systems of hydrodynamic type [28]. One of the
most impońant property is that they constitute the isothermic surfaces which frequently appear in
the context of solitonic systems [29]. It is recalled that on any isothermic surface there always exists

a coordinate system in which the first fundamental form is conformally flat while the second one is

diagonal.
Any planar curve may be (locally) obtained from (26) by a suitable choice of the parameter o and

the function P(a) in (27). For example, the function P(a): -lsin2a generates (scaled) astroid

l: (aosin3a,cos3 o)', o e [0,22r)). The sets ofparallel surfaces associated with an ellipse and

Talbot's curve are displayed in figure 4.

Figure 4: The families of parallel surfaces generated by an ellipse and Talbot's curve.

It is worth mentioning that the class of generalized Dupin cyclides which correspond to negative

values of C are also of great interest. It consists of minimal surfaces with planar lines of curvatures.

Although not all minimal surfaces of that kind are generalized Dupin cyclides, the following alternative
characterization of them (for any C) car. be made [H2]:

Fact 4. Mernbranes on whi,ch the li,nes of cunłature (and therefore the li,nes ot pńncipal stress) are

planar are the membranes uhźch mag be mapped, uża a Combescure transJormat'ion to mini'mal surfaces

with planar lines oJ curuature. AII membranes oJ the latter class of minirnal surfaces rnag be generated,

i,n this wag.

The class of minimal surfaces which may be mapped to the generalized Dupin cyclides (28) is given

(28)_,"'(*ń.') -({)

by
( 1ft - Poc""a cosh B\

rmin : I sinocoshp-doo I'
\ dqcosasinh|-B /

(2e)

where ds : colao and u : arccos(sechB).



The analysis of the nonlinear system of equilibrium equations developed so far allows to calculate
the stress resultants

(30)

where / and g are elliptic functions in general and e : const. All intrinsic geometric quantities required

to calculate ł can be derived analy'tically'
The next evidence which convince us of solitonic behaviour of the equations is the existence of so-

called Lax pair, that is, the linear system with compatibility conditions encoded in (S)-(9). However,

the system (8)-(9) possesses another important property. The equationt (8)r,r are identical with the

Gauss-Mainardi-Cod.azzi equations (9)t,z if the correspondence (T1,Tż) # (rz,n1) is made. This is the

principal feature of the system which makes it integrable. Moreover, this similarity allows to rewrite

the Lax pair system of equation which includes Combescure transforms of E to minimal surface in a
compact form.

All surfaces considered so far a,re L-isothermic which means that they possess conformally flat third
fundamental form g771. There exists a Bdcklund transformation for such surfaces:

Proposition (A Bzicklund transformation for L-isothermic surfaces). Let r be the position vector

of an L-isothermic surface E. Then, a second L-isothermic surface E is given by

_^/\i:r - ńlr'+ uY + oN), (31)

where m is a real ''Bócklund parameter'' and }, o, t, p, u ate ''eigenfunctions'' of the compatible linear
system

I
-e"

0

0
0
0
0

-me-o - eo

which satisfy the admissible constraint p2 + u2 ł o2 :2mot.
The above transformation was examined by Bianchi [30] and Eisenhart 131]. It is recalled that Fact

3 allows to construct L-isothermic surfaces by the solutions of nonhomogeneous linear equation

where U(z) is a complex potential and a real function P(o,p) satisfies Moutard equations PoE :
2(ImU)P. The following problem arises

Let U be a potential associated with L-isothemic surface l. What potential 0 is related to
a surface i which is obtained from E via the Bócklund transformation (31)-(32)?

It turns out [H3] that the Bżicklund transformation (3t)-(sz) corresponds to the well-known Darborrx

transformation [32] of the potential U, namely

U:U*z(Los&)",,
sPreviously, in Fact 3, Moutard equation was fulfilled due to the condition pz = f * 9,

r,: -#(, -'#) *;R, ,,:*#('-Ę)_#,,

(i)

[')

fi

fi

0

0

0
me-o

3 :; S\f ))
:{"i,'y)lłt

}",j ł;)[i 
)

z:a*i.8, (33)

10

(34)



where a real function 6 : 2e-0 o satisfies modified linear equation with shifted potential

a,r+L)a:\a. (35)

The presence of the Darboux transformation frequently appearing in the context of integrable systems is
natural. It allows to express the functions o, t, F, z satisfying (32) in terms of solutions of homogeneous
Iinear equations with potentials U and U. Moreover, the Bócklund transformation from Proposition
leads to permutability theorem for the Lisothermic surfaces. We will see here that the powerful
solitonic method provides the new solutions of nonlinear equations. Accordingly, let r be a position
vector of an L-isothermic surface and 11 and 12 be two Bócklund transforms of r with parameters
rtu1 and m2. The above mentioned permutability theorem allows construction of a new L-isothermic
surface E12 from 11 and 12 in purely algebraic manner (without any integration). Its position vector
reads [H3]

R: (36)

where functions ji (i - 1,...,4) may be expressed in terms of solutions of (32) with constants rn1

oraz rnz. In article [H3] the Bźicklund transformation applied to generalized Dupin cyclides has been
analysed extensively and the explicit solutions to (32) have been constructed. The method outlined
so far suggests that there should potential U12 associated to the surface E12. Indeed, the calculation
shows that Urz : U ł20".(S1S2, _ St"Sz), where,S1 and 

^9z 
satisfy (35) with rn1 a\d rn2 respecively.

The fact that the linear equation (33) is connected with geometry of L-isothermic surfaces leads
to another interesting question. Let the solution Ę of nonhomogeneous equation (33) together with
functons (Dr, (Dz satisfying homogeneous version of this equation be given.

What are the geometric transformations which correspond to a linear combination of solu-
tions iD1, iD2 and addition the homogeneous solution to nonhomoheneous Ts?

The transformations mentioned above:

łł}1|tlł,: ]:l,

(Er)*(Bł):'(*;)' (37)

Tg + TI : To łotllr12 ł az(tl.z ł d,261Q2 + ag|Q'r|z, a1,ag €lR', a2 € C

depend on ten real parameters.
It is not difficult to answer the question. It is well-known that L-isothermic surfaces appear natu-

rally in Laguerre geometry [33] where spheres and planes in lE3 are fundamental objects. The group

which leaves the contact between these objects invariant is Laguerre group and it is isomorphic to
].0-dimensional Poincaxó group lR'a x,90(1,3). The Laguerre transformations can be described by
considering 6-dimensional space lRo eqiupped with the scalar product lr of signatue (- + + + +-).
Now, a 2-dimensional surface in 1E3 corresponds to the pair of 2-dimensional submanifolds in null
quadric defined by ń, [33],[3a],[35],[H4]. A detailed investigation shows that the transformation (37)2

corresponds to translation of E in lE3 and (for a2: 0 and at : as) to the transition of x to its
parallel surface Ell with position vector given by rll : r ł ZatN. The transformations (37)t in which
S e SU(2) C SL(Z,C) generate rotations of E. However, if matrices 

^9 
in (37)1 do not belong to

,9[/(2) group, then the transformation of a surface is much more complicated. Using the terminology
of special theory of relativity this transformation corresponds to boost and it induces the new surface

with the following position vector

. sinh(n)lV * (cosh(n) - 1)n
' cosh(n) + sinh(n)A/'n

(38)

where rł e ]R' and n: (nt,nz,nz) is unit constant vector.
It turns out that the description of L-isothermic surfaces in terms of solutions of linear nonhomo-

geneous equation (33) is very powerful when applied to so-called L-minimal surfaces' The latter are

11



analog of minimal surfaces in Euclidean space and can be defined as a critical points of the funcional

w : IGl, lK _ I)dA, where 'ł1 and K are mean and Gaussa curvature respectively. Locally, the

curvatures of L-minimal surfaces satisfy the following fourth order differential equation

(3e)

where AryT is a Laplace operator with respect to the third fundamental form (12). In case of the

L-minimal surface which is also L-isothermic the equation (39) reduces to Pz' + UP : 0 which may

be interpreted as a additional constraint on inhomogeneous part of (33). Hence, function P can be

put in the form P: nrliDrl2 +n2Q1Q2łńzŁlÓz+u|Q2|2 1where n1,n3 € lR' andn2 €_C. Using

iugrr"rr" transformation the function P can be reduced to the quadratic form: P : latlz łe|Q2|2,
where e - -1,0, 1. This leads to the Weierstrass representation of L-minimal surface which is also

L-isothermic: 

r:Re (riĘ;'fh*łł)-łłń(,r:.ł), (40)

b : const.

The L-minimal surface (40)-(41) is defined by a holomorphic function F(p), where p is a local complex

coordinate. The case e : 1, b : 0 corresponds to well-known Weierstrass representation of minimal
surface. Geometric chałacterization of (40)_(41) depends on value of parameter e. Accordingly, we

have

e: -L: Surfaces whose central sphere congruence has centers lying in the plane z:0 in lE3'

e:0: Surfaces whose central sphere congruence is tangential to a fixed plane z: b in lE3,

e: 1: Surfaces parallel to minimal surfaces.

The above classification was known to Blaschke [33].
By choosing different functions F(p) one can construct new L-minimal surfaces, especially the ones

which are related to known minimal surfaces. The examples for F(p) : j and rb) :1 - fi were

depicted in figure 5' They are L_minimal analog of helicoid and surface óf Henneberg. The figure 6

shows closed Lminimal generalized cyclide of Dupin (left) [HZ] and an example of L-minimal surface

together with its Bd,cktund transformation (right) [H3].

Figure 5: L-minimal helicoid and L-minimal surface of Henneberg.

o,,,(T):0,

(41)ft:rr_ĄneIerb)dp-b,

L2



Figure 6: Closed L-minimal generalized cyclide of Dupin and L-minimal surface ! together
with its Bźicklund trnasformation ]E!.

In the subsequent part of the presentation we focus upon another integrable equation which arises
out from the theory of elasticity, namely the following non-linear telegraphy equation

The transformation ? : łTTT Q, X : tanp reduces (42) to non-linear equation

' =I! ==,=l tntlTXx: |ełł,łnr),
descriptive of stress propagation T it a class of model inhomogeneous ideally hard elastic materials
with the constitutive law 7 : T(e, X) given parametrically by the relations

r : ł-r+ X, turl, e: 21ftyn(d + sindcosd). (44)

Variable X is a Lagrangian material coordinate, ź is the time, while e is the strain' It turns out that
equation (42) is integrable and its solutions exhibits a novel 'exchange particle' phenomenon, which
probably was not observed before. It is known [36], thai any pseudospherical surface in lE3 can be

related to solution to (a3). This suggests a relation between (a3) and sin-Gordon equation (sG)' Both
equations are indeed associated with two different parametrizations of the same 2-dimensional integral
manifolds of a cc ideal [H5]. The reciprocal transformation allows to construct linear system which is
compatible modulo sin-Gordon equation (sG). This implies, in turn, the Bd,cklund transformation, a

tool to produce many solutions to (42). The starting point is a trivial solution iD : 0. Applying the
Bócklund transformation to it we generate the one-soliton solution

.,, _ (tr*ł"), *. : o, Q: iD(p,ć).

-_l1t+tr)t"orhr, 1-''' B

L\ 2P / '-t) ' Tt:t'o-i'

(42)

(45)

where o, p are non-linear functions of new coordinates p i i. Constant parameter p controls the shape

and velocity of soliton. The solution (ab) is a loop-shaped localized wave travelling at a constant speed

keeping its shape uncharrged. Figure ż shows the solution (45) for a fixed time i and parameter LL : Il2.
Geometrically, this corresponds to a Dini surface [37] representing the solution of sin-Gordon equation

(sG). A second app^lication of the Biicklund transformation with parameters p and u leads to very

interesting solution iD, which is given in explicite form by

^ / 2(t' _ ,') u(I ł p,2)cosh 41 - p(t tz1rg$2--\Ó:t:llliarcsin_ 
),\ (1 + t 2)(L + u2) (tl2 ł u2) coshr11cosh42 _ z1rr"n?ffi, _ zr, )' 

(46)

where41 :pą_plp, rl2:ua_0/r,aandBarefunctionsof pandtimef. Adetailedanalysis
of solution (46) not only confirms a standard behaviour of soliton type solutions but also reveals some
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Figure 7: A loop soliton Q fo, p: I/2 at a fixed time'

novel features. The latter solution describes two traveling loop solitons (Figure 8)' At the beginning,

when solitons are far apart, they travel at a constant speed, although the larger is faster than the

smaller. It is noted that the two-loop solitons do not seem to pass through but rather travel past each

other.

Figure 8: ó as a function of p for various times f: interaction of a loop soliton for p :2 with a loop

solitonforu:-6.

The behaviour of two.loop solution described above is quite standard. The non-standard and

probably new features are arrived at by consideration of the two soliton solution Ior p,:2 i u : ll2.
As before, two solitons of the same sizea approach each other with a constant velocity. When they are

close to each other an additional figure eight 8 is created which males the interaction more involved as

in the ordinary case. The flgure 8 gto*s when solitons approach and then it disappears when they go

away. During the interaction, the two-loop solitons and the figure 8 'exchange' their identities.

4The s.me size is a consequence of seting p, z such lhat p'u = I'

Łj-
j-

/-J

i--
-LA

-Ą

__L
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Figure9:óasafunctionofpforvarioustimesf:interactionofaloopsolitonforp,-2withaloop
solitonforu:I/2.

The analysis of solitons for p, : 2 I u :3/10 reveals their interaction in great detail (see figure

10). At the beginning the figure 8 is completely detached from the main curve but eventually joins it
to form a single differentiable curve. It is quite evident from the figure 1L that once the particle 8 has

merged with the loops, the identities of the latter and the figure 8 start to exchange' To conclude, the

figure 8 behaves like a pańicle which exists only for a finite time and is excharrged between interacting
solitons.

15



Figure 10: ó * u. function of p for various times f: interaction of a loop soliton fot 1L" 
:2 with a loop

soliton 1or u :3/10. The figure 8 which is initially disconnected forms a single curve with the two

loops.

Figure 11: ó as a function of p fot various times i: interaction of a loop soliton for p:2 w^ith a loop

,oiiton for v :3/10. Blow-up of the merging phase: (a) The main curve and the figure 8 intersect

transversallyl (b) The figure 8 and the main curve intersect with common tangent; (c) The figure 8 and

the main curve have merged.

(c)
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3 Main results
The series of articles [H1]-[H5] include the following main results:

o Geometric and algebraic characterization of membranes with not uniquely determined stress

distribution [H1]

o A detailed description of the equilibrium equations (8) supplemented by the Gauss-Mainardi-
Codaazi equations (9) as a integrable system [H1]

o Analytic approach to description of L-isothermic surfaces by using linear equation (ea) [nt]-[uł]

o Description of Bócklund transformation in terms of linear equation (33) [H3]

o Analysis of L-minimal surfaces which are also L-isothermic and construction of Weierstrass rep-
resentation (40)-(41) [H4l

o Description of the solitonic properties of telegraphy equation and discovering a novel solitonic
'exchange particle' phenomenon.
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5. Discussion of the other scientific achievements

1) A. Szereszewski, J. Tafel, Integrability of the Rarita-Schwinger equation, Class. Quantum
Grau. 18 No 18, L129-L132 (2001)

2) A. Szereszewski, J. Tafel, Solutions of the Rarita-Schwinger equation in Einstein spaces'
Phgs. Lett. ,4. 297 Issue: 5-6, 359362 (2002)

In article 1) Rarita-Schwinger equation defined on curved manifold and its integrability
conditions were considered. It is known that integrability conditions reduce to Einstein
equations with cosmological constants in this case. Assuming that the manifold is equipped
with a stationary axially symmetric metric Rarita-Schwinger equation reduces to a linear
systemwhich integrability conditions consist ofErnst equation. It turned out that this linear
system was different form the well known linear system related to complete integrability of
Ernst equation. It was concluded that Rarita-Schwinger equation could not be used to
examine the complete integrability of Einstein equations.

In article 2) special solutions of the Rarita-Schwinger equation in spacetimes admitting shear
free congruences of null geodesics were analyzed. In case when the Rarita-Schwinger spinor
decomposes into three 1-valence spinors the constraints on geometry were calculated. This
assumption allowed to construct solutions for the Schwarzschild metric, pp waves and con-

formally flat metrics in explicit form. Just like in 1), the Weyl spinor approach was used.

3) A. Szereszewski, J. Tafel, Perfect fluid spacetimes with two symmetries, Class. Quantum
Grau. 2I, L755L759 (2004)

4) A. Szereszewski, J. Tafel, FYom 2-dimensional surfaces to cosmological solutions' Gen.

Relatiu. Grauit. 37 (2),257-269 (2005)

In article 3) a new method of solving perfect fluid Einstein equations with two commuting

spacelike Killing vectors was introduced. Given a spacelike 2-dimensional surface in the

3-dimensional nonphysical Minkowski space the field equations reduce to a single nonlinear
differential equation. By considering a rotational surface in Minkowski space probably new

non-tilted cosmological solution of Bianchi typeVIIs was constructed.

In article 4) this method was applied to surfaces invariant under l-dimensional group of
isometries in Minkowski space. As a result, new cosmological perfect fluid solutions of
Bianchi II, VIs and, VIIs were found. The metrics depend on an a,rbitrary function of

time, which can be further specified in order to satisfy an equation of state.

5) C. Rogers, A. Szereszewski, On the Geometry of Complex-Lamellar Magnetohydrody-
namics: Universal Motions, Stud' AppL Math. L28 (3),225-251' ę0r2)

In article 5) a nonlinear magnetohydrodynamic system of differential equations was consid-

ered. Using a geometric formulation the case when the magnetic field is aligned with the

direction of the binormal to the streamlines was examined in detail. Assuming the additional
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geometric constraint which is commonly termed a complex-lamellar motion it was shown

that the fluid stramlines are geodesics on generalized helicoids and the magnetic lines are

helices thereon. It was established that the key geometric and physical parameters could be

determined in terms of the torsion of the streamlines. The superposition principle was also

constructed which provided new (not necessarily complex-lamellar) solution to the system.

6) A. Szereszewski, J. Tafel, M. Jakimowicz, D-dimensional metrics with D - 3 symmetries,

Int. J. Theor. Phgs.51 (5), 1360-1369 (2012)

In article 6) symmetry transformations in a space of D-dimensional vacuum metrics with
D - 3 commuting Killing vectors were considered. The relevadlt parameters of these transfor-

mations which may lead to new vacuum solutions were revealed. The method was applied to

special 5-dimensional metrics. As a result, it was discovered that the Kaluza-Klein version of

the Reissner-Nordstróm solution is the symmetry transform of a Gross-Perry metric and that

the 5-dimensional plane wave metric is related to the Gross-Perry-Sorkin monopole solution.

7) A. Sym, A. Szereszewski, On Darboux's Approach to R-Separability of Variables, SIGMA
7,095 (2011)

8) A. Szereszewski, A. Sym' on Darboux's approach to R-separability of vałiables. Clas-

sification of conformally flat 4-dimensional binary metrics. J. Phgs' A, Math. Theor. 48

(2015), No. 38, 385201.

In article 7) a novel approach to the problem of R-separability (i.e. separability with a fac-

tor 'R) of variables in the stationary Schródinger equation on rr.-dimensional Riemann space

admitting orthogonal coordinates was proposed. This method initiated by G. Darboux al-

lows to consider separation with arbitrary (not necessarily maximal) number of constants

of separation. The necessary and sufficient conditions for the factor rĘ and the metric were

explicitly formulated. An important class of binary metrics (i.e. metrics which satisfy one

of the conditions of .R-separability) were introduced. The systematic procedure to isolate

R-separable metrics were formulated which enables to find and analyze many 3-dimensional

examples.

The subject originated in 7) was continued in article 8), where .R-separability conditions
were generalized to metrics of arbitrary signature. All 4dimensional binary metrics were

classified which required to solve system of nonlinear partial differential equations. It was

shown that in the most interesting case of metric type:

, : W(dł)2 +ffir^"\, +W@us)z +ffi{a,41', (*)

where ui, : ,Llź -uj the constant 7 had to be 'qunatized' (l ę {_2, -1,0, 1}), while functions

r(uź) hód to be appropriate polynomials. It was also ploven that all well know separable

solution that had been found by E. Kalnins and W. Miller Jr belonged in fact to special

subclass of binały metrics. Various examples of non-Stźickel and non-regular R-separation
metrics were constructed' The justification for a term 'rł-dimensional isothermic metric'

introduced in 7) was also given (any 2-dimensional submanifold defined by fixing values of

n-2 coordinates possesses 2-dimensional metric which is isothermic by standard definition).

The examination of binary metrics is continued and new results will be publised in paper Diagonal

Einstei,n metńcs oJ special kind', wherc binary metrics are considered from the point of view of

being conformall to Einstein metrics. It turns out that there exists a family of metrics (*) with

1- -312, which are not conformally flat but satisfy vacuum Einstein equations Rr,:0. In
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general these metrics do not possesses any Killing vectors, but those which do have symmetries
may be classified.

Another scientific project I am involved in concerns discretisation of 2-dimensional surfaces in 3-

dimensional real projective space lF3. By considering surfaces parametrized is terms of asymptotic
coordinates the standard method of discretisation can be used. Surprisingly the discretisation
can be performed on algebraic and geometric level. It is well known that there exists an integrable
reduction of the projecive Gauss-Mainardi-Codazzi equations which leads to integrable equations.
Remarkably Lie point symmetry reduction of these equations leads to projective-minimal surfaces

which arise naturally in the contex of soliton theory and can be classified both geometrically
and algebraically. The similar reduction may be performed on discrete level which allows to
define discrete projective-minimal surfaces. All these results will be published in article Di,screte
projectiue mi,nimal surJaces: geometry and, integrabili,ty w}rriclr' is in preparation with cooperation
with prof. W. K. Schief.
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