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1. Name 

Jacek Rogala 

2. Diplomas, degrees conferred in specific areas of science, including the name of the institution 

which conferred the degree, year of degree conferment, title of the PhD dissertation 

 Master of science, Thesis: Feeding of smelt (osmerus eperlanus) in seven mazovian lakes, 

Laboratory of Hydrobiology, Faculty of Biology, University of Warsaw 1991 

 PhD, Thesis: The role of Perigeniculate Nucleus (PGN) in modulation of response of principal cells 

in Lateral Geniculate Nucleus (LGN), Laboratory of Neuroinformatics, Institute of Experimenal 

Biology, Polish Academy of Sciences, 2014 

3. Information on employment in research institutes or faculties/ departments or school of arts 

 Specialist: Biomedical Physics Division, Faculty of Physics, University of Warsaw (2022-today) 

 Neurobiologists: Bioimaging Research Center, World Hearing Center, Institute of Physiology and 

Pathology of Hearing (2018–2022) 

 Postdoctoral fellow: Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus 

University in Toruń (2017–2018) 

 Postdoctoral fellow: Laboratory of Neurobiology of Vision, Department of Neurophysiology, 

Institute of Experimental Biology (2014–2016) 

4. Scientific achievement 

4.1. Title of the scientific achievement 

Title of the scientific achievement constituting the basis for the habilitation procedure: 

Enhancing Personalization and Effectiveness of Neurofeedback Therapy through  

Artificial Neural Networks 

The achievement concerns the study of the mechanism of neurofeedback-EEG as a method of 

therapy of cognitive disorders based on a personalized protocol using explainable artificial neural 

networks. 

4.2. List of works constituting the basis of the habilitation procedure 

The table below presents a list of five publications that form a cohesive series, serving as the 

foundation for the habilitation procedure. My specific contributions to these publications can be 

found in the list of publications below as well as in Appendix 3 (List of Achievements). 

Authors (year) Title Journal 

[1] Jacek Rogala, Katarzyna 
Jurewicz, Katarzyna Paluch, 
Ewa Kublik, Ryszard Cetnarski, 
Andrzej Wróbel (2016)  

The do's and don'ts of 
neurofeedback training: a 
review of the controlled 
studies using healthy adults 

Frontiers in Human Neuroscience,  
doi.org/10.3389/fnhum.2016.003
01. (IF=3.473) 
MNiSW 100  
Citations (WoS): 57 

My Contribution: concept, data analyses, main conclusions, article drafting 
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[2] Katarzyna Paluch, 
Katarzyna Jurewicz, Jacek 
Rogala, Rafał Krauz, Marta 
Szczypińska, Mirosław Mikicin, 
Andrzej Wróbel, Ewa Kublik 
(2017)  

Beware: Recruitment of 
Muscle Activity by the EEG-
Neurofeedback Trainings of 
High Frequencies 

Frontiers in Human Neuroscience. 
Volume 11 – 2017. 
doi.org/10.3389/fnhum.2017.001
19 (IF=3.473) 
MNiSW 100 
Citations (WoS): 15 

My Contribution: Interpretation of the results, proofreading 

[3] Jacek Rogala, Ewa Kublik, 
Rafał Krauz, Andrzej Wróbel 
(2020)  

Resting-state EEG activity 
predicts frontoparietal 
network 
reconfiguration and 
improved 
attentional performance 

Scientific Reports, 10 (2020), pp. 
1-15, 10.1038/s41598-020-
61866-7 (IF=4.996) MNiSW 140 
Citations (WoS): 26 

My Contribution: concept, data analyses, main conclusions, article drafting 

[4] Jacek Rogala, Joanna 
Dreszer, Urszula Malinowska, 
Marek Waligóra, Agnieszka 
Pluta, Ingrida Antonova, 
Andrzej Wróbel (2021)  

Stronger connectivity and 
higher extraversion protect 
against stress-related 
deterioration of cognitive 
functions 

Scientific Reports, 11, 17452. 
(IF=4.996) MNiSW 140 
Citations (WoS): 2 

My Contribution: concept, data analyses, main conclusions, article drafting 

Jarosław Żygierewicz, Romuald 
A Janik, Igor T Podolak, Alan 
Drozd, Urszula Malinowska, 
Martyna Poziomska, Jakub [5] 
Wojciechowski, Paweł 
Ogniewski, Paweł Niedbalski, 
Iwona Terczynska, Jacek Rogala 
(2022)  

Decoding working memory-
related information from 
repeated psychophysiological 
EEG experiments using 
convolutional and contrastive 
neural networks 

Journal of Neural Engineering 19 
046053 DOI 10.1088/1741-
2552/ac8b38 
(IF=5.043) MNiSW 140 
Citations (WoS): 0  

My Contribution: concept, data analyses, main conclusions, article drafting 

 

The content of the publication is included in Appendix No. 5, and the statements of the authors of 

joint publications (except for [1], [2], [3] and [4], in which there is an Author contribution paragraph) 

are included in Appendix No. 6. 

4.3. Discussion of the scientific achievement 

The purpose of the studies described in a series of publications [1-5] was to verify and improve 

the efficacy of Neurofeedback-EEG (N-EEG) as a technique to support the development/ therapy 

of cognitive functions. N-EEG is a biological feedback that provides the patient with information 

(feedback) about his or her brain activity. This information is based on EEG collected in real time 

using electrodes placed on the patient's head. Then, after processing by a specially designed 

software, this signal is presented to the patient in the form of graphs, games or sound. During 

therapy sessions (usually a minimum of 20), the patient is encouraged to influence the activity of 

his or her brain by using various strategies and techniques, such as meditation, visualization or 

breath control. If the person achieves the desired changes in his or her brain activity, he or she 

receives positive feedback, in form of, for example, an increase in pitch or a change in the image 
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on the screen. N-EEG training should lead to the attenuation of undesired and the amplification of 

desired EEG waves. N-EEG takes advantage of the "plasticity of the brain," relying on the ability of 

the brain's neuronal networks to consolidate changes in activated connections. 

Unfortunately, commonly used N-EEG training methods do not provide satisfactory level of 

effectiveness [1]. In most cases, the therapy does not contribute to significant improvements in 

health and well-being of participants, exposing them to unnecessary costs, or even to worsening 

of their condition, if other therapeutic methods are abandoned at the same time. On the other 

hand, clinical studies indicate that when improving the cognitive functions of elderly people and 

those affected by central nervous system disorders, additional behavioral therapy enhances the 

results of drug treatment.  

The low effectiveness of N-EEG therapy is mainly attributed to poorly selected training methods 

[1]. Current training protocols (electrode placement and selection of the EEG frequency range 

used for training) are based on analysis of resting-state EEG recordings or comparison of the 

patient's EEG recordings with those from a normative base. The chosen training protocol is 

designed to amplify or attenuate the EEG in selected frequency ranges (bands), according to 

commonly used tables (e.g., Kropotov, 2009). Since the relationship between the amplitude of the 

selected EEG band and the cognitive function assigned to it (and its dysfunction) has no clear 

scientific basis, the selection of therapy is often arbitrary and, as a result, the effectiveness of 

applied N-EEG therapies is low. 

The research described in the presented series of publications has allowed the formulation of a 

novel (one of the first in the world) critical evaluation of existing therapeutic and research practices, 

and provided the basis for further work towards the development of a new method that allows the 

preparation of a personalized training protocol using artificial neural networks. These new methods 

allow for the preparation of a protocol based on personalized analysis of the EEG recorded during 

the performance of tasks based on targeted cognitive functions. Comparative analysis of EEG 

recordings collected during the performance of a task related to a given function allows the 

determination of training parameters, i.e. EEG features accompanying only trials performed 

correctly. Reinforcement of these features during training also based on tasks using a given function 

should lead to improved performance as measured by the patient's cognitive abilities.  

The primary research challenge was to analytically link the behavioral results collected during a 

cognitive task to the dynamics of individual EEG maps. Previous attempts have encountered 

difficulties due to interference from concurrently recorded muscle activity [2], external 

interference and high variability of the EEG signal. An additional analytical concern was the 

multidimensionality of the EEG signal (electrode placement, amplitude, frequency, timing, 

correlations between signals from individual electrodes) and the lack of clear relationships 

between the EEG and behavior or cognitive function. To identify states of EEG activity during 

accurately executed trials, we pioneered the utilization of explainable artificial intelligence (XAI) - 

an innovative branch of artificial intelligence focused on transparency and interpretability. By 

employing the XAI methodology, we effectively discerned the key features within the EEG that 

drive the classification process. Subsequently, we proceeded to conduct a comprehensive 

physiological interpretation of the obtained results. This approach allowed us to gain valuable 

insights into the underlying mechanisms behind the EEG and its relevance to the classification 

task. In the course of our research, we discovered that the relevance of EEG features in the 
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classification process depends on the applied neural network training method. This is crucial not 

only for N-EEG training, which should be based on features with a physiologically known 

mechanism, but also in medical diagnostics, such as the detection and classification of motor and 

cognitive disorders. The methods and solutions we have developed may serve as a solid 

foundation for achieving personalization, objectivity, and automation in training and therapy 

using the N-EEG. These advancements significantly enhance its effectiveness and yield substantial 

contributions towards the integration of artificial neural networks in clinical practice. 

 

4.3.1. History of Neurofeedback-EEG (N-EEG) research. 

One of the pioneers of N-EEG was Joe Kamiya, who in 1962 discovered that, using a simple device 

that makes a sound when an increase in alpha band (8-12 Hz) activity is detected, participants can 

be taught to consciously control the amplitude pitch of this band. Around the same time, Barry 

Sterman and his team, an important member of which was Wanda Wyrwicka, an alumna of the 

M. Nencki Institute of Experimental Biology, discovered that cats could be taught to increase the 

amplitude of the sensorimotor rhythm (SMR; 12-15Hz) recorded over the motor cortex (Sterman 

et al. 1969). Directly rewarding an increase in SMR rhythm activity, accompanied by a decrease in 

motor activity, proved to be a more effective than rewarding the body's immobility response. It 

also appeared that cats trained to increase SMR activity were more resistant to seizures induced 

by pharmacological agents. This discovery contributed to the development of the first 

neurofeedback protocol (i.e., determining the trained frequency and electrode placement) for 

seizure disorders in humans (Sterman and Friar 1972). A little later, Joel Lubar, published the first 

article describing the use of neurofeedback in the treatment of hyperactivity (Lubar and Shouse 

1976). Since then, the number of publications devoted to N-EEG has steadily increased. In the first 

two decades (1972-1990), 162 papers on N-EEG were published (data based on a Google Scholar 

search, for the keyword "neurofeedback"). In the following decades, the number of papers on the 

subject continued to grow rapidly, reaching 1,260 in the 1990s, about 6100 between 2001 and 

2010, and more than 9,000 publications between 2011 and 2015, devoted to various aspects of 

N-EEG! 

 

4.3.2. State of the art before starting own research 

At the time I began my research (2015), reliable experimental data were surprisingly scarce, and 

both the methodology and the results of neurofeedback experiments were commonly 

inconsistent. One of the first review papers on the subject, published by Vernon (Vernon et al. 

2004), looked at the use of N-EEG in the treatment of attention deficit hyperactivity disorder 

(ADHD). The authors discussed experimental factors such as training duration, electrode location, 

and signal modality, and discussed their possible influence on treatment outcomes. The paper 

indicated that achieving therapeutic effects requires, at a minimum, 20 N-EEG sessions and, 

protocols based on beta/SMR bands. However, the studies discussed by the authors raised 

significant concerns about the validity of this method, mainly due to the lack of control groups or 

evidence of training specificity related to EEG changes (Vollebregt et al. 2014; Zuberer et al. 

2015). 
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The first quantitative review of N-EEG (Arns et al. 2009) focused on controlled studies of ADHD. 

This review indicated positive therapeutic effects of training. However, in contrast to Vernon 

(Vernon et al. 2004), Arns' team found that inattention and hyperactivity were more sensitive to 

non-specific factors (e.g., therapist-patient interactions) than to feedback itself. It also appeared 

that non-specific factors may be responsible for the training effects observed in healthy 

individuals (Logemann et al. 2010). Another review (May et al. 2013) conducted on patients with 

traumatic brain injury confirmed positive therapeutic effects of the N-EEG paradigm, but these 

studies lacked adequate control groups. The same methodological weakness characterized the 

ADHD-focused studies analyzed in the following review paper (Arns et al. 2014). Importantly, for 

all studies using active control groups (comparison with routine treatment with known 

therapeutic effects), the results of N-EEG training were negative. In the studies conducted with 

healthy subjects, control groups should allow for the control of the non-specific factors such as 

trainer-patient interactions or attentional engagement accompanying any N-EEG training. The 

most common and effective way is to use sham training, i.e., a procedure that includes all 

elements of full-fledged N-EEG training except for feedback, which is usually replaced by random 

generator that modifies the feedback presented to the patient. Unfortunately, this type of control 

has not been used in most studies performed on healthy subjects. 

In conclusion, most prior experimental studies and reviews did not allow us to assess the effect of 

specific N-EEG experimental protocols on the relationship between EEG and the performance of 

the cognitive functions for which this method was used. 

 

4.3.3. Examining efficacy of commonly used neurofeedback protocols on EEG and 

cognitive performance. 

The literature review conducted for our planned study [1] was one of the first comprehensive 

assessments of N-EEG results. Its primary objective was to evaluate the efficacy of training 

methods in modifying electrical brain activity and enhancing cognitive performance. Additionally, 

we aimed to investigate the impact of commonly overlooked non-specific factors. Among several 

hundred publications reviewed, only 28 met the inclusion criteria due to the absence of control 

groups in most studies. The analysis of these qualifying studies revealed that the training methods 

lacked effectiveness primarily due to their low specificity, as they recorded multiple EEG bands 

from a limited number of electrodes. 

Interestingly, the review identified consistent changes in alpha band activity across all protocols, 

which form the foundation of most N-EEG approaches. However, these changes were not found 

to be associated with the effectiveness of the training interventions. Based on our findings, we 

made recommendations that were positively correlated with the anticipated changes in the 

power of the trained EEG band(s). These recommendations emphasized the importance of 

training a minimal number of analyzed EEG bands while maximizing the utilization of recording 

electrodes.  

Subsequently, our study's conclusions were validated by the research conducted by Andreas 

Sonderegger's group at Lausanne University of Technology (Naas et al., 2019). 
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4.3.4. Conducting Research on the Efficacy of Neurofeedback-EEG Training, Inspired by 

Recommendations Derived from Our Comprehensive Literature Review 

Building upon the conclusions drawn from the literature review, we conducted our own research. 

Despite incorporating previously established recommendations, such as targeting attention as the 

specific cognitive function for training, using the beta band activity (which has documented 

associations with attention according to Wróbel, 2014), placing recording electrodes over regions 

within the frontal-parietal attentional loop, and neutralizing the impact of the trainer/therapist 

through rotation and employing pseudo-training in the control group, the desired behavioral and 

neural effects were not achieved [2]. Surprisingly, participants in the control group reported 

higher levels of satisfaction with the training compared to those subjected to N-EEG feedback. 

Although all participants were educated about the fundamental mechanisms of the N-EEG 

method and instructed to remain still during the experiment (with trainers intervening upon 

detecting excessive movement or any other undesirable behavior), nearly half of the trainees 

exhibited muscular activity beneath the recording electrodes, often unconsciously, in an attempt 

to improve their performance in the therapeutic game. As a result, the brain signals were masked 

by significantly higher amplitude signals originating from muscle activity [2], leading to erroneous 

behavioral outcomes during training. 

The accumulated observations revealed that trainers were unable to effectively control and 

eliminate the elicitation of muscle responses, highlighting the necessity for robust online 

monitoring of muscle activity during N-EEG training. This requirement was particularly crucial for 

protocols aimed at amplifying the amplitude of higher frequency (beta) bands, as their frequency 

range partially overlaps with that of electrical muscle activity. Proper control of muscle activity is 

essential not only for obtaining high-quality EEG signals but, more importantly, for conducting 

genuine N-EEG training based on cerebral sources of feedback activity. 

 

4.3.5. Investigating the Relationship between EEG Features and Cognitive performance in 

Laboratory and Ecological Settings 

The findings from both the literature review and our own research motivated us to explore the 

correlations between EEG features and cognitive performance, with the aim of leveraging this 

knowledge for N-EEG training. We sought to identify a relationship that not only strongly 

correlated EEG activity with cognitive functions but also extended beyond laboratory-based 

psychophysiological tests to quantifiable measures in real-world ecological conditions, such as 

occupational or leisure activities. This approach was driven by the primary objective of N-EEG 

therapy, which is to enhance the daily functioning of individuals with cognitive deficits or improve 

performance in tasks reliant on specific cognitive functions. 

In our preliminary study, we found that phase correlations of the EEG, which determine the 

strength of interdependence among EEG signals recorded at different electrodes, could serve as a 

promising parameter for exploring such relationships. Among the various available measures, we 

selected the phase locking value (Lachaux et al. 1999; PLV), as it is independent of spectral power 

and robust against motion artifacts and muscle interference (Cohen, 2015). Moreover, PLV 

provides a sensitive assessment of phase correlation strength, surpassing the phase lag index. 
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To investigate the relationship between PLV and psychophysiological tests scores, as well as 

behavioral outcomes related to daily activities, we employed a visual search test to evaluate 

attention processes and scores of shooting sports training from novice learners, which also 

requires significant attentional engagement [3]. Study involved repeated measurements of 

psychophysiological tests and shooting performance (points scored) administered before and 

after shooting training (test-retest). The results revealed that participants who exhibited higher 

PLV values for frontoparietal connections in the beta band (indicating stronger synchronization of 

brain structures) during the resting state and displayed higher global mean amplitudes of this 

band across all electrodes performed significantly worse in sports shooting (Figure 1A). 

Additionally, they exhibited weaker reconfiguration of neuronal connections (Figure 1B). 

 

Figure 1: A. Correlations between mean global beta-2 power (22-29 Hz) during the resting state, representing the 

strength of frontoparietal connections in the EEG signal within this frequency band, and sports shooting performance 

(out of a possible 400 points). Sample size (n) = 33. B. Significant differences in the strength of EEG signal correlations (p 

< 0.05, FDR-corrected) within the beta-2 band between the retest and test sessions. The left panel displays significant 

differences for the group with low connection strength (characterized by low values of global mean beta-2 amplitude), 

while the right panel shows no significant differences for the group with high connection strength (characterized by 

high values of global mean amplitude). Positive differences are represented by red colors, negative differences by blue 

colors. Frontal-parietal connections are indicated by black outlines, while frontal-occipital connections are indicated by 

gray outlines. (Rogala et al. 2020) 
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Our findings align with earlier theoretical studies that have postulated the stability and strong 

connections between distant brain structures (Ermentrout and Kopell, 1990; Kopell et al., 2000; 

Chandrasekaran et al., 2010). These strong connections are shown to be resilient to disruption 

and require less energy for their maintenance (Ermentrout and Kopell, 1990; Chandrasekaran et 

al., 2010). Conversely, weaker phase correlations have been associated with neuronal networks of 

higher complexity, which exhibit greater information processing flexibility (Goldberger et al., 

2002; Zappasodi et al., 2014) and improved behavioral performance (Tzagarakis, 2019). 

Furthermore, weaker neuronal connections facilitate network reconfiguration in response to 

cognitive tasks (Figure 2). 

 

Figure 2. Correlations between mean global beta-2 power (22-29 Hz) at rest characterizing the strength of frontal-

parietal connections of the EEG signal in this band and reaction times in a visual search task, n = 33. (Rogala et al. 2020) 

 

4.3.6. Evaluating the Efficacy of Personalized N-EEG Training Parameters 

Based on these findings [3], a personalized experimental protocol was developed, involving the 

individualized selection of electrode pairs and EEG bands. The protocol preparation procedure 

encompassed three diagnostic sessions (Session-1, Session-2, and Session-3), with intervals of 2-3 

days between each session. These sessions were designed to assess the characteristics of EEG 

signal phase connections during tasks that required working memory engagement. 

During the diagnostic sessions, participants engaged in a computer game based on a delayed 

match to sample (DMTS) task using a keyboard, while a 19-channel EEG was recorded. Each 

session comprised randomly shuffled trials involving attention and memory demands, as well as 

control trials that, despite being identical, did not necessitate memory usage for accurate 

performance. The data acquired from the three sessions were subsequently employed to decode 

the EEG activity associated with correct trials that required attention and working memory 

engagement. The individually derived parameters were then utilized during EEG training, 
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employing an identical game, with the training's efficacy monitored through the detection of the 

EEG activity state accompanying correct trials from the diagnostic sessions. 

To assess the effectiveness of the training, a battery of psychophysiological tests was conducted, 

including the classic n-back working memory test and the transitive reasoning test, which 

evaluates simultaneous processing, retention, and manipulation of information—reflecting 

effective attention and working memory abilities. These tests were administered both before 

(pre-test) and after the series of N-EEG training (post-test). Additionally, in order to investigate 

the potential influence of previously unexplored factors related to participants' personality traits, 

a questionnaire measuring personality dimensions (such as extraversion and neuroticism) was 

completed by the subjects (Eysenck & Eysenck, 1991). 

Due to the COVID-19 outbreak, the planned N-EEG experiment utilizing a protocol based on EEG 

phase correlations was disrupted. However, a portion of the pre-test data, which served as 

controls for the intended N-EEG training, was successfully collected before the lockdown. This 

group was subsequently referred to as the "Pre-Pandemic" in further analysis. Despite the 

challenges posed by the lockdown, some participants volunteered to continue their involvement 

in the study, constituting the "Pandemic" group. Both groups were requested to undergo 

psychophysiological control tests once again - the post-tests. Consequently, although the 

experiment could not proceed as initially intended, a unique dataset was obtained, enabling the 

examination of neuronal and behavioral responses to the severe and prolonged stress induced by 

the COVID-19 threat. This analysis was conducted among individuals with varying strengths of EEG 

signal phase correlations and distinct personality traits, while also comparing these results to data 

obtained from individuals who participated in the study prior to the pandemic [4]. Notably, the 

Fear of COVID-19 questionnaire completed by all participants during the lockdown period 

revealed no differences between the groups, indicating that the decision to continue participation 

during the lockdown must have stemmed from factors unrelated to fear. 

Simultaneously, an analysis of the collected data demonstrated that individuals who persisted in 

participating during the pandemic exhibited higher levels of extraversion (Figure 3) and stronger 

mean global phase correlations in the EEG signal (Figure 4) in comparison to the group that 

concluded their participation before the pandemic. 

 

Figure 3. A. Comparison of extraversion levels on the Sten scale between the Pandemic and Pre-Pandemic Control 

groups during Session-1. The asterisk denotes a significant difference between the groups (p < 0.05, Mann-Whitney 

test).  

B. Group average of the global connectivity index (GCI) in four EEG bands during Session-1 (pre-pandemic COVID-19). 
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Significant differences between the groups were observed across all bands (p < 0.01, ANOVA followed by Tukey's post-

hoc test). GCI was calculated as the average phase locking value (PLV), a measure of connection strength based on the 

phase of the EEG signal, in the four canonical EEG bands: theta (4-7 Hz), alpha (8-12 Hz), beta-1 (14-20 Hz), and beta-2 

(21-30 Hz). The Pandemic group refers to the participants studied during the lockdown, while the Pre-Pandemic Control 

group represents those who completed the study prior to the outbreak of the pandemic. (Rogala et al. 2021) 

 

Previous studies have only touched upon the potential relationship between functional 

connectivity, as measured by PLV, and stress in healthy individuals (Nair et al., 2020; Alonso et al., 

2015). Notably, Alonso and colleagues (2015) demonstrated that stress induced by a cognitive 

task resulted in an increase in beta band correlation strength. In our experiment, we also 

observed an increase in correlation strength across all studied EEG bands under stress, which 

likely stemmed from the heightened and prolonged stress associated with the pandemic threat. 

Participants with higher levels of extraversion were more inclined to continue with planned 

activities, such as their participation in the study. This finding could be attributed to the lower 

reconfiguration capacity of neuronal networks associated with higher phase correlation strength, 

consequently reducing the ability to modify behavioral responses, as described in our earlier work 

[3]. Interestingly, participants who did not exhibit differences in the mean global strength of 

connections and completed the study before the pandemic demonstrated poorer performance 

on repeated tests (post-test) compared to those exposed to prolonged stress (Figure 4). 

 

 

Figure 4: Accuracy and reaction time in the transitive reasoning tasks performed in pre-test and post-test. Mean 

accuracies in the difficult variant (A) and mean reaction times in the easy variant (B). Asterisks above the lines 

connecting the results of Session-1 and Session-2 indicate significant differences (p < 0.05) by the Chi2 post-hoc test, 

followed by Friedman's non-parametric ANOVA. Matched-Control group of individuals who completed pre-pandemic 

surveys corresponding to the study group in terms of level of extraversion and GCI (global connectivity index) in a given 

band. (Rogala et al. 2021) 
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These seemingly contradictory observations can be reconciled by considering the finding that 

individuals with strong correlations of EEG signals may experience difficulty in altering the 

configuration of their neuronal networks in the absence of strong stimulating factors. 

Consequently, minimal or no behavioral modifications may occur in response to environmental 

influences. However, for those who continued to participate in the study during the pandemic, 

the prolonged exposure to intense stimulation may have induced changes in functional 

connectivity, subsequently modifying their behavioral responses to the given task. This could 

explain the observed improvement in performance among this group (Figure 5) [4]. 

 

 

Figure 5: Comparison of PLV differences for all pairs of electrodes between the Pandemic and Matched Control groups, 

and between sessions for these groups, in the exemplary beta-2 band. (A) PLV differences for the Pandemic and 

Matched Control groups in the pre-test before the pandemic outbreak; (B) the same for the post-test, for the Matched 

Control group before the pandemic outbreak, and for the Pandemic group during the lockdown; (C) PLV differences 

between post-test and pre-test for the Matched Control group performed before the pandemic outbreak; (D) 

differences between post-test (collected during lockdown) and pre-test (before the pandemic outbreak) for the 

Pandemic group. Black contours delineate PLV differences for frontal-central and central-parietal connections. 

Differences significant at p < 0.01, after Bonferroni correction. Matched-Control group of subjects who completed the 

pre-pandemic study corresponding to the study group in terms of extraversion and GCI (global connectivity index) levels 

in a given band. Pandemic - the group studied during the lockdown, Pre-Pandemic Control - the group that completed 

the study before the outbreak of the pandemic. Matched-Control group of people who completed the study before the 

pandemic corresponding to the study group in terms of the level of extraversion and GCI (global connectivity index) in a 

given band. Black triangular contours outline the PLV values measured for frontal-central and central-parietal 

connections. Differences that were found to be statistically significant at p < 0.01 after Bonferroni correction are 

indicated. The Matched-Control group consisted of subjects who completed the pre-pandemic study and were 

comparable to the study group in terms of extraversion levels and GCI (global connectivity index) in the specific band. 

The Pandemic group refers to the participants studied during the lockdown, while the Pre-Pandemic Control group 

refers to the participants who completed the study before the outbreak of the pandemic. (Rogala et al. 2021) 

 

The findings from the aforementioned studies ([3] and [4]) emphasize the importance of 

personalized N-EEG therapy, as both strengthening and weakening neuronal connectivity, along 

with other EEG signal features, can have a beneficial therapeutic effect depending on individual 

patient predispositions and external circumstances. However, it is worth noting that the third 

experiment described ([4]), which aimed to identify personalized parameters for N-EEG training, 

involved a complex and time-consuming development of a customized protocol. The requirement 

for individual electrodes and EEG band selection, as well as multiple comparisons of averaged 
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PLVs between experimental and control trials, demanded specialized knowledge, software tools, 

and considerable effort. These factors pose limitations to the practical application of the 

developed method in clinical settings. Furthermore, the binary nature of the phase correlations of 

the EEG used in both studies failed to capture the simultaneous interaction of signals from 

multiple channels, and other EEG signal characteristics such as power and functional relationships 

between different frequency bands were not considered in the protocol. Consequently, even with 

meticulous customization, a protocol may not fully deliver the expected changes in brain activity 

or improvements in behavioral outcomes. 

In order to mitigate these challenges and enhance the process of developing individualized 

protocols, another study has employed artificial neural networks [5]. 

 

4.3.7. Exploring application of Artificial Neural Networks for Neurofeedback-EEG Training 

Artificial neural networks, particularly deep neural networks (DNNs), have demonstrated their 

effectiveness in various research domains for feature extraction in end-to-end data classification. 

Schirrmeister et al. (2017) and others have successfully applied this approach to clinical EEG 

recordings. However, the practical application of DNNs for EEG classification faces two main 

challenges: (i) limited availability of large datasets, leading to the risk of overfitting, and (ii) lack of 

understanding and interpretation of relevant features used in the classification process, often 

referred to as the "black-box" issue. These limitations introduce the risk for using artifacts in 

classification, which can have negative implications for neurofeedback or diagnostic applications, 

resulting in false diagnoses and undesired side effects (Comstock et al. 1992; Nathan and 

Contreras-Vidal 2016). 

The challenges associated with small dataset sizes and the need for explainability of classification 

results have been recognized for some time. Techniques to mitigate these issues have been 

developed and applied in various fields, including EEG research. To address the problem of small 

datasets, transfer learning has become a widely used technique since its early application in 1998 

by Thrun and Pratt (1998). More recent advancements include unsupervised contrastive learning 

(Hyvarinen and Morioka 2016), which has shown promising results in EEG studies (Mohsenvand et 

al. 2020; Banville et al. 2021). Similarly, techniques like sensitivity analysis and the probability 

gradient method have been employed to enhance interpretability. Sensitivity analysis, in 

particular, is a popular method that evaluates the local gradient of the output relative to input 

features, providing heat maps that highlight features with the greatest impact on the output. 

The prevailing trend in machine learning is often focused on achieving high accuracy at the expense 

of interpretability and explanation of results. However, considering the risk of artifact-based 

classification, it is crucial to investigate the impact of classifier types and artificial neural network 

training methods on the selection of features used by classifiers. Regrettably, we have not found 

extensive research in the literature that specifically addresses this aspect, as previous studies have 

primarily focused on classifying EEG activity using a single type of training and classifier (Bird et al. 

2018; Chakladar et al. 2020; Han et al. 2020). 

In order to investigate the impact of training type and classifier on the relevance of input features, 

we utilized data collected in previous studies during three diagnostic sessions [4]. To conduct the 
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analysis, we developed four artificial neural network models employing two different training 

methods [5]. By applying different models and training methods to the same dataset, we could 

compare the effects of various architectures, training strategies, and input data representations 

on classification outcomes and the significance of individual EEG features in the classification 

process. 

The artificial neural network models used in the experiment were as follows: 

 Shallow ConvNet: a reference model originally developed by Schirrmeister et al. (2017).  

 Parallel ConvNet: This model utilized an input signal representation in the form of channel-

frequency-time and shared the convolutional part of the architecture with the Hybrid model. 

 Hybrid model: Similar to the Parallel ConvNet, also employed the channel-frequency-time 

input representation. However, it was further trained to classify individual participants. 

 Contrastive model with gated multilayer perceptron (gMLP-MoCo): designed to evaluate 

transfer learning using contrast training. 

For training the Shallow ConvNet, Parallel ConvNet, and the pre-trained portion of the Hybrid 

model, we employed the AdamW optimizer and utilized a standard binary cross loss function. As 

for the gMLP-MoCo model, its training consisted of two stages: unsupervised pre-training on 

clinical data using momentum contrastive learning (MoCo) in the first stage, followed by training 

of the pre-trained network on data from the current experiment in the second stage. 

The inclusion of contrastive training in our study served two purposes. Firstly, it allowed us to 

evaluate the impact of this type of training on the relevance of features, specifically focusing on 

the features of the EEG that could provide insights into the correlates of neural activity related to 

information retention in working memory. Contrastive learning methods, which introduce 

transformations of the training set to extract invariants, have been widely utilized in various fields 

(Wu et al., 2018; Chen et al., 2020; He et al., 2020; Tian et al., 2020). Secondly, we employed 

perturbation analysis with automatic probability gradient estimation to identify and assess the 

significance of features for classification results. 

To establish a reference to commonly used traditional EEG analyses, we focused on the power of 

the EEG signal in the canonical frequency bands at each electrode. We used classical spectral 

analyses in each band as a reference for the perturbation analyses. The power in each frequency 

band was estimated by summing the periodograms within the frequency ranges corresponding to 

the Morlet wavelets utilized in our models. To determine the significance of the features, we 

conducted permutation tests by shuffling the labels for each electrode-frequency combination. 

The classification results obtained with the employed classifiers and training methods 

demonstrated the highest performance for the most complex models, particularly the contrast 

learning-based model using the raw data, as shown in Table 1. 

Table 1 Classification results for each model (Żygierewicz et al. 2022) 

Model ACC MCC # Trainable parameters 

Shallow ConvNet    

Parallel ConvNet    



16 
 

Hybrid model    

gMLP-MoCo    

 

The relationship between the power spectrum in the canonical EEG bands and cognitive functions 

has been a topic of investigation since the early days of electroencephalography. While the exact 

mechanisms are not fully understood, the EEG correlates of working memory have been 

extensively studied and are among the most well-understood phenomena. By comparing the 

spectral features used by our models for classification with classical spatial-frequency analysis and 

current knowledge, we can determine whether the classification results align with known 

physiological phenomena. Such correlations are of significant importance in the fields of medicine 

and biology. 

Traditional methods of EEG analysis involve statistically comparing predefined measures recorded 

in selected regions of interest under different experimental conditions. In contrast, artificial 

neural networks utilize information from all available features and locations simultaneously, 

providing additional insights into the contributions of various physiological and functional 

mechanisms, including previously unknown ones, which are relevant to classification results. 

Interestingly, all the models that exhibited high mutual similarity in terms of relevant features 

shared common characteristics, including shallow architectures, a relatively small number of 

trained parameters, and supervised learning. The most prominent features observed across these 

models included positive feature importance index values in the theta band (5-8 Hz) recorded on 

frontal electrodes, and negative feature importance index values on parietal electrodes centered 

around frequencies of 11 Hz (alpha) and 15 Hz (beta) (Figure 6A-C). These features have been 

extensively documented in psychological and neuroscience studies on EEG and working memory. 

It has been consistently demonstrated that storing information in memory is associated with 

increased power in the theta band recorded at frontal electrodes (Wilson et al., 1999; 

Bastiaansen et al., 2002; Klimesch et al., 2008; Michels et al., 2010; Sauseng et al., 2010). 

Although the physiological interpretation of other features, such as the activity of alpha and beta 

bands on parietal electrodes, is more challenging, these features have also been detected in 

numerous electrophysiological experiments (Pavlov and Kotchoubey, 2022). 

In summary, the relevance of features such as theta band activity on frontal electrodes to the 

classification results indicates that the models studied are based on features that can be 

interpreted using classical electrophysiological methods. This finding strengthens the validity and 

interpretability of the classification results obtained from our models. 

In addition to the previously described features, the probability gradients calculated for the gMLP-

MoCo model with contrastive learning revealed patterns of other relevant features that had 

higher importance for the classification results compared to those observed in the shallow 

architecture models (Fig. 6D). Particularly noteworthy is the high feature importance index for the 

delta and theta bands at the Fp1 and Fp2 electrodes, and to a lesser extent, for the gamma band 

in the frontal and occipital regions. These findings suggest that the model was utilizing features 

associated with artifacts related to eye movements and muscle activity for classification, despite 

the preprocessing steps taken to remove such artifacts from the experimental data, including the 
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elimination of electrical recordings of eye blinks and muscle activity. Additional verifications 

excluded possibility that high values of feature importance index on the features related to 

artifacts resulted from clinical training set. 

These results have important implications for potential applications in N-EEG training and diagnosis. 

The model's high sensitivity to artifact-related features practically excludes it from medical use, as it 

may lead to false diagnoses and unreliable results. However, it may still find practical applications 

in brain-computer interface (BCI) applications where the intentional modulation of such artifacts 

can be harnessed for control purposes. 

It is crucial to address the challenge of artifact contamination in EEG classification models, as the 

reliance on artifact-related features can undermine the accuracy and validity of the results. Future 

research should focus on developing robust preprocessing techniques and feature selection 

methods to minimize the impact of artifacts and improve the interpretability and reliability of the 

classification outcomes in both N-EEG training and diagnostic applications. 

 

 

 

To summarize the relevance of the extracted EEG signal features for classification, it is noteworthy 

that the shallow architecture models exhibited features that align with the physiological properties 

of EEG signals observed in biological and clinical experiments. The importance of these features, 

which have well-documented physiological relevance, confirms the validity of using artificial neural 

networks with shallow architectures and supervised learning to design training protocols and 

supervise N-EEG training. 

However, it is important to acknowledge that different training methods can result in classifications 

Figure 6 Results of perturbation 
analysis. (A-D) heat maps of the 
feature importance index for the 
four models studied. Channel-
frequency pairs masked in white 
were not significant. (E) Spearman 
correlation between heat maps; all 
significant correlations (p<0.001) 
are marked. (F) Heat map 
elements common to all models - 
red positive, blue negative. 
(Żygierewicz et al. 2022) 
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based on distinct sets of features that may not be directly related to the intended task. Therefore, 

when selecting classifiers and learning methods for artificial neural networks in diagnostic and 

therapeutic applications, it is crucial to incorporate techniques for identifying and explaining the 

relevance of features. This approach will help mitigate the risk of classification based on artifacts 

and enhance the interpretability and reliability of the obtained results. 

 

Future advancements in the field should focus on the development of robust feature selection 

methods and comprehensive explanations of the significance of extracted features. By doing so, 

we can reduce the potential impact of artifacts, improve the accuracy of classification models, 

and promote the effective use of artificial neural networks in N-EEG training and diagnostic 

applications. 

4.3.8. Summary 

This comprehensive research program has allowed us to validate the effectiveness of existing 

methods in modulating electrical brain activity and improving cognitive function using N-EEG [1]. 

Our research findings revealed the limitations of previous approaches due to the lack of 

correlation between the utilized EEG signal features in N-EEG and the targeted cognitive functions 

[2]. These findings were further supported by independent experimental studies conducted by 

other research centers (Naas et al., 2019). The literature review [1] and our own study served as a 

foundation for exploring new methods that would establish a relationship between EEG activity 

and commonly employed cognitive tests in research laboratories, as well as activities conducted 

in real-world settings [2]. Additionally, we aimed to develop methods that are more resilient to 

experimental artifacts. 

During our research, we discovered a correlation between the strength of phase correlations and 

the behavioral outcomes of psychophysiological test, both in laboratory settings and real-life 

performance [3]. Subsequent studies not only confirmed the link between phase correlations and 

cognitive function but also unveiled their connection with responses to severe and prolonged 

stress, as well as personality traits such as extraversion [4]. These findings emphasized the 

necessity of personalized training, involving diagnostic measurements using targeted 

psychophysiological tests of cognitive functions prior to actual training. They also motivated us to 

explore the potential of utilizing machine learning techniques in N-EEG training. Our research was 

pioneering in demonstrating the influence of training methods in artificial neural networks on the 

underlying classification features, which is crucial for personalized models in the fields of 

medicine and biology. Furthermore, our investigation into the application of explainable artificial 

neural network models for preparing and supervising N-EEG training confirmed their efficacy. 

In conclusion, this research has provided valuable insights into improving the methods used in N-

EEG training and their impact on cognitive enhancement. By establishing correlations between 

EEG, cognitive tests, stress responses, and personality traits, we have paved the way for 

personalized training and the integration of machine learning techniques in this domain. 

Moreover, our utilization of explainable artificial neural network models has contributed to the 

effective preparation and supervision of N-EEG training sessions. 
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5. Scientific Activities 

5.1. Neurofeedback-EEG 

During my doctoral dissertation at the Institute of Experimental Biology, I had the privilege of 

collaborating with Professor Andrzej Wróbel, who was leading the Department of 

Neurophysiology at the M. Nencki Institute of Experimental Biology of the Polish Academy of 

Sciences. Professor Wróbel invited me to participate in a grant project focused on studying the 

mechanisms of cognitive enhancement using the N-EEG. As we began implementing the project, 

initial analyses revealed limited effectiveness of widely employed N-EEG paradigms. In a joint 

meeting with the laboratory team, we collectively conceived the idea of delving into 

neurofeedback methods and developing novel and more effective paradigms. Subsequently, we 

partnered with a prominent EEG equipment company and submitted a grant application to the 

National Centre for Research and Development to validate our developed paradigms. Fortunately, 

our application received funding, and the grant facilitated the creation of several articles 

discussed in this dissertation. It also led to the formulation of a patent application, in which I am 

listed as a co-author. 

The implementation of N-EEG research through the grant provided us with an opportunity to 

establish a comprehensive method for objectifying and automating training procedures using 

machine learning techniques. The analysis of this method served as the foundation for a 

subsequent grant application to the Regional Funds, which also secured funding. During the grant 

period, I established collaborations with the Department of Physics and the Department of 

Mathematics and Computer Science at Jagiellonian University, as well as the Department of 

Physics at Warsaw University, where I am presently employed.  

The research outcomes pertaining to the efficacy of N-EEG training using artificial neural networks 

validate the viability of this approach and are currently being prepared for publication. 

Psychophysiological tests conducted to verify the effectiveness of the new method, administered 

before and after a series of N-EEG trainings, exhibited significant improvements in the experimental 

group that underwent training using feedback supervised by an artificial neural network. 

Conversely, the control group, which underwent an identical procedure to the experimental group 

but with a simulated feedback mechanism generated by an algorithm independent of the 

participants' efforts, did not show comparable enhancements. 

5.2. EEG Analysis Using Machine Learning Methods 

The successful application of machine learning methods to N-EEG research motivated me to 

explore the application of artificial intelligence for EEG analysis in a broader context. With access 

to a unique and extensive longitudinal dataset obtained from resting EEG recordings during the N-

EEG research, I collaborated with researchers from the Warsaw University of Technology (WUT) 

to investigate the efficacy of identity verification based on resting-sate EEG. Previous studies in 

this area relied on training artificial neural networks and validating identity using a single EEG 

recording divided into multiple parts. However, this approach presented several significant 

limitations. Firstly, a single registration does not align with the intended purpose of identity 

verification, which involves repeatedly verifying the identity of the same individual. Secondly, it 

constrains the signal variability due to factors such as differences in electrode impedance, 
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electrode placement, and the person's emotional state. Lastly, using the same registration for 

both training and testing an artificial neural network can result in data leakage from the training 

set to the test dataset. I hypothesized that these limitations lead to an overestimation of the 

accuracy and sensitivity reported in previous studies. 

Through research conducted on longitudinal data, I was able to demonstrate (Plucińska ... and 

Rogala, 2022, 2023) that tests conducted on single recording indeed overestimate classification 

results. Furthermore, the study determined the minimum number of EEG sessions required to 

achieve stable and reliable outcomes. By leveraging this longitudinal dataset, we addressed the 

limitations of previous approaches and obtained more accurate and robust results in identity 

verification using EEG. These findings have important implications for the field, shedding light on 

the appropriate methodology for evaluating identity verification systems based on EEG 

recordings. The research conducted in collaboration with WUT has paved the way for further 

advancements in this area, fostering a better understanding of the potential and limitations of 

EEG-based identity verification methods. 

The subsequent advancement in utilizing machine learning methods for EEG analysis involved 

acquiring a license from a healthcare EEG equipment supplier to access what is arguably the 

largest database of clinical EEG recordings worldwide. This extensive database, consisting of over 

a hundred thousand recordings, is currently housed at the Center for Systemic Risk Research at 

the University of Warsaw (which I mention my affiliation with later in this paragraph). The primary 

objective of utilizing this database is to ultimately develop biomarkers for neurodegenerative 

changes and the aging process. To accomplish this goal, I forged a collaboration with Professor 

Przemyslaw Bieck from the Warsaw University of Technology. Our collaboration already resulted 

in second place recognition during the "W3PHIAI-23 Aging Hackathon" presentations at the 7th 

International Workshop on Health Intelligence (W3PHIAI-23) held at the AAAI-23 conference in 

Washington, DC. Aging affects organisms in diverse ways, and chronological age does not always 

align with biological age, as evident in conditions such as progeroid syndromes and other 

accelerated aging disorders. The ability to employ reliable predictors of chronological age, 

biological age, and their interrelationships holds significance for diagnostic and prognostic 

purposes (e.g., comorbidity and mortality assessments) as well as for research and clinical 

applications. 

To secure further funding for research on biomarkers of aging and neurodegenerative changes, 

we submitted a grant application to the Pathfinder program within the European Horizon Europe 

program. For this application, I successfully formed a Consortium comprising the Warsaw 

University of Technology, the Technion Institute of Israel, and the University of Pisa in Italy. This 

Consortium represents a collaborative effort to enhance our understanding of aging-related 

biomarkers and neurodegenerative processes, leveraging the expertise and resources of multiple 

esteemed institutions. The Pathfinder grant application signifies our commitment to advancing 

research in this field and exploring new avenues for clinical applications. 

5.3. Research on Art Perception 

The exploration of art and its effects on human beings has captivated minds since ancient Greece. 

However, it was not until the advent of psychology as an independent discipline that the scientific 

investigation of art perception gained prominence. The seminal work of Fechner in 1876 marked 
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the inclusion of aesthetics as one of the initial subjects of scientific inquiry in psychology. In more 

recent times, psychological research has proposed that the experience evoked by engaging with 

an artwork may stem from the reception of the message conveyed by the artist (Leder, 2004), 

where the artwork assumes the role of an information channel. This intriguing notion has 

prompted the utilization of information theory as a research tool to comprehend the underlying 

mechanisms of art's impact. The application of information theory in the study of art emerged in 

the 1960s, with independent contributions from Moles (1966) and Bense (1969). They 

respectively described artworks in terms of order and complexity, drawing from Shannon's (1948) 

foundational work in information theory. 

The integration of information theory into the investigation of art perception has opened up new 

avenues for understanding the intricate relationship between art and human cognition. By 

employing this theoretical framework, researchers have sought to uncover the underlying 

principles that govern the reception and interpretation of artistic stimuli. Through the lens of 

information theory, art can be viewed as a means of communication, transmitting messages that 

elicit unique cognitive and emotional responses in viewers. This interdisciplinary approach has 

enriched our comprehension of the multifaceted nature of artistic experiences and deepened our 

appreciation for the interplay between aesthetics and psychology. Ongoing research in this field 

continues to shed light on the mechanisms through which art captivates and resonates with 

individuals, contributing to the ever-evolving tapestry of scientific knowledge surrounding art 

perception. 

However, there remains a gap in our understanding of the complete process of information flow 

from the artist to the recipient, which is crucial for perceiving the artist’s intent and the 

associated impact of their work. While a theoretical consideration of an information 

encoding/decoding mechanism was proposed in a published article (Rogala et al. 2020), there is 

still much to explore in this area. To address this, an experiment was conducted in collaboration 

with the Nicolaus Copernicus University in Torun, focusing on the reception of intention encoded 

in abstract paintings. 

The experiment consisted of two exhibitions held at a prestigious art gallery in Torun and involved 

two groups of participants. The first exhibition showcased abstract works by a contemporary 

Polish artist, while the second exhibition displayed images generated by a randomly perturbed 

artificial neural network the BigGAN (Generative Adversarial Network - GAN). BigGAN is capable 

of producing photorealistic images based on predefined categories, but in this case, the random 

perturbation of its weights resulted in pseudo abstract images without intentional content. 

Data was collected through eye tracking, EEG, and questionnaires. The initial findings, presented 

at the annual Peripatetic Conference organized by the Human Interactivity and Language 

Laboratory at the University of Warsaw, revealed significant differences in the reception of the 

two exhibitions. Despite both exhibitions utilizing the same format, execution (digital printing), 

and visual properties of the works, the results indicated contrasting responses from the 

participants. 

Furthermore, a collaboration with the University of Hertfordshire in the UK is currently underway 

to analyze the computational topology differences between the images presented at the two 

exhibitions. Preliminary results suggest distinct characteristics of persistence homology between 
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the human-generated images and those generated by the perturbed artificial neural network. 

This analysis aims to provide further insights into the variations observed in the reception of the 

exhibited artworks. 

Overall, this ongoing research seeks to deepen our understanding of the complex process of 

information transmission in art, shedding light on the role of intention and its reception by 

exploring the interplay between human-generated and artificially generated abstract images. 

6. Organizational and Science Popularizing Achievements 

6.1. Systemic Risk Research Center 

The Systemic Risk Research Center (https://cbrs.uw.edu.pl ), of which I am a co-founder, was 
established as part of the implementation of Measure I.3.2 "Initiation of a systemic risk research 
project" in Priority Research Area V "In search of regional solutions to global challenges ", which is 
part of the "Excellence Initiative - Research University" project implemented by the University of 
Warsaw. 
The essence of the Centre's activity is to combine the perspective and reflections of the social and 
humanities with the wealth of data that is the domain of researchers in the field of exact and 
natural sciences. This stems from the conviction that in order to understand the crisis of 
civilization and find ways out of it, it is necessary to combine the precision of models created by 
exact sciences with a deep understanding of man, societies and culture typical of social sciences 
and the humanities. The strict approach to the study of complex systems developed by the 
sciences offers tools to understand the multifaceted dynamics of the crisis and integrate the 
perspectives of other branches of science. 

Among the tasks carried out by the Center the dynamics of social and biological complex systems 
is a project of which I am a co-creator and contractor. The aim of this project is to adapt and use 
modeling methods developed by the natural sciences to understand the dynamics of complex 
social systems. The project includes, among other things, an analysis of aging processes. Aging of 
societies is one of the main systemic threats of modern civilization. Thanks to access to a large 
database of EEG signals of people of all ages (over 100,000 records), using advanced methods of 
theoretical physics, combined with the possibility of building tools and methods for classifying 
large databases, it is planned to develop models of aging and decay processes of complex systems 
that they will enable an early diagnosis of unfavorable changes, both at the level of society and at 
the level of individual physiology. This will enable the identification of potential compensatory 
mechanisms allowing for the extension of intellectual and physical performance. This project also 
includes the study of the mechanisms of art's impact on the central nervous system.  

6.2. Innovation 

Building upon my experience gained during the N-EEG study, I collaborated with a Polish company 

in to submit a patent application for conducting N-EEG training. The application is based on the 

delayed pattern matching paradigm and utilizes a multi-channel EEG transducer. 

The knowledge and insights gained from this endeavor have already facilitated the development 

of an early marker for autism in children, in collaboration with the Institute of Mother and Child. 

https://cbrs.uw.edu.pl/
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By analyzing recorded EEG signals, we have made significant progress in identifying potential 

indicators of autism. 

6.3. Domestic and Foreign Cooperation 

Throughout my research, I have successfully established strong collaborations with several 

esteemed scientific institutions, both domestically and internationally: 

 Institute of Mother and Child in Warsaw: Our partnership focuses on the development of an EEG 

marker for autism, aiming to improve early detection and intervention strategies. 

 Nicolaus Copernicus University in Toruń: Together, we conduct research on the perception of art, 

exploring the neural mechanisms and cognitive processes involved in aesthetic experiences. 

 Warsaw University of Technology: Our collaboration centers around investigating biomarkers of 

aging and neurodegenerative diseases, as well as exploring the potential of using EEG signals for 

identity verification. 

 Jagiellonian University: Our joint research efforts focus on studying art perception and utilizing 

machine learning methods to analyze EEG data in the context of aesthetic experiences. 

 Institute of Experimental Biology them. M. Nencki: Our collaboration involves studying changes in 

EEG signals induced by strokes, aiming to improve our understanding of brain activity and 

potential recovery mechanisms. 

 University of Hertfordshire: Together, we explore the computational topology of artistic images, 

investigating the application of mathematical and computational methods to analyze and 

understand visual art. 
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