Warszawa, 19.06.2018

dr Tomasz Pawlowski

Centrum Fizyki Teoretyesncej

Polska Akademia Nauk

Al Lotnikdw 32/46. 02-668 Warszawa

Description of the achievement (autoreferat)

A. Name: Tomasz Pawlowski

B. Scientific titles/diplomas:

1. MSc - theoretical physics. 2000, Faculty of Physics. University of Warsaw.

2. PhD - physics sciences, 2005. Faculty of Physics, University of Warsaw, Isolated horizons - a quasi
local black hole theory.

(. Employment in scientific institutions:

I. Institute for Gravitational Physics and Geometry, the Pennsylvania State University, USA, Jan
2005 - Aug 2007, postdoc.

[S]

. Instituto de Estructura de la Materia, C'SIC, Spain, Sep 2007 — Aug 2010. postdoc (program

I3P-JAE).

3. Department of Mathematics and Statistics. University of New Brunswick, Canada. Oct 2010 -

Jan 2012, postdoc.

4. Division for NMathematical Methods of Physics. University of Warsaw. Poland. Feb 2012 — Feh
2013, assistant professor.

5. Departamento de Ciencias Fisicas, Universidad Andres Bello, Chile. Mar 2013 — Dec 2015 assistant
proflessor.

6. Center for Theoretical Physics. PAS, PAN, Poland. from Aug 2016. assistant professor.

D. Scientific achievement:

1. Title: Dynamics of Early Universe in Loop Quantum Cosmology

2. Works contributing to the achievement:

(1)
(2)
(3)

()

Ashtekar A, Pawlowski T. Singh P. 2006, Quantum Nature of the Big Bang Phys.Rev.Lett.
96, 141301.

Ashtekar A. Pawlowski T'. Singh P. 2006. Quantum Nature of the Big Bang: An Analytical
and Numerical Investigation Phys.Rev. D73, 124038.

Ashtekar A. Pawlowski T. Singh P, 2006, Quantum Nature of the Big Bang: Improved dynam-
ics Phys.Rev. D74, 081003.

Martin-Benito M. Mena Marugdn G A. Pawlowski ‘I', 2008 Loop Quantization of Vacuum
Bianchi I Cosmology Phys.Rev. D78, 064008.

Kaminski W. Lewandowski .J, Pawlowski T. 2009, Physical time and other conceptual issues
of QG on the example of LQC Class.Quant.Grav. 26. 035012,

Brizuela D, Mena Marugdn G A, Pawlowski T, 2010. Big Bounce and inhomogeneities Class.
Quant.Grav. 27. 052001.

Martin-Benito M. Mena Marugan G A, Pawtowski 'I', 2009 Physical evolution in Loop Quantum
Cosmology: The erample of vacuum Bianchi I Phys.Rev. D80. 084038.

Kaminski W. Lewandowski J, Pawlowski T. 2009. Quantum constraints. Dirac observables
and evolution: group averaging versus Schroedinger picture in LQC Class.Quant.Grav, 26.
245016.

Kaminiski W. Pawlowski T'. 2010 The LQC evolution operator of FRW universe with positive
cosmological constant Phys.Rev. D81. 024014.

l

[ Oy VL\/'EW\J



(10) Kaminski W. Pawlowski T. 2010 Cosmic recall and the scattering picture in Loop Quantum
Cosmology Phyvs.Rev. D81. 081027,

(11) Brizuela D. Mena Marugdn G A. Pawlowski T. 2011 Effective dunamics of the hybrid quanti-
zation of the Gowdy T3 universe Phys.Rev D84. 124017,

(12) Mena Marugdn G A, Olmedo J. Pawlowski T'. 2011 Preseriptions in Loop Quantum Cosmology:
A comparative analysis Phys.Rev D84. 064012,

(13) TTusain V. Pawlowski T. 2011 Dust reference frame in quantum cosmology Class.Quant.Grav.
28, 2250141,

(11) Pawlowski T. Ashtekar A. 2012 Positive cosmological constant in loop quantum cosmology
Phys.Rev. D85, 064001.

(15) Artymowski M. Dapor A. Pawtowski T, 2013 Inflation from non-minimally coupled scalar field
in loop quantum cosmology JCAP 1306, 010.

(16) Barbero F. Pawlowski T, Villasenor E. 2014. Separable Hilbert space for loop quantization
Phys.Rev. D90. 067505.

(17) Pawlowski'l'. 2015, Obscrvations on interfacing loop quantum gravity with cosmology Phys.Rev.
D92, 124020,

(18) Pawlowski T. 2016. Universe’s memory and spontaneous coherenee in loop quantum cosmology
Int.J.AMod.Phys. D25. 2016. no.08. 1642013.
invited contribution to special issue

(19) Martin de Blas D. Olmedo J, Pawlowski T. 2017 Loop quantization of the Gowdy model with
local rotational symmetry Phys.Rev. D96, 106016.

3. Description of the contributing works:

Modern theoretical physics is based on two main pillars: on one hand General Relativity (GR)
accurately describing reality at large (astronomical) scales and strong gravitational fields. on the
other hand the high energy and short scale phenomena are accurately captured by Quantum
Physics. While both theories are based on mutually exclusive principles. correct description of
certain phenomena in observed reality requires taking into account both relativistic and quantum
aspects of the matter and the spacetime itself. Such unified description (known under the name
of quantum gravity) is believed to be necessary in capturing the correct physics of a very early
universe, as well as in the interiors of black holes. There are several approaches to construct
such theory, string theory being the most famous. One of the leading approaches is the so called
Loop Quantum Gravity (LQG) [1. 2I. Most of its defining principles is taken from GR with
the requirement of strict background independence and coordinate choice invariance being the
most emphasized [3]. One of mathematical consequences of this requirement is the need to use a
quantum representations distinct from the standard (Schrédinger) one and known as the polymer
representation. ‘I'his in turn significantly changes the properties of space (geometry) at the smallest
scales. In particular, at Planck scales the geometry attains a discrete structure. Such drastic
(with respect to the continuous geometry assumption in standard field theories) change is in turn
expected to significantly alter the physical processes at highest (Planckian) energies. However due
to the extreme complication level of LQG getting really robust and general predictions out of it
has eluded the researchers so far.

In an attempt to sidestep the enormous technical difficulties of the full theory. its simpler
version has been constructed: a theory applyving the methods of LQG (as well as some results
of the latter as a heuristic input) to quantize highly symmetric spacetimes. usually (but not
ouly) cosmological models. Created about 2000 by M. Bojowald. it is known as Loop Quantum
Cosmology [4. 5]. Its ain is making predictions regarding the physics of a very carly Universe.
especially near the classical big bang singularity where General Relativity fails and quantum
nature of reality is expected to significantly alter the properties of spacetime and matter on it. Tt
is actually simple enough to provide robust physical predictions even on a genuine quantum level.
ITabilitant’s rescarch, in particular the set of works listed above as (1)-(19) has played the critical
role in reaching by LQC this level of maturity.

The scientific achievement presented for habilitation is the candidate’s contribution to the
development of LQC to the level. where solid physical predictions could be made and to actually
making those predictions. some of which provided a qualitative change to our (standard) picture
of the Universe evolution.

The results contribuling to the achievement can be divided into the [ollowing aspects:
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l. Probing the genuine quantum dynamics of isotropic Universe in LQC framework
and the big bounce:

IFor the initial couple of years since its birth at the beginning of the century the development
of LQC focused almost entirely on its mathematical structure [6]. While there ware attempts
to make predictions regarding the physical properties of carly Universe. they were based alinost
entirely on the observed qualitative mathematical properties of the components of the formal-
ism. in particular the quantized [Tamiltonian constraint [7]. The flag example of such was the
regularity of the abovementioned constraint at the point of vanishing volume (representing in
classical theory the big bang singularity) [8] which led to the hewristic conelusion. that in LQC
framework the singularity is “passable™ and the evolution of the universe (parametrized by a
scale factor) leads it straight through it [9]. Going beyond the heuristics was however impossible
as neither a precise notion of the evolution of a quantum states nor the observables necessary
to describe it were included in the framework. That situation changed with start of the (led by
A. Ashtekar) project aimed towards giving LQC a form of a solid quantum mechanical (QM)
model at least in the simplest setting (the one describing isotropic Universe with a single homo-
geneous matter field) and to probing its physical properties via tools of a conservative quantum
mechanics. In this project habilitant played a crucial role.

The precise model considered in the initial stage of the project was the one of the isotropic
flat Universe (so called Friedman-Robertson-Walker Universe, or FRW) of which matter content
was the massless scalar field. While sufliciently simple to handle precisely. it shared sufficiently
many properties with models featuring more realistic matter content to give useful insights.
Due to the symmetries of spacetime the model features just few global degrees of freedom with
general structure resembling that of l-dimensional quantum mechanical systems!. Thanks to
that. it was possible to perform a very detailed analysis of it and to confront it against almost
textbook examples of simple QM systems. On the other hand. the necessity to use an exotic
(polymer) quantum representation have made even this simple model quite challenging techni-
cally. as most of standard developments of quantum mechanics could not be applied here. Yet.
by a combination of analvtical and numerical methods (some of them built specifically for this
task) it was possible to analyze the dynamics of quantum universe in a robust and unambiguous
manner. In particular the physical Hilbert space of the system has been constructed precisely (a
task nontrivial in theories with constraints instead of a true Hamiltonian) by group averaging
techniques [10] and the notion of the evolution has been defined by means of the so called par-
tial observables (originally introduced for full LQG) [11]. These components allowed to evolve
backward in time a set of “initial data” - semiclassical states representing in the model the
(radical simplification of the) expanding Universe we observe. this in turn has been done by
a dedicated numerical toolbox. The numerical analysis of the dynamics focused in particular
on the early universe epoch. where the classical theory predicts a big bang singularity. The
results were qualitatively different than both the predictions of GR and the existing (at that
time) heuristic predictions of LQC. Instead of terminating in an initial singularity or transiting
through it, the early universe have shown an unexpected feature: the discreteness of quantuin
geometry have made a gravity repulsive at high matter energy densities. As a consequence.
instead of big bang. the gquantum universe have undergone through a quantum bounce connect-
ing deterministically two epochs (pre-bounce contracting and post-bounce expanding) during
which Universe evolved according to the laws of General Relativity. While at the time there
existed proposals of the universe evolution scenaros featuring a bounce [12]. they were either
postulated or were a consequence of including in the model exotic matter (i.e. phantom scalar
field). By contract in LQC' this phenomenon was a prediction of a quantum evolution. 'This
result (published in (1)-(3)) not only presented a paradigim shift (replacing initial singularity by
a bounce) but also by predicting the previous pre-bounce epoch it indicated. that the structure
of physical reality may be much richer than previously expected. Its impact reached outside
of its particular area. having an eflfect not only oun general physics community bal also leaving
some imprint among philosophers. It was [urther substanitally covered in popular science and
public press.

The particular contribution of the habilitant to this project included development ol {he
numerical toolkit dedicated o probing dyvnamics in LQC. majority ol the analvsis and inter-
pretalion of the results of the simulations as well as confribution to the derivalion/improvement
of the malhematical structure of the models. The laiter appeared (o be necessary, as the in

LAfter the so called deparametrization where on of dynamical degrees is freedom was used as a clock.
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the original formulation of LQC the models were showing incousistencies (visible only after
svstematic methods of probing the dynamics were used). One of the flag problems was lack of
well defined infrared regulator removal limit®. This particular aspect have led to construction
of the so called improved dynamics of LQC. published in (3). which up to date exceeded 500
IST citations.

The original results obtained for Hat FRW model with scalar ficlds were subsequently ex-
tended to more complicated isotropic models. in particular:

o Flat FRW universe with positive cosmological constant (14):

Since a small positive value of cosmological constant is actually observed in our Universe.
its inclusion into LQC models was a necessary step in making them more realistic. [t
presented however a significant challenge. With the scalar matter clock used in the previous
works the evolution operator induced by the Hamiltonian constraint admits many self-
adjoint extensions. each leading to inequivalent unitary evolution of the quantum system.
Iere again the role of the habilitant were all the numerical aspects of the studies and analysis
of the dyvnamics as well as building the mathematical structure necessary to probe the
properties of abovementioned self-adjoint extensions and possible differences in predictions
following from their use. The model again featured the quantum bounce. however (quite
surprisingly) the evolution was quasi-periodic. The expanding universe reached infinite
volume for a finite value of the internal matter clock and subsequently transited (through
asymptotic future infinity, or zcri) into a contracting one. thus starting the next cycle.

e FRW universe with dust (13):

In full LQG the only viable (back in 2011) method of deseribing the dvnamics of the
system was the deparametrization with respect to matter reference frames. The use of stan-
dard matter (rotating dust /scalar ficld) have led to systems featuring a true ITamiltonian.
however using it to actually probe the dynamics was impossible due to its complicated
mathematical structure (square root of a complicated combinatorial operator). Iowever.
a synthesis of a particular matter clock choice (irrotational dust) and the diffeomorphism
invariant formulation of LQG (performed with significant contribution of the habilitant
(30)) allowed to define a loop quantum gravity dynamics in general setting (without syw-
metries) as generated by a Hamiltonian acting on a domain in precisely known Hilbert
space and of which action could be evaluated munerically. This brought the task of probing
the dynamics of full LQG to within fechnical reach. One of the elements of the studies was
testing the effects of using the chosen matter field as time in simpler setting — the one of
isotropic LQC. Tt was shown, that this choice has cured a series of previously encountered
difficulties: (i) the evolution operator now remains essentially self-adjoint (thus generatey
the evolution uniquely) for all non-exotic matter. including positive cosmological constant.
(ii) the elements of the so called semiclassical effective analysis [13] (based on capturing the
quantum dynamics in the equations of motion for the moments in the so called Hamburger
decomposition of the semiclassical state) have much better properties, which in turn en-
larges the domain of applicability of the method and (iii) the so called modified Friedman
equation capturing essential phenomenological aspects of LQC dynamics could be derived
presicely. Here the habilitant performed most of the analytical studies (no numerics was
involved).

This work was further complemented by studies of the flat FRW universe filled with
raciation (33). While neither dust nor massless scalar tield were observed (as fundamental
fields) or predicted in standard model of particle physics. the electromagnetic fields are com-
monly observed. Therefore, to probe the possibility of using the electromagnetic radiation
as an internal clock a model considering the isotropic distribution of photons was consid-
ered. As the gravitational backreaction of any electromagnetic plane wave can be mimicked
by a homogencous magnetic field, the whole system could be represented by an isotropic
universe admitting a specific configuration of just three fields. The (equal for all three
fields) potential of these fields could serve as an internal clock. Here. the only difficulty was
the need to significantly improve the numerical methods used to identify the asymptotics
of the Hilbert space basis functions as they are used to calculate the correct normalization
of the basis (which in turn is needed to correctly assemble semiclassical physical states).

2In defining Hamiltonian constraint and mamenta the densities have to be integrated over the whole space. Due to
homogeneity and noncompactness of spatial constant time slices in lat models these integrals arve infinite. To regulate the
infinities the integrals were restricted to a finite region. then took the limit of the region being expanded to infinity.
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Extension to dynamics of anisotropic homogeneous models in LQC:

The probing of the genmuine quantum dynamies in isotropic LQC. while providing many
interesting results and insights into what to expect out of realistic cosmological models. could
be treated only as the initial step in development of the theory and needed to be generalized.
The natural next step was probing the anisotropic homogencous models. as they still feature
global degrees of freedom. The natural starting point for these extensions was flat Bianchi T
model. While first attempts of completing the LQC quantization program for it followed the
development of isotropic LQC very quickly [14. 135] they suffered from the same inconsistencies
(lack of the correct infrared regulator removal limit) as the early isotropic LQC quantization
(sce [16] for the discussion of the problem). Implementing the improved dynamics scheme. that
cured the isotropic models. here proven to be a difficult task. Due to technical ambiguities in
iinplementing the scheme for couple of years two independent prescriptions were considered as
viable by the community.

The first of them, introduced in (4). based on the principle of the separability of the Hamilto-
nian (constraint) with respect to configuration variables natural for LQC, gave relatively simple
description. However, even there the standard methods of building the dynamical sector were
failing [17] due to numerical instabilities. Only by explicit implementation of the group averag-
ing techniques with heavy use of numerical methods developed earlier for isotropic LQC it was
possible to properly identify the space of physical states. Habilitant’s contribution to this area
of research consisted in performing this analysis for vacuum Bianchi T toroidal model. which
in turn required a novel approach to define meaningful physical observables. The construction
of such was provided (and subsequently used to probe the dynamics of the system) in (7) and
involved building a set of unitarily related observables. which were precise implementations of
Rovelli’s partial observables idea. but of which physical interpretation was precise only asymp-
toticallv. Nonetheless the developed tools were sufficient to confirm the bounce picture anc
semiclassicalitv properties found for isotropic models also in setting. The results of this work
were published in (4) and (7). Habilitant contributed to it with numerical aspects of the stud-
ies. developing the construction of the observables and performing part of the mathematical
analysis (in particular implementing the group averaging procedure).

The approach discussed above still suffered form incorrect infrared regulator removal limit
when applied to flat Bianchi I. thus not reproducing the correct low energy classical theory
there. The consistent description (reproducing the correct low energy limit. see [18]) was
constructed [19] only. when the existing ambiguities were fixed by probing (back then just on
the quasi heuristic level) the relation between the degrees of freedom of LQC with those of full
LQG. However, the constructed model have proven to be mathematically very complicated and
controlling its dynamical sector have eluded the researchers effort for almost a decade. The
conmpletion of the quantization program sufficient for the robust analysis of its dynamics has
been acliieved only recently (also by habilitant) [20] and required a qualitative improvement in
several aspect of LQC methodology: both significant extension of the numerical methods and
novel constructions of the physical Hilberl space and observables.

Quantum properties of Universe in LQC (semiclassicality, coherence):

Appearance in dynamical predictions of LQC of a phenomenon of quantum bounce has
caused at the beginning a bit of controversy among some more conservative researchers in the
field. In particular. since the origin of the bounce was purely quantum, it was alleged, that
due to its nature it causes a decoherence (in this context a loss of semiclassicality) of the once
semiclassical universe. which thus may be semilcassical in one evolution epoch while losing
this property in another [21]. Subsequent studies in turn have defended the semiclassicality
preservation [22]. In order to settle the issue. an adaptation of the scattering picture was applied
in LQC. The global evolution of an LQC universe (from distant past to distant future) has been
cast as a transition (scattering) of an ever contracting geometrodynamical (known as Wheeler
DeWitt — WDW)3 universe into an ever expanding one. The precise analysis of relation between
preferred (energy) bases in both LQC and WDW formulations allowed to identify a precise
scattering matrix for the model of isotropic at FRW universe with massless scalar field. Thanks
to that. by combination of the nmmerical and analytical methods it was possible to identify strict
triangle inequalities constraining the variances (uncertainties) of relevant physical observables
of considered model in a distant past and future. This in turn allowed to unambiguously

3 A maodel of an isotropic universe of which degrees of freedom have been quantized using standard Schrdinger repre-
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prove the semiclassicality preservation through the bounce. In this work. published in (10) the
habilitant was responsible for the formulation of the scattering picture. all the numerical and
significant portion of the analytical studies.

The topic of the coherence and semiclassicality preservation has been subsequently studied
in more complicated models featuring quasi-cyclic evolution (infinite chain of bounces and either
recollapses or transitions through asymptotic future/past infinity — the seri). The results of
these studies for the particular model of flat FRW universe with (massless scalar field and)
positive cosmological constant have been published in an invited contribution (18). These
results cover two aspects of the topic:

e Long term decoherence and semiclassicality preservation:

While the classically recollapsing models (like universe of spherical topology or with
negative cosmological constant) or models admitting positive cosmological constant feature
qualitatively evelic behavior. the cycles of evolution in an infinite chain are not exactly the
same. T'his behavior is captured in the model by slight deviation of the energy spectrum of
the evolution operator? from uniformity. Combined numerical and analytical studies of this
deviation allowed to establish the bounds on the growth of variances of observables used to
describe the system along given number of the universe evolution cycles. Il was shown that
this increase. while present (nonvanishing) is so small, thatl [or physically relevant range
ol paramelers characlerizing the universe it takes enormous number ol cycles (more than
10%9) for it 1o significantly aflect the semiclassicality.

Some, much less precise eslimales on the variance growlh have been performed (mainly
by numerical means) also lor other models, in particular the spherical one (28) and (he one
admitting negative cosmological constant (29).

e Spontaneous coherence in quasi-cyclic LQC models:

The increase of variances of observables between cycles of universe’s evolution implies,
that the universe semiclassical at given epoch (in given cycle) will loose the semiclassicality
after sutficiently large number of cycles. In such situation one can ask an inverse question:
given a generic quantum state of the universe, will it admit at some point in its evolution
a semiclassical epoch? This question was again addressed on the example of a flat FRW
universe with massless scalar feld and positive cosmological constant. With use of certain
elements of number theory it was possible to show. that, provided an otherwise generic
state is at some time already sharply peaked about some scalar field momentum (which is
the constant of motion for that system) it will always admit in its future an epoch when it
remains semiclassical for many cycles. The results of this study were included in (18).

4. Physical properties of inhomogeneous models in LQC:

While the isotropic and homogencous anisotropic cosmological model can already capture
some crucial properties of the observed universe evolution. making contact with observation re-
quires inclusion of inhomogeneities be it on perturbative or nonperturbative level. In context of
LQC the latter case was explored on the example of the so called Gowdy models [23] deseribing
spacetimes of compact spatial slices and admitting two spacelike Killing fields (symmetries of
space). For these models the so called hybrid quantization was introduced [24]. There, the in-
homogeneities have been captured as Fourier modes of a certain scalar, subsequently quantized
a la Fock. while for the remaining (homogeneous) degrees of freedom the loop quantization
methods originally developed for Bianchi I (i.e. flat homogeneous anisoropic) universe (4), (7)
were applied. The hybrid quantization program has been developed to the level. where it was
possible to explicitly determine the action of the Hamiltonian constraint [25!, although up to
date no suceessful prediction regarding the dynamics on the genuine quantum level was made.

An alternative approach to (loop) quantization of the inhomogeneous models on the non-
perturbative level are the so called midisuperspaces, originally devised for the spherically syin-
metric spacetimes [26]. That technique relies on splitting of the space akin to Geroch reduction:
the symmetric space is represented by the lower dimensional reduced one (where the subspaces
closed with respect to action of symmetries are points) admitting additional fields capturing the
degreed of freedom of the original space which are no longer present in the reduced geometry.
That lower dimensional geometry is then quantized by methods of full LQG whereas for the ob-
jects originally intrinsic to the surfaces preserved by the symmetry (generalized Killing orbits)
the techniques of LQC are applied. By combining this technique with appropriate modification

4The dynamics of the system is captured by a certain operator playing the role of the square of the Hamiltonian., The
spectrum of its square root can be interpreted as the energy spectrum of the system.
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to the classical GR constraint algebra. making the ITamiltonian constraint ultralocal in the
inhomogencous direction and called abelianization. [27] it was possible to complete the quanti-
zation program for the spherically symmetrie spacetimes and get some insights into structure
of (spherically symmetric) black holes in loop quantization [28].

Habilitant’s contribution to this ficld focused on Gowdy cosmological models and was
twofold:

e Seniiclassical analysis of the dynamics of Gowdy models in hybrid quantization:

While even for the simplest models of hybrid-quantized Gowdy cosmologies the operator
generating the evolution of the system was too complicated for the genuine quantum analysis
of the dynamics. one could resort to the so called classical effective dynamics: a classical
theory heuristically devised do mimic the genuine quantum evolution [29] and extensively
tested in the sector of LQC where comparing it against the genuine quantum dynamics was
available (see (1)-(3).(7). (14). (28) and (29)). This technique was applied to the toroidal
vacuum Gowdy universe with the aim of testing. how the amplitudes of inhomogeneities
change in the process of transiting through the bounce. The systematic numerical probing
revealed. that. while below certain threshold. these amplitudes were amplified. while above
it they evolved through the bounce statistically unchanged. In this research (published in
(6). (11)) habilitant’s role (besides formulation of the problem and selection of methodology)
was mainly supervisory with significant involvement in part of the simulation data analysis.

o Physical sector of the abelianized midisuperspace model of Gowdy universe:

The synthesis of the abelianization procedure and the midisuperspace approach to loop
quantization of the symmetric spacetimes originally used in [27] was applied to the model
of T% vacuum Gowdy universe with local rotational symmetry in order to test the method-
ology on relatively well known example. Here. it was possible to precisely identifv the
physical Hilbert space and sufficiently rich set of observables through group averaging. The
subsequent analysis of the dynamics of physical states in the asymptotic future and past
revealed a serious deficiency of the approach. Due to combining the abelianization with
specitic to LQG treatment of the diffeomorphism constraint (averaging of group of finite
diffeomorphism instead of finding the kernel of the quantum counterpart of the diffcomor-
phism constraint} the model built in the framework features too many degrees of freedom.
thus appropriate restriction of GR (to considered cosmological model) does not enierge
uniquely as the low energy limit of the quantum model. In this work (published in (19))
habilitant participated mainly in applying the group averaging techniques as well as in the
analysis of the asymptotic past/future behavior of the physical states.

5. Development of the mathematical structure of the theory:

While the mathematical foundations for LQC were formulated back at the beginning of
the century [6]. the task of completing the quantization program and probing the dynamices
on a genuine quantum level in a robust mauner required their substantial extension. There
habilitant cither contributed significantly or led the research in several crucial aspects. The
most relevant of these are:

o Time reparametrization vs dynamical sector structure in LQC:

For most types of nonexotic matter the models of homogeneous LQC lead to the unitary
quantunt evolution generated uniquely by the self-adjoint evolution operator (playing the
role of the square of the Hamiltonian). however inclusion of either massive scalar field or pos-
itive cosmological constant presented a nontrivial challenge. While for the deparametriza-
tion using the scalar field (or the choice of the group averaging procedure analogous to it} the
evolution operator involves multiple selfadjoint extensions (9). each generating nonequiv-
alent unitary evolution. the natural choice of lapse function in canonical formalism (lapse
N = 1) leads to a selfadjoint Hamiltonian constraint. Further studies of the dynamical
sector generated by this constraint shows, that it features a unique unitary evolution. This
apparent paradox has been investigated in the context of flat isotropic FRW universe with
massless scalar field and positive cosmological constant. The comparison (published in (8)))
of two scenarios listed above revealed, that the Hilbert space emerging via group averaging
procedure in the lapse N = 1 case is an integral over a family of Hilbert spaces correspond-
ing to the nonunique selfadjoint extensions of the evolution operator in the other scenario.
These extensions introduce a natural fibration of the space corresponding to N = 1 case.
although these fibers are not superselection sectors, as the standard LQC observables do
mix them.



e Droperties of observables in loop quantization:

Precise and robust probing of the quantum dynamics in LQC models discussed in pre-
vious points required: (i) extending existing constructions of the physical observables and
(ii) investigating the detailed properties of these (and other, more standard} observables.
This involved in particular:

— Construction of the unitarily related families of partial observables. which provided a
precise notion of unitary evolution for vacuum Bianchi I model. This construction was
based on one of the crucial properties of the physical Hilbert space: the whole physical
state could be determined just by data on one slice (corresponding to a freely chosen
fixed value of one of configuration variables). Combining it with the splitting of the
energy eigenbasis later associated with in/outgoing geometrodynamical components in
the scattering picture (10) allowed for building partial observables measuring values of
configuration variables with respect to one of them (used as an evolution parameter). Due
to use of the assvmptotics of the Hamiltonian {constraint) eigenfunctions in identifyving
the correct phyvsical interpretation of these observables. that interpretation was precise
only in asymptotic future/past of the Universe's history.

— Detalied analysis of spectral properties of the operators, in particular energy density.
Once the consistent formulation of LQC quantization has been found (the so called -
proved dynamics) the probing of the dynamical trajectories have shown a crucial role
of the matter (or balancing it gravitational) energy deusity as its specific critical value
determined the point of the bounce. The detailed analytical and numerical studies of its
spectral properties have revealed that its continuous spectrum is compact and bounded
by zero and the identified earlier critical value (of the Planck order). While the discrete
spectrum was nontrivial (depending on the particular details of the quantization pre-
scription and factor ordering) it corresponded to the eigenvectors peaked about the point
of classical singularity, thus not influencing the large semiclassical universe (5).

e Hilberl space and superseleclion seclors:

In isolropic LQC the Hamillonian consiraint and consequently {he evolution operator
have a structure of a 2nd order diflference operator (ol regular step), thus naturally dividing
both kinemalical and physical Hilbert space (hoth nonseparable) onto separable superse-
lection sectors consisting ol those states which are supported on the lallices preserved by
action ol the mentioned operators. Since the relevani observables also preserve those sec-
tors il is enough to work with just one ol them instead ol the whole nonseparable space.
For the simplest models (isotropic FRW universe) it was checked explicitly that the physics
emerging from the models has a minuscule dependence on the choice of the sector (1)-(3).
(28). (29). The situation complicates in the anisotropic case as for example in Bianchi I flat
model the support of a single sector is dense in some of the configuration variables. Also.
in the cases. where the separation in the difference operator becomes a nontrivial funetion
of the phase space variables (like for example in certain form of polymer quantization of
the scalar field [30]) considering single supersclection scctors does not reproduce correct
physics (31).

Following this observation and the nonseparability of the original spaces an alternative
was developed in rescarch led by habilitant. There. the structure of “superseleetion sectors”
was still used, but thev were considered just a fibration of a biger integral Ililbert space.
That space oceurred to be separable and the tests for the polymeric quantization of the
scalar ficld in an isotropic cosmological model (31) and in the case of Bianchi T model
[20] have proven to lead to dynamics reproducing the correet physics at low energies. The
construction. applicable also in full LQC was discussed in detail in (16).

6. Aspects of inflation in LQC:

While the presence of the bounce could solve certain problems of modern cosmology (like
the horizon problem) on its own, it is a general belief in the community, that in order to
reproduce the observational data it would need to be complemented by inflation. That sparked
a research on inflationary scenarios in LQC, leading for example to estimates on the inflation
probability [31, 32]. One of particular points of interests was probing the models featuring the
nonminimally coupled scalar field. as at the time in standard cosmology this type of matter
offered slightly better fit to the observational data. In this context. the flat FRW universe with
nonminimally coupled scalar field admitting ¢* type potential was studied. The dynamics of
the system was probed via the effective classical dynamics (the classical model mimicking the
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quantum evolution but neglecting the second and higher order quantum corrections) in the so
called Einstein frame. where the syvstem has been conformally transformed to the one. where
the field was coupled minimally. The transformed geometry has then been loop-quantized. The
distinet feature of the resulting dynamics were the "mexican hat” trajectories featuring two
bounces with a recollapse between them. The results of the studies were published in (15).
[Tabilitant’s contribution to the work was the numerical analysis and significant part of the
data analvsis as well as some analytical studies of the model.
7. Numerical tools of LQC:

One of critical factors allowing for a progress in probing the dynamics of the cosmolog-
ical scenarios in LQC were the numerical tools developed specifically for it. These tools at
the beginning developed solely by habilitant. later with contribution of vounger researchers
(J. Olmedo. D. Martin De Blas, recently M. Kisielowski) has been steadily expanded since 2005
and at present consists of an objective oriented C'++ library handling all the numerical aspects
of studies listed in points above. It is mainly focused on performing the spectral analysis of
the LQC operators. evolving the physical states in various models and evaluating the quantum
trajectories. however it also handles the auxiliary tasks, like (for example) evaluating scatter-
ing matrix (10). probing the structure of selfadjoint extensions (9. 14) probing the dynamics
of geometrodynamical systems or the classical effective approximations. Its core abilities were
presented in part in (12). Together with the actual programs using it in solving specific numer-
ical problems ol LQUC' it exceeds 17K lines ol code. It was used in almost all of works listed in
point 1.2 as well as in works by other authors (for example [33]). Till this day it is the most
universal numerical tool in the feld.

8. Relation of LQC with full LQG:

The models of LQC have provided a series of interesting results. however part of their role
was being a test bed for full LQG. In particular the results obtained in LQC could not be
considered as the final answers of full theory. At most they provide a qualitative insights into
what one can expect there. With the dynamical sector of the full theory still unavailable tor
physically interesting scenarios a lot of effort has been dedicated towards making a connection
between LQC and LQG in a way allowing to extrapolate the results of the former. This involved
investigating possible embeddings [34]. role of symmetries in diffeomorphism invariant theories
[35] and detailed studies of simplifications of LQG retaining its crucial properties [36, 37].

Habilitant contribution to this field focused on probing the relation between the basic quan-
tities representing degrees of freedom in LQC in context of full theory. The work, published in
(17). was dedicated to identification of objects, which were well defined in both theories and
using them to provide the dictionary between LQG and LQC. This dictionary was next used
to determine the restrictions on the initial heuristic assumptions of LQC coming purely from
consistency in relating the dictionary element. Furthermore the remnant of the diffeomorphism
group in the isotropic LQC was investigated in detail in the context of relations discussed above,
providing in particular a correction to critical energy density indicating a bounce.

E. Other scientific achievements.

The scientific works not classified as part of the achicvement presented for habilitation are listed
below. They belong to three groups: works within LQC not included in the habilitation achievement
due to formal requirements, studies of dynamical sector of full loop quantwin gravity and the works
in the context of classical black hole theory (using the isolated horizon framework). The resecarch
within the last group was mainly contribution to the PhD thesis of habilitant.

1. Publications:

(20) Lewandowski.J. Pawlowski T', 2002, Geometric Characterizations of the Kerr Isolated Horizon.
Int.J.Mod.Phys. D11, 739-746.

(21) LewandowskiJ, Pawlowski T, 2003, Extremal Isolated Horizons: A Local Uniqueness Theorem.
Class.Quant.Grav. 20, 587-606.

(22) Pawlowskil. LewandowskiJ. JezierskiJ. 2004, Spacetimes foliated by Killing horizons, Class.Quant.Grav.
21. 1237-1252.

(23) Ashtekar A, Engle J, Pawlowski T, Van Den Broeck C. 2004, Multipole Moments of Isolated
Horizons. Class.Quant.Grav. 21, 2549-2570.

(24) Lewandowski J. Pawlowski 'I. 2005. Quasi-local rotating black holes in higher dimension:
geomelry. Class.Quant.Grav. 22, 1573-1598.
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(25) Korzyiiski M. Lewandowski J. Pawlowski T. 2005, Mechanics of multidimensional isolaled
horizons. Class.Quant.Grav. 22. 2001-2016.

(26) Lewandowski J. Pawlowski T. 2006. Symmetric non-expanding horizons. Class.Quant.Grav.
23. 6031-6058.

(27) Ashtekar A. Pawlowski T'. Van Den Broeck C. 2007. Mechanics of higher-dimensional Mack
holes in asymptotically anti-de Sitter space-times, Class.Quantl.Grav. 24. 625-64.1.

(28) Ashtekar A. Pawlowski T. Singh I, Vandersloot K. 2007 Loop quantum cosmology of K=1
FRW maodels Phys.Rev. D75, 024035,

(29) Bentivegna E, Pawlowski I, 2008, Anti-deSitter universe dynamics in LQC. Phys.Rev. DT7.
124025.

(30) Husain V, Pawtowski T. 2012, Time and a physical Hamiltonian for quantwm gravity.
Phyvs.Rev.Lett. 108. 141301.

(31) Kreienbuehl A, Pawlowski T, 2013, Singularity resolution from polymer quantum matter.
Phys.Rev. D88, 043504.

(32) Lewandowski J. Pawlowski I'. 2014, Neighborhoods of isolated horizons and their stationarity.
Class.Quant.Grav. 31 175012.

(33) Pawlowski T. Pierini R. Wilson-Ewing E. 2014, Loop quantum cosmology of a radiation-
dominated FLEW universe, Phys.Rev D90, 123538,

2. Dynamical sector of full LQG:

The theory of General Relativity. in consequence its polvmeric quantization — Loop Quantum
Gravity ig a theory with constraints. In particular it is time reparametrization invariant: the dy-
namics is generated by the ITamiltonian constraint instead of true ITamiltonian. In consequence.
identifving its dvnamical sector is a nontrivial (and difficult) task. The most promising program
ained towards achieving it is an adaptation of the Dirac program [1]: the theory is first quantized
on the kinewatical level (ignoring the constraints). then the physical sector is identified via group
averaging as diffcomeorphisim invariant kernel of the operator representing the Hamiltonian con-
straint quantized in the kinematical level. Unfortunately. due to complicated nature this operator
(complicated combinatorial operator acting on the domain in Iilbert space spanned by spin net-
works — graphs equipped with quantum labels) finding its kernel has not been possible so far. To
circunvent this problem rescarchers focused on the deparametrization of the theory with respect
to suitably chosen matter fields [38. These fields then provided an operational clock, Hamilto-
nian constraint became an evolution equation and its gravitational part (possibly with some other
matter components) becaine the true Hamiltonian. Initially two types of matter have been used
for that purpose: dust [39. 40] and the massless scalar field [41]. Unfortunately, in both these
cases the (now true) Hamiltonian took the form of a square root of a complicated combinatorial
opeartor. thus its action could be written down only on a formal level. No actual calculations of
its action on the state of initial data could be performed.

"To overcome this problem an alternative deparametrization has been introduced in (30). T'here
the synthesis of (i) deparametrization with respect to irretational dust [39]. (ii) preferred gauge
choice distinguished by the dust field and (ii7) diffeomorphism invariant formulation of LQG
allowed to formulate the theory, where the physical Hilbert space is explicitly known, the evolution
is generated by the analog of Schrédinger equation featuring time-independent true Hamiltonian.
of which action on the physical states can be explicitly computed. Later, the condition (ii) was
relaxed by recasting the deparametrization in diffeomorphism invariant mathematical framework
[42]. These approaches brought the possibility of calculating the time evolution of the states at
least in simplest settings to within technical reacli. Although there exist new proposals involving
the deparametrization with respect to the scalar field [43]. till present the discussed technique
remains the singular one allowing for any practical computations in LQG [44] on nonperturbative
level.

3. Quasi-local black hole theory:

In the standard formulation of black hole theory [45] a Black Hole (BH) is defined as a comple-
ment ol the domain ol outer commumication [46. thus lo describe a BI one needs an information
aboul. the enlire spacelime geomeiry. Ou the other hand. modern investigations in this area
(lor example defermining the gravilational waves produced by a black hole merger) require a de-
seriplion. which allows to {real a BH as an objecl “in a lab™ — withoul the need lo include the
information aboul distant objects into its description. One ol altempls to coustruct such is a
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framework of non-expanding/isolated horizons (NIIT/TIT} [17. 48] and its generalization to fully
dynamical situations known as dynamical horizons (DIT) 49]. This framework is quasi-local: a
BII in cquilibriwn is represented by its surface: a non-expanding hovizon. The physical data is
encoded in the horizon’s infrinsic geometry featuring local free degrees of freedom. While in most
situations oue considers horizons embedded in a (usually L-dimensional) spacetime. they can be
treated as abstract standalone objects. In the case of horizons embedded in 1-dimansional space-
time their geometrie structure [50] as well as wechanics 31 (including the generalization of the
BH thermodynamics laws) has been investigated in detail.
Habilitant’s contribution to this area can be summarized within the following set of tasks:
e Geometric characterization of the Kerr horizon:

The standard black hole uniqueness theorems [52] rely on the global properties of a given
spacetime containing a black hole. In isolated horizon formalism only the intrinsic geometry
of the horizon is available for BH characteristics, thus identifving geometric/physical features
distinguishing known BH solutions is a nontrivial task. A study being the core of habilitant’s
MSe thesis have shown, that for nonextremal horizon (that is that of nonvanishing surface
gravity) it is enough to consider the restriction of the symmetry group of the horizon and
the Petrov classification of the horizon as the surface embedded in 4-dimansional spacetime.
As a result, a quasi-local version of a uniqueness theorem for Kerr horizon was formulated
and proven (20): the only non-extremal horizons which are isolated to the 2nd order (that is
admit null symmetry preserving metric up to 2nd order in derivatives with respect to direction
transversal to the horizon). axially symmetric and of Petrov type D are the horizons of the
geometry data corresponding to that of a Kerr BH horizon.

e Extremal black hole horizons:

The extremal black holes are distinguished class asg being of the “zero temperture” in
context of the Hawking radiation. A NIEH representing such BH horizon features a geometry
which (unlike the non-extremal ones) is subject to strong constraints. of which structure
suggests. that this class of the horizons may be characterized by a finite number of global
quantities. The potential validity ol this suspicion has been studied in context of (some
classes of) the NEHs embedded in electro-vacuum spacetimes. with the following results:

— Uniqueness theorem for extremal horizons:

In geometrie characterization of the extremal NEHs the specification of Petrov type
can be dropped. allowing to formulate the quasi-local version of the uniqueness theorem
for extremal Kerr-Newinan horizon (21) as follows: the only axisymmetric and extremal
horizon geometries in electrovac spacetime are those of the horizon of a Kerr-Newimnanu
black hole spacetime.

— Spacetimes foliated by NEHs:

Investigating the class of the so called Kundt spacetimes (see for example [53]) it was
possible to construct the class of spacetimes foliated by NEHs (22). Further studies of
their geometry have shown. that the leaves of foliation (for this construction) are actually
Killing horizons. further intersected by vet another Killing horizon. transversal to the
leaves of foliation and admitting a geometry of the extremal one.

e Multipole moments of a NEII/DII geometry:

In electrodynamics (in partienlar electrostatics). a useful tool in describing the cleetric
ficld is the decomposition of cither charge density distribution of the sources or the field far
away from them onto a set of multipole moments. Due to linearity of the theory there is
a L-1 correspondence between these two decompositions. In GR. due to its nonlincarity no
such correspondence can be established. however several independent constructions (for both
types of multipoles) have been considered in context of black hole theory [51. 33], The quasi-
local formalisim of NEIT have given a chance to build an analog of source multipoles using
NEIs intrinsic geometry. In (23) a precise technique for constructing such source multipoles
was proposed and studied in detail in context of axisymmetric horizous. This construction
is based on a decompositon of a specific complex scalar (in the so called Newman Penrose
formalism denoted as lpz_l"';) composed of the Gauss curvature of spatial cuts of the horizon
and the rotation form of the horizon in terms of spherical harmonics in specific coordinate
system. distinguished in turn in a geometric way by the axial symmetry. In particular. for
the Kerr horizon only two lowest moments are nonvanishing: the monopole encodes area
whereas the dipole encodes the angular momentum of a black hole. The properties of this
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decomposition have proven to be useful for description of settling down of the numerically
identificd dvnamical horizon to a Kerr isolated horizon in late stages of black hole mergers.
BH horizons in higher dimension:

The formalism of NEH/III originally has been developed for the surfaces of dimension 3
embeddable in 4-dimensional spacetime. Due to heavy use of the Newman-Penrose formalism
(specific to spacetimes of dimension 4). extending the formalism do a different dimension
was highly nontrivial and required reformulation of basic description. While adapting the
formalism in spacetime dimension 3 was not particularly difficult [56]. not much has been done
for higher dimension. On the other hand. the progress in string theory and the approaches
related to it or inspired by it has sparked a lot of interest in formulating a robust description
of black holes in spacetime dimension higher than 4. Such description has been provided
in context of NEH/II in (24) and (25). where the analogs/extensions of the results of [50]
and [51] regarding, respectively. the geometry and mechanics of a NEII have been provided.
In particular the zeroth and first law of black hole thermodynamics has been generalized to
arbitrary dimension. These results provided a framework subsequently applied in the studies
of black holes in asymptotically anti-de Sitter spacetimes of higher dimension (27).
Symmetries of NEHs:

In standard black hole theory the known black hole spacetimes are distinguished by their
svmmetrics. Therefore it was also important to analyze the role of symmetries in quasi-local
sefting. In this framework the syinmetry is a transformation generated by a vector field of
which flow preserves the horizon’s intrinsic metric and which commutes with intrinsic covariant
derivative. The properties of these svmmetries on the maximal analyvtic extensions of NISIIs
were studied in detail in arbitrary dimension in (26). The most relevant results obtained there
are:

— The analysis of the helical symmetry at the horizon of arbitrary dimension allowed to

formulate and prove a quasi-local version of the Hawking rigidity theorem [57].

— For spacetime dimension 4 the full classification of symmetric NEHs (their possible syiu-
melry groups) has been provided.
Spacetime neighbourhood of a NEII:

Since the formalism of NEH uses for BH description the intrinsic geometry of the horizon
(which in twrn does not need to be embedded in a spacetime at all). its relation with the
spacetilne geometry at its neighbourhood is again nontrivial and requires careful studies. In
particular the geometry of the horizon is insufficient to determine the metric at its spacetime
neigbourhood. In order to uniquely determine the metric at portion of the neighbourhood one
needs to supplement it by the data on the 2nd null surface transversal to the horizon [58]. The
details of the relation of a NEH with its neighbourhood have been studied in (32). The basic
tool for the analysis was the construction of a distinguished (invariant) coordinate system
being an analog of a Bondi coordinate system at null infinity and defined in the spacetime
neighborhood of a NEH of arbitrary dimension via geometry invariants of the horizon. With
its use, in spacetime dimension 4 it was possible to define a radial expansion of a spacetime
metric about the horizon and to identify the free data needed to specify it up to a given
order. For the case of an electro-vacuum horizon in four-dimensional spacetime. it was further
possible to determine the necessary and sufficient conditions for the existence of a Killing field
at its neighborhood. These conditions took the form of differential conditions for the horizon
data and data for the null surface transversal to the horizon.
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