AUTOREFERAT

1 IMIĘ I NAZWISKO

Miłosz Krzysztof Panfil

2 POSIADANE DYPLOMY I STOPNIE NAUKOWE

Doktor nauk fizycznych w zakresie fizyki
 Data: 9 października 2013
 Tytuł rozprawy : Density fluctuations in the 1d Bose gas, obroniona z wyróżnieniem (Cum Laude)
 Promotor: prof. Jean-Sébastien Caux
 Jednostka naukowa: Institute of Physics, Universiteit van Amsterdam, The Netherlands

• Magister fizyki

Data: 14 października 2009 Tytuł rozprawy: *Density-density correlations of the deformed Tonks-Girardeau gas*, obroniona z wyróżnieniem (*Cum Laude*) Promotor: prof. Jean-Sébastien Caux Jednostka naukowa: Vrije Universiteit, Amsterdam, The Netherlands

3 INFORMACJE O DOTYCHCZASOWYM ZATRUDNIENIU W JEDNOSTKACH NA-UKOWYCH

- Adiunkt naukowo-dydaktyczny, od listopada 2018 Wydział Fizyki, Uniwersytet Warszawski
- Staż podoktorski, listopad 2015 listopad 2018 Wydział Fizyki, Uniwersytet Warszawski
- Staż podoktorski, listopad 2013 listopad 2015 Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
- **Doktorant**, październik 2009 wrzesień 2013 Institute of Physics, Universiteit van Amsterdam, The Netherlands

4 OMÓWIENIE OSIĄGNIĘĆ, O KTÓRYCH MOWA W ART. 219 UST. 1 PKT. 2 USTAWY

A. TYTUŁ OSIĄGNIĘCIA NAUKOWEGO

Cykl publikacji pt.:

Metoda termodynamicznych form-faktorów obliczania dynamicznych funkcji korelacji modeli całkowalnych

B. LISTA PUBLIKACJI WCHODZĄCYCH W SKŁAD OSIĄGNIĘCIA (odwrotny porządek chronologiczny)

[A1] M. Panfil, F.T. Sant'Ana

The relevant excitations for the one-body function in the Lieb-Liniger model Journal of Statistical Mechanics: Theory and Experiment (2021) 073103.

[A2] M. Panfil

The two particle-hole pairs contribution to the dynamic correlation functions of quantum integrable models Journal of Statistical Mechanics: Theory and Experiment (2021) 013108.

[A3] A.C. Cubero, M. Panfil

Generalized hydrodynamics regime from the thermodynamic bootstrap program SciPost Physics **8** (1), 004 20 (2020).

[A4] A.C. Cubero, M. Panfil

Thermodynamic bootstrap program for integrable QFT's: form factors and correlation functions at finite energy density Journal of High Energy Physics 2019 (1), 104 (2019).

[A5] J. De Nardis, M. Panfil

Particle-hole pairs and density-density correlations in the Lieb–Liniger model Journal of Statistical Mechanics: Theory and Experiment 2018 (3), 033102 (2018).

[A6] J. De Nardis, M. Panfil

Exact correlations in the Lieb-Liniger model and detailed balance out-of-equilibrium SciPost Physics **1** (2), 015 (2016).

[A7] J. De Nardis, M. Panfil

Density form factors of the 1D Bose gas for finite entropy states Journal of Statistical Mechanics: Theory and Experiment 2015 (2), P02019 (2015).

Szczegółowe informacje dotyczące mojego wkładu do powyższych publikacji zamieszczono w Załączniku nr 4.

Przedstawiony autoreferat jest tłumaczeniem wersji angielskiej, stanowiącej część angielskojęzyczną wniosku.

C. OPIS OSIĄGNIĘCIA NAUKOWEGO

Moje badania koncentrują się wokół opracowania nowych metod obliczania dynamicznych funkcji korelacji kwantowych modeli całkowalnych. Przedstawione tu osiągnięcie naukowe dotyczy mojego wkładu w rozwój koncepcji *termodynamicznych form-faktorów* jako elementów składowych funkcji korelacji w *dowolnym* stanie stacjonarnym układu. Opis tego osiągnięcia naukowego zacznę od przedstawienia ogólnego kontekstu i motywacji do badań w tym zakresie.

Jednym z głównych motywów współczesnej nauki są systemy złożone. Są to układy, w których zjawiska emergentne, obserwowane na poziomie makroskopowym, są trudne do uchwycenia poprzez badanie samych właściwości ich składników. W fenomenologii takich systemów pojawia się nowa jakość, która wynika z zachowań zbiorowych wywodzących się z interakcji zachodzących między ich częściami. W fizyce układy złożone często pojawiają się jako silnie skorelowane układy materii skondensowanej. Są to układy fizyczne, w których oddziaływania prowadzą do nieoczekiwanych zjawisk. Przykładami są nadprzewodnictwo, kwantowy efekty Halla czy fizyka plazmy kwarkowo-gluonowej. Sposób, w jaki zwykle zajmujemy się takimi układami, odzwierciedla ich nowe właściwości, na przykład pary Coopera lub złożone fermiony zastępują swobodne elektrony jako odpowiednie stopnie swobody o niskiej energii.

Silnie skorelowane układy kwantowe są wszechobecne we współczesnej fizyce. Nie oznacza to jednak, że są dobrze rozumiane. Badania takich układów są trudne dokładnie z powodu, dla którego są interesujące. Silne interakcje często uniemożliwiają zastosowanie standardowych metod perturbacyjnych. Oczywiście istnieje wiele sposobów na obejście tego ograniczenia. Począwszy od metod numerycznych, takich jak kwantowe Monte Carlo i DMRG, poprzez techniki diagramowe i podejścia grup renormalizacji, po konformalne bootstrap i AdS/CMT, by wymienić tylko kilka podejść.

Kwantowe modele całkowalne zapewniają odrębne podejście do silnie skorelowanych systemów: są to ściśle rozwiązywalne modele wielociałowe. Standardowe techniki, takie jak Coordinate Bethe Ansatz, pozwalają na obliczenie dokładnej funkcji falowej. Zadaniem i prawdziwym wyzwaniem jest wiec wydobycie z niej interesujących nas informacji. Kwantowe modele całkowalne są zasadniczo ograniczone do wymiarów (1+1) i wymagają precyzyjnego dostrojenia. Współczesne postępy w fizyce eksperymentalnej, zwłaszcza w dziedzinie zimnych gazów atomowych, umożliwiły ich realizacje w laboratorium. Niezbedne do tego okazały się techniki chłodzenia i wychwytywania oparów atomów, takich jak, ⁸⁷Rb, które zostały rozwiniete podczas badań nad kondensacja Bosego-Einsteina [1, 2]. Metody te pozwalaja uwięzić atomy w podłużnych pułapkach, czyniąc ich dynamikę, w dostatecznie niskich temperaturach, efektywnie jednowymiarową (przegląd możliwości eksperymentalnych realizacji modeli materii skondensowanej za pomocą ultra-zimnych gazów można znaleźć na przykład w [3-5]). Ponadto kontrola oddziaływań między cząstkami, np. za pomocą rezonansów Feshbacha czy manipulacja potencjałem pułapkowania, pozwoliła na eksperymentalna obserwacje gazu Lieb-Linigera cząstek bozonowych. Co ciekawe, całkowalność okazała się dość odporna na warunki eksperymentalne — potencjalnie obserwacja fizyki modeli całkowalnych mogła wymagać bardzo precyzyjnej kontroli parametrów układu. Okazało się, że mieści się to w zakresie możliwości eksperymentalnych, jak pokazano w pomiarach termodynamiki [6–8], korelacji [9], [B13, B14] lub dynamiki równowagowej [10–12].

Przełomowym eksperymentem dla obecnego zainteresowania fizyką modeli całkowalnych był eksperyment nazwany kwantową kołyską Newtona (quantum Newton's cradle) [13]. W tym eksperymencie dwie chmury zimnych atomów są uwalniane z dwóch końców harmonicznej pułapki i zderzają się. W oparciu o teorie kinetyczną, oczekujemy, że po kilku zderzeniach obie chmury ulegną termalizacji. Rzeczywiście, gdy chmury były trójwymiarowe, tak właśnie było. Jednak gdy chmury zostały ściśnięte w poprzecznych wymiarach, a tym samym ich dynamika stała się jednowymiarowa, układ był obserwowany przez dziesiątki oscylacji bez widocznej termalizacji. Efekt ten przypisano temu, że system znajdował się w pobliżu modelu całkowalnego. W takich modelach istnienie dużej liczby praw zachowania uniemożliwia kanoniczną termalizację. Zamiast tego termalizacja postępuje w kierunku stanu o maksymalnej entropii ograniczonego przez wartości oczekiwane wszystkich odpowiednich zachowanych ładunków [14–17].

Eksperyment kwantowej kołyski Newtona i bardziej ogólnie badania tzw. quantum quenches [18–20], czyli dynamiki układów izolowanych wytrąconych z równowagi przez nagła perturbacja lub zmiana parametrów hamiltonianu, spowodowały, że pojawił się następujący problem. Przypuszczalnie ewolucja czasowa takich układów w dużych czasach prowadzi do stanów stacjonarnych, które nie są standardowymi stanami równowagi termodynamicznej. Powstaje więc pytanie, jak można scharakteryzować takie stany?¹

Standardowe podejście w układach wielociałowych do scharakteryzowania natury danego systemu i stanu, w jakim się on znajduje, opiera się na funkcjach korelacji. Są one bezpośrednio, poprzez teorię liniowej odpowiedzi, powiązane z wynikami typowych eksperymentów. Badania dynamicznych funkcji korelacji w modelach całkowalnych mają długą historię i wiele osiągnięć, począwszy od prac nad modelami kwantowymi 1d Ising [21] i XY [22]. Standardowe podejście do problemu obejmuje widmową reprezentację funkcji korelacji. Dla funkcji dwupunktowej dwóch operatorów lokalnych $o_i(x)$ i w stanie $|\lambda\rangle$ piszemy

$$\langle \lambda | o_1(x,t) o_2(0) | \lambda \rangle = \sum_{|\mu\rangle \in \mathcal{H}} e^{it(E_{\mu} - E_{\lambda}) - ix(P_{\mu} - P_{\lambda})} \langle \lambda | o_1(0) | \mu \rangle \langle \mu | o_2(0) | \lambda \rangle, \tag{1}$$

gdzie suma rozciąga się na wszystkie stany własne modelu, E_{μ} i P_{μ} to energia i pęd stanu własnego $|\mu\rangle$, a $\langle\lambda|o_i(0)|\mu\rangle$ to form-faktory: elementy macierzowe pomiędzy dwoma stanami własnymi systemu. Całkowalność kwantowa modelu jest zasadniczo równoważna znajomości spektrum teorii [23]². Drugim wyzwaniem jest obliczenie form-faktorów interesujących nas operatorów. Ostatnim wyzwaniem jest wykonanie sumy.

Sytuacja jest stosunkowo najprostsza w przypadku korelatorów próżni w całkowalnych kwantowych teoriach pola (IQFT), gdzie próżniowe form-faktory ($|\lambda\rangle = |0\rangle$) można policzyć metodą bootstrap [26, 27], a suma widmowa szybko zbiega [28–31]. Znacznie trudniejsze do obliczenia są korelatory w stanach o skończonej gęstości. Pewien postęp jest możliwy w granicy małych gęstości, w których nadal można używać próżniowych form-faktorów [30, 32–35]. Podjęto również kilka prób uogólnienia podejścia IQFT poprzez zdefiniowanie form-faktorów w skończonej temperaturze (lub gęstości). Najpierw przez formułę LeClair-Mussardo [36], która okazała się niestety niekompletna [37, 38]. Inne podejścia próbujące zdefiniować form-faktory w skończonej temperaturze, zaproponowane na przykład w [39–42], okazały się ograniczone do teorii swobodnych. Po stronie IQFT problemem jest więc wyznaczenie form-faktorów między stanami o skończonej gęstości cząstek.

Sytuacja jest nieco inna w całkowalnych modelach wielu cząstek, takich jak model Lieb-Linigera lub całkowalne łańcuchy spinowe. Tam form-faktory w układzie o skończonych rozmiarach są często znane [43–51]. Pozwala to na numeryczne obliczenie funkcji korelacji (ponownie w skończonym systemie) [52] [B15] przy pomocy algorytmu algorytmu ABACUS [53]. W modelach tych możliwe jest również obliczenie asymptot funkcji korelacji w dużej odległości i/lub w długim czasie w granicy termodynamicznej [54, 55], [B17]. Doprowadziło to do wyprowadzenia uniwersalnych przewidywań cieczy Luttingera [54] z teorii mikroskopowej. W uzupełnieniu do tych metod istnieje również nowe podejście, które redefiniuje sumę widmową pod kątem nowych efektywnych form-faktorów, dla których sumowanie może być łatwiejsze [56]. Podejmowano również udane próby połączenia podejścia opartego na form-faktorach z różnymi rozwinięciami, takimi jak granica małej gęstości [57, 58] czy rachunek zaburzeń ze względu na oddziaływania [59]. W takich przypadkach suma widmowa i/lub form-faktory upraszczają się, umożliwiając obliczenie funkcji korelacji. Nie istnieje jednak uniwersalny sposób policzenia funkcji korelacji w stanie skończonej gęstości bezpośrednio w granicy termo-dynamicznej.

Biorąc pod uwagę powyższy stan wiedzy w zakresie obliczeń dynamicznych funkcji korelacji kwantowych układów całkowalnych oraz dyskusję na temat fizyki nierównowagowej, interesująca jest możliwość rozwoju technik pozwalających na obliczanie $\langle \lambda | o_1(x, t) o_2(0) | \lambda \rangle$ w *dowolnym* stanie $|\lambda \rangle$. Stan skończonej temperatury (w zespole mikrokanonicznym) lub zerowej temperatury byłyby wtedy szczególnymi przypadkami. W ramach

¹Zauważmy, że mimochodem przechodzimy przez jeszcze bardziej skomplikowany problem faktycznego przewidywania ewolucji w całym czasie, a nie tylko jej przeznaczenia.

²Prowadzone są aktywne badania nad znajdowaniem i formułowaniem nowych modeli całkowalnych kwantowo, patrz na przykład [24, 25]

tego podejścia próbujemy uporządkować sumę widmową w (1) w hierarchię ważności. To z kolei prowadzi do efektywnego obrazu, w którym stany $|\mu\rangle$ postrzegamy jako wzbudzenia względem stanu uśrednionego $|\lambda\rangle$, przy czym najważniejsze są proste stany wzbudzone. Wiodącą ideą jest zatem znalezienie skutecznej teorii dla tych wzbudzeń, a następnie znalezienie odpowiednich form-faktorów. Ponieważ odbywa się to w termodynamicznie dużym układzie, dążymy do *termodynamicznej sumy widmowej, termodynamicznych form-faktorów* i następującej reprezentacji funkcji dwupunktowej (1),

$$\langle \rho_{\mathbf{p}} | o_1(x,t) o_2(0) | \rho_{\mathbf{p}} \rangle = \sum_{m=1}^{\infty} \frac{1}{(m!)^2} \int d\mathbf{p}^m d\mathbf{h}^m \, e^{it\varepsilon(\mathbf{p},\mathbf{h})) - ixk(\mathbf{p},\mathbf{h})} \langle \rho_{\mathbf{p}} | o_1(0) | \rho_{\mathbf{p}}; \mathbf{p}, \mathbf{h} \rangle \langle \rho_{\mathbf{p}}; \mathbf{p}, \mathbf{h} | o_2(0) | \rho_{\mathbf{p}} \rangle,$$
(2)

gdzie $k(\mathbf{p}, \mathbf{h})$ i $\varepsilon(\mathbf{p}, \mathbf{h})$ to odpowiednio pęd i energia stanu wzbudzonego zawierającego zbiór cząstek $\mathbf{p} = p_{jj=1}^{m}$ i dziur $\mathbf{h} = \{h_j\}_{j=1}^{m}$ utworzonych ze stanu $|\rho_{\mathbf{p}}\rangle$. Celem mojej pracy, a także opisywanego tutaj osiągnięcia naukowego, było sformułowanie takiego podejścia do funkcji korelacji. W dalszej części opiszę szczegółowo odpowiednie osiągnięcia. Prezentacja jest zorganizowana wokół następujących tematów

- (i) Funkcje korelacji gęstość-gęstość w modelu Lieb-Linigera [A1-A3], [A6].
- (ii) Korelacje zachowanych gęstości i prądów w modelu Lieb-Linigera, [A6].
- (iii) Jednociałowa funkcja korelacji w modelu Lieb-Linigera [A7].
- (iv) Termodynamiczny bootstrap i minimalne form-faktory w modelu Sinh-Gordona [A4, A5].
- (v) Reżim hydrodynamiczny z termodynamicznych form-faktorów [A5, A6].

Zakończę tę część wstępną dwoma komentarzami.

Pierwsza dotyczy wspomnianych we wstępie układów złożonych. Można mieć nadzieję, że w przypadku termodynamicznych form-faktorów możliwe jest "rozłożenie stanu na czynniki",

$$\langle \rho_{\mathbf{p}}|o(0)|\rho_{\mathbf{p}};\mathbf{p},\mathbf{h}\rangle = \prod_{j=1}^{m} f_{\rho_{\mathbf{p}}}(p_j)f_{\rho_{\mathbf{p}}}(h_j) \times \langle 0|o(0)|\mathbf{p},\mathbf{h}\rangle,\tag{3}$$

gdzie form-faktor jest form-faktorem próżniowym, a stan $|\rho_p\rangle$ wchodzi tylko przez prefaktor, a ponadto jest rozkładany na czynniki ze względu na wszystkie wzbudzenia. Taka struktura form-faktorów została założona w hipotezie LeClair-Mussardo i okazała się zbyt prosta. Oznacza to, że termodynamiczne form-faktory różnią się jakościowo od próżniowych i uwzględniają korelacje między wzbudzeniami a stanem układu i jako takie opisują zjawisko emergentne.

Równolegle do rozwoju termodynamicznych form-faktorów byliśmy świadkami narodzin uogólnionej hydrodynamiki (Generalized Hydrodynamics, GHD) [60–62]. Jest to uniwersalna teoria opisująca dynamikę niejednorodnych układów 1 + 1 wymiarowych w skalach hydrodynamicznych. Między tymi dwoma podejściami zachodzi owocna interakcja. W GHD możliwe jest zajęcie się funkcjami korelacji dynamicznej w jednorodnych stanach stacjonarnych [63, 64], co pozwoliło na porównanie z przewidywaniami termodynamicznych form-faktorów [A3]. Ponadto znajomość termodynamicznych form-faktorów została również wykorzystana do wyprowadzenia równań ruchu GHD w skali dyfuzyjnej [65–67]. Szczegółowy opis związków pomiędzy GHD i termodynamicznymi form-faktorami dyskutujemy w naszej niedawnej pracy przeglądowej [B1].

Kwantowe modele całkowalne i dynamiczne funkcje korelacji

Moja praca skupia się na interesującej klasie układów kwantowych znanych jako kwantowe modele całkowalne. Charakteryzują się one dużą liczbą lokalnych praw zachowania i związanych z nimi zachowanych ładunków \hat{Q}_j , takich, że $[\hat{Q}_j, H] = 0$ gdzie H jest hamiltonianem modelu. Kanonicznymi przykładami kwantowych modeli całkowalnych są całkowalne łańcuchy spinowe, takie jak łańcuch XXZ i jego warianty, lub nierelatywistyczny wielociałowy model oddziałujących cząstek bozonowych, model Lieb-Linigera [23]. Istnieją również całkowalne kwantowe teorie pola, na przykład modele Sine-Gordona i Sinh-Gordona [31].

Prawa zachowania w tych teoriach sprawiają, że rozpraszanie jest elastyczne i możliwe do rozłożenia na czynniki, tak że każdy proces rozpraszania można zapisać za pomocą macierzy rozpraszania dwuciałowego. Co więcej, co jest niezwykłe w przypadku relatywistycznych teorii pola, nie ma procesów anihilacji ani kreacji: całkowita liczba cząstek jest zachowana [68]. W efekcie całkowalne teorie pola mają wspólną strukturę z wielociałową mechaniką kwantową. Co najważniejsze, w obu sytuacjach możemy zapisać dokładną funkcję falową wielu ciał. Stan kwantowy takiego modelu, z N cząstkami, jest następnie opisany przez zbiór quasipędów $\lambda = {\lambda_j}_{j=1}^N$.³ Quasi-pędy parametryzują pęd i energię quasi-cząstki za pomocą funkcji zależnych od modelu $p_0(\lambda)$ i $e_0(\lambda)$. Całkowita energia i pęd stanu kwantowego $|\lambda\rangle$ są wyrażone przez

$$\hat{H}|\boldsymbol{\lambda}\rangle = \left(\sum_{j=1}^{N} e_0(\lambda_j)\right)|\boldsymbol{\lambda}\rangle, \qquad \hat{P}|\boldsymbol{\lambda}\rangle = \left(\sum_{j=1}^{N} p_0(\lambda_j)\right)|\boldsymbol{\lambda}\rangle.$$
(4)

Standardowa analiza prowadzi następnie przez nałożenie periodycznych warunków brzegowych, w wyniku czego quasi-pędy zostają skwantowane. Dla systemu o długości L

$$e^{iLp_0(\lambda_j)} \prod_{\substack{k=1\\k\neq j}}^N S(\lambda_j - \lambda_k) = 1, \qquad j = 1, \dots, N,$$
(5)

gdzie $S(\lambda, \lambda') = S(\lambda - \lambda')$ to elastyczna, dwu-ciałowa macierz rozproszenia. W teoriach z różnymi rodzajami cząstek jest to rzeczywista macierz i rozwiązuje równanie Yanga-Baxtera [23]. Równania (5) są nazywane równaniami Bethego, stan $|\lambda\rangle$, gdzie λ rozwiązuje równania Bethe, będziemy nazywać stanem Bethego.

Dla naszych celów wygodnie jest zapisać równania Bethego w formie logarytmicznej. Prowadzi to do koncepcji liczb kwantowych $\Im = \{I_j\}_{j=1}^N$. Oznaczając przesunięcie fazowe przez $\phi(\lambda) = -i \log S(\lambda)$ logarytm (5) wynosi

$$p_0(\lambda_j) = \frac{2\pi I_j}{L} + \sum_{\substack{k=1\\k\neq j}}^{N} \phi(\lambda_j - \lambda_k), \qquad j = 1, \dots, N.$$
(6)

Przestrzeń Hilberta \mathcal{H}_N , o ustalonej liczbie cząstek N, jest wtedy policzalna i obejmuje różne wybory zbiorów liczb kwantowych. Rozważane układy wykazują *dynamiczną zasadę Pauliego*, stan własny jest równy zero, jeśli dowolne dwie liczby kwantowe są identyczne. Całkowita przestrzeń Hilberta to $\mathcal{H} = \bigotimes_{N=0}^{\infty} \mathcal{H}_N$, jednak ponieważ całkowita liczba cząstek jest stałą ruchu, dynamika często może być ograniczony do podprzestrzeni o stałej liczbie cząstek.

Zajmiemy się głównie układami termodynamicznie dużymi. W tym celu rozważamy $L \to \infty$ tak, że gęstość (w 1d) D = N/L jest stała. W tym przypadku quasi-pędy odpowiednich stanów fizycznych można scharakteryzować ciągłą funkcją rozkładu $\rho_{\rm p}(\lambda)$, którą formalnie można zdefiniować jako

$$\rho_{\rm p}(\lambda) = \lim_{\rm th} \frac{1}{L} \sum_{j=1}^{N} \delta(\lambda - \lambda_j).$$
(7)

Energia i pęd (4) są więc prostymi funkcjonałami $\rho_p(\lambda)$,

$$E[\rho_{\rm p}] = L \int d\lambda \, e_o(\lambda) \rho_{\rm p}(\lambda), \qquad P[\rho_{\rm p}] = L \int d\lambda \, p_o(\lambda) \rho_{\rm p}(\lambda). \tag{8}$$

³Zakładamy, że rozważane teorie posiadają jeden rodzaj cząstek. Jeśli tak nie jest, powinien istnieć dodatkowy indeks rozróżniający typy cząstek.

Rysunek 1: 3 sposoby opisu stanu układu: za pomocą mikroskopowych liczb kwantowych \Im , za pomocą mikroskopowych quasi-pędów λ lub makroskopowo poprzez gęstość quasi-pędów ρ_p . Przedstawiamy również całkowitą gęstość ρ_{tot} , która dla oddziaływań odpychających maleje w obszarach wypełnionych cząstkami.

Równania Bethego (6), w granicy termodynamicznej, zamieniają się w relację całkową między ρ_{tot} , dostępną gęstością cząstek, a ρ_p ,

$$\rho_{\rm tot}(\lambda) = \frac{p_0'(\lambda)}{2\pi} - \int d\lambda' T(\lambda - \lambda') \ rho_{\rm p}(\lambda), \tag{9}$$

gdzie $T(\lambda) = 1/(2\pi)d\phi(\lambda)/d\lambda$ jest różniczkowym przesunięciem fazowym. W przeciwieństwie do teorii swobodnych, dostępna gęstość cząstek ρ_{tot} jest dynamiczna i zależy od obecności innych cząstek. Zwyczajowo bierze się również pod uwagę gęstość dziur, czyli $\rho_{h}(\lambda) = \rho_{tot}(\lambda) - \rho_{p}(\lambda)$. Stosunek $n(\lambda) \equiv \rho_{p}(\lambda)/\rho_{tot}(\lambda)$ definiuje bezwymiarową funkcję obsadzeń w taki sposób, że $0 \leq n(\lambda) \leq 1$. Zależności między liczbami kwantowymi, quasi-pędami i ich rozkładem pokazano na rys. 1.

Danemu stanowi mikroskopowemu $|\lambda\rangle$ możemy przypisać, w granicy termodynamicznej, rozkład makroskopowy ρ_p . Zazwyczaj istnieje wiele mikroskopowych stanów dających ten sam stan makroskopowy co prowadzi do koncepcji entropii i związanej z nią liczby równoważnych stanów mikroskopowych. Entropia wynosi [69]

$$S[\rho_{\rm p}] = -L \int d\lambda \,\rho_{\rm t}(\lambda) \left(n(\lambda) \ln n(\lambda) + (1 - n(\lambda)) \ln(1 - n(\lambda)) \right). \tag{10}$$

Układ w równowadze termicznej (wielkiego zespołu kanonicznego) można opisać jako minimalizujący energię swobodną, $F = E - TS - \mu N$, gdzie wprowadziliśmy potencjał chemiczny μ . W rzeczywistości, biorąc pod uwagę obecność dużej liczby praw zachowania, możemy również rozważyć uogólnioną równowagę, w której nie tylko energia i liczba cząstek są ustalone, ale także wyższe zachowane ładunki, czyli tak zwany uogólniony zespół Gibbsa [14]. Rozważania te prowadzą do uogólnionej energii swobodnej

$$F = \sum_{j} \beta_{j} Q_{j} - TS, \tag{11}$$

gdzie β_j to uogólnione potencjały chemiczne. Stan (uogólnionej) równowagi termicznej wynika zatem z ekstremum *F*. Jest to odpowiednio sformułowane przez uogólnienie rozkładu Fermi-Diraca. Mianowicie dla funkcji obsadzeń $n(\lambda)$ piszemy

$$n(\lambda) = \frac{1}{1 + e^{\epsilon(\lambda)}},\tag{12}$$

Rysunek 2: Przedstawienie wzbudzenia dwóch par cząstka-dziura określonego przez p_i i h_i w stanie termodynamicznym określonym przez gęstość ρ_p .

gdzie uogólniona termodynamiczna pseudoenergia Bethe Ansatza (gTBA) $\epsilon(\lambda)$ jest rozwiązaniem następującego nieliniowego równania całkowego [70, 71]

$$\epsilon(\lambda) = \sum_{j} \beta_{j} h_{j}(\lambda) - \int d\lambda' T(\lambda - \lambda') \log\left(1 + e^{-\epsilon(\lambda')}\right).$$
(13)

Rozkład cząstek ρ_p wynika wtedy z równania (9). Tutaj $h_j(\lambda)$ to jednocząstkowe wartości własne zachowanych ładunków, a β_j to odpowiadające im potencjały chemiczne. Na przykład w teorii nierelatywistycznej, takiej jak model Lieb-Linigera, są to $h_0(\lambda) = 1$, $h_1(\lambda) = \lambda$ i $h_2(\lambda) = \lambda^2$ odpowiednio dla operatorów liczby cząstek, pędu i energii. Standardowa kanoniczna równowaga termodynamiczna odpowiada $\beta_0 = -\mu/T$, $\beta_2 = 1/T$ i wszystkim innym potencjałom chemicznym równym zero.

Moim celem było opracowanie technik pozwalających na obliczanie dynamicznej funkcji korelacji w stanach charakteryzujących się *dowolną* gładką funkcją obsadzeń ρ_p .⁴ Funkcje korelacji zależą od struktury wzbudzeń wokół stanu, w jakim znajduje się układ. W modelach całkowalnych istnieje naturalny sposób charakteryzowania takich wzbudzeń.

Oddziałujący charakter teorii wpływa na kinematykę wzbudzeń. Najprostszy typ wzbudzenia — modyfikacji rozważanego stanu — przybiera formę wzbudzeń cząstka-dziura, patrz rys. 2. Energia i pęd wzbudzenia cząstka-dziura mają dwa źródła. Pierwsza to sama energia i pęd pary cząstka-dziura, druga to reakcja reszty układu na pojawienie się zaburzenia. Ten drugi efekt można przypisać sprzężonej naturze równań Bethego (6), w których modyfikacja pojedynczej liczby kwantowej zmienia wartości wszystkich quasi-pędów. W granicy termodynamicznej ta reakcja, zwana przepływem wstecznym (back-flow), jest addytywna względem wzbudzeń i dlatego możemy zdefiniować efektywny pęd $k(\lambda)$ i energię $\varepsilon(\lambda)$ tak, że pęd i energia stanu wzbudzonego cząstka-dziura podana przez parę (p, h) wynosi odpowiednio k(p) - k(h) i $\varepsilon(p) - \varepsilon(h)$ oraz

$$\varepsilon(\lambda) = e_0(\lambda) + \int d\alpha F(\lambda, \alpha) e'_0(\alpha) n(\alpha), \qquad (14)$$

$$k(\lambda) = p_0(\lambda) + \int d\alpha F(\lambda, \alpha) p'_0(\alpha) n(\alpha).$$
(15)

Funkcja przepływu wstecznego $F(\lambda, \mu)$ jest rozwiązaniem liniowego równania całkowego [23]

$$F(\lambda,\mu) = \frac{\phi(\lambda-\mu)}{2\pi} + \int d\alpha T(\lambda,\alpha)n(\alpha)F(\alpha,\mu),$$
(16)

gdzie $T(\lambda, \alpha)$ to zdefiniowaną powyżej faza rozpraszania różniczkowego. Dla przyszłych rozważań, definiujemy jeszcze efektywną prędkość

$$v^{\text{eff}}(\lambda) = \frac{\varepsilon'(\lambda)}{k'(\lambda)}.$$
(17)

Rozważmy teraz system w dowolnym stanie i dwupunktową funkcję korelacji dowolnych dwóch operatorów,

 $\langle \boldsymbol{\mu} | o_1(x,t) o_2(0,0) | \boldsymbol{\mu} \rangle$, (lub w granicy termodynamicznej $\langle \rho_p | o_1(x,t) o_2(0,0) | \rho_p \rangle$). (18)

⁴Przyjmujemy, że $\rho_{\rm p}$ dostarcza wystarczającą ilość informacji o stanie makroskopowym do obliczenia funkcji korelacji.

Dobre zrozumienie przestrzeni Hilberta w modelach całkowalnych jest korzystne podczas badania funkcji korelacji. Mianowicie możemy zapostulować zupełność bazy stanów co prowadzi do rozwinięcia identyczności

$$\mathbf{1} = \sum_{N=0}^{\infty} \sum_{|\boldsymbol{\lambda}\rangle \in \mathcal{H}_N} |\boldsymbol{\lambda}\rangle \langle \boldsymbol{\lambda}|.$$
(19)

Rozważając więc dwupunktową funkcję operatorów zachowujących liczbę cząstek dostajemy

$$\langle \boldsymbol{\mu} | o_1(x,t) o_2(0,0) | \boldsymbol{\mu} \rangle = \sum_{|\boldsymbol{\lambda}\rangle \in \mathcal{H}_N} e^{it(E_{\boldsymbol{\mu}} - E_{\boldsymbol{\lambda}}) - ix(P_{\boldsymbol{\mu}} - P_{\boldsymbol{\lambda}})} \langle \boldsymbol{\mu} | o_1(0) | \boldsymbol{\lambda} \rangle \langle \boldsymbol{\lambda} | o_2(0) | \boldsymbol{\mu} \rangle.$$
(20)

Wyrażenia o podobnej formie obowiązują również dla funkcji korelacji zawierających więcej operatorów. Rozwinięcie jedności jest wtedy umieszczone pomiędzy każdą parą operatorów. W reprezentacji spektralnej obliczenie funkcji korelacji opiera się na znajomości *form-faktorów*, czyli elementów macierzowych $\langle \mu | o(0) | \lambda \rangle$.

W kwantowych modelach całkowalnych istnieją dwa ogólne podejścia do obliczania form-faktorów w skończonych układach. Jednym z nich jest Algebraic Bethe Ansatz [23]. Drugi to próżniowy bootstrap [27]. Podczas gdy metody te są dość ogólne, znalezienie form-faktorów określonego operatora w określonym modelu jest dość żmudne. Dla przykładu, (nieunormowany) form-faktor operatora gęstości w modelu Lieb-Linigera [46] wynosi

$$\langle \boldsymbol{\mu} | \hat{\rho}(0) | \boldsymbol{\lambda} \rangle = \left(\sum_{j=1}^{N} (\mu_j - \lambda_j) \right) \prod_{j=1}^{N} \left(V_j^+ - V_j^- \right) \prod_{j,k}^{N} \left(\frac{\lambda_j - \lambda_k + ic}{\mu_j - \lambda_k} \right) \frac{\det_N \left(\delta_{jk} + U_{jk} \right)}{V_p^+ - V_p^-}, \tag{21}$$

gdzie zarówno $|\lambda\rangle$, jak i $|\mu\rangle$ są stanami Bethe. Różne czynniki występujące w (21) to:

$$V_j^{\pm} = \prod_{k=1}^N \frac{\mu_k - \lambda_j \pm ic}{\lambda_k - \lambda_j \pm ic},\tag{22}$$

$$U_{jk} = 2\pi i \frac{\mu_j - \lambda_j}{V_j^+ - V_j^-} \prod_{m \neq j}^N \left(\frac{\mu_m - \lambda_j}{\lambda_m - \lambda_j} \right) \left(T \left(\lambda_j - \lambda_k \right) - T \left(\lambda_p - \lambda_k \right) \right), \tag{23}$$

a λ_p jest dowolną liczbą, niekoniecznie ze zbioru λ . Unormowany form-faktor wymaga podzielenia tego wyrażenia przez normy stanów Bethego [72, 73]

$$\langle \boldsymbol{\lambda} | \boldsymbol{\lambda} \rangle = (Lc)^N \prod_{j \neq k} \frac{\lambda_j - \lambda_k + ic}{\lambda_j - \lambda_k} \det_N \mathcal{G}_{jk}, \quad \mathcal{G}_{jk} = \delta_{jk} \left[1 + \frac{2\pi}{L} \sum_{m=1}^N T(\lambda_j - \lambda_k) \right] - \frac{2\pi}{L} T(\lambda_j - \lambda_m).$$
(24)

Poniżej założymy, że stany Bethe i form-faktory są unormowane.

Wyposażeni w wyrażenie dla form-faktora i rozwinięcie przestrzeni Hilberta za pomocą liczb kwantowyych, możemy obliczyć funkcję korelacji. W praktyce, biorąc pod uwagę, że form-faktory są skomplikowanymi funkcjami quasi-pędów, które z kolei wynikają z liczb kwantowych za pomocą nieliniowo sprzężonych równań, jest to bardzo trudny problem. Na koniec pozostaje problem zsumowania wszystkich wkładów

Moja praca próbuje przezwyciężyć niektóre z tych trudności poprzez znalezienie termodynamicznych odpowiedników dla wyrażenia (20). Oznacza to, że funkcja korelacji w nieskończonym układzie powinna być wyrażalna za pomocą *termodynamicznego rozwinięcia jedności*,

$$\mathbf{1} = \sum_{m=1}^{\infty} \frac{1}{(m!)^2} \int \mathrm{d}\mathbf{p}^m \mathrm{d}\mathbf{h}^m |\rho_{\mathrm{p}}; \mathbf{p}_m, \mathbf{h}_m \rangle \langle \rho_{\mathrm{p}}; \mathbf{p}_m, \mathbf{h}_m |, \qquad (25)$$

i *termodynamicznych form-faktorów* $\langle \rho_{\rm p} | o(0) | \rho_{\rm p}; {\bf p}, {\bf h} \rangle$ tak, że

$$\langle \rho_{\mathbf{p}}|o(x,t)o(0)|\rho_{\mathbf{p}}\rangle = \sum_{m=1}^{\infty} \frac{1}{(m!)^2} \int d\mathbf{p}^m d\mathbf{h}^m e^{it\varepsilon(\mathbf{p},\mathbf{h})) - ixk(\mathbf{p},\mathbf{h})} |\langle \rho_{\mathbf{p}}|o(0)|\rho_{\mathbf{p}};\mathbf{p}_m,\mathbf{h}_m\rangle|^2.$$
(26)

Aby to osiągnąć, musimy zrozumieć przestrzeń odpowiednich wzbudzeń, aby móc zapisać odpowiednie rozwinięcie jedności (forma przedstawiona tutaj jest właściwa dla operatorów zachowujących liczbę cząstek) i znać, dla takich wzbudzeń, termodynamiczne form-faktory. W dalszej części tego omówienia pokażę, jak te idee materializowały się w kontekście korelacji gęstość-gęstość w modelu Lieb-Linigera i jej uogólnienia na korelacje gęstości wyższych ładunków (i prądów); omówię przestrzeń odpowiednich wzbudzeń termodynamicznych dla jednociałowych funkcji korelacji modelu Lieb-Linigera; na koniec przedstawię metodę bootstrapu termodynamicznego w całkowalnych kwantowych teoriach pola.

Zanim do tego przejdziemy, jeszcze kilka ogólnych uwag na temat równania (26). Po pierwsze, pisząc to wyrażenie założyliśmy, że w dużym układzie lokalne operatory łączą tylko stany o tej samej gęstości $\rho_{\rm p}$. Mianowicie form-faktor $\langle \rho_{\rm p} | o(0) | \rho'_{\rm p} \rangle = 0$, chyba że oba stany są termodynamicznie nierozróżnialne. Nieze-rowe form-faktory są wtedy tylko między stanami, które różnią się policzalną liczbą modyfikacji. Ponieważ rozważane przez nas operatory zachowują liczbę cząstek, modyfikacje te można uporządkować według par cząstka-dziura.

Po drugie, form-faktory, zarówno w układach skończonych i nieskończonych mają tak zwane kinematyczne osobliwości. W układach skończonych pojawiają się one jako proste bieguny, gdy jeden z quasi-pędów ze stanu bra równa się jednemu z quasi-pędów stanu ket. W nieskończonej objętości bieguny te występują zawsze, gdy weźmiemy pod uwagę form-faktory z 2 lub większą liczbą par cząstka-dziura, a jedna z par cząstka-dziura znika, $p_i \rightarrow h_j$. Podczas gdy w skończonej objętości te osobliwości są naturalnie uregulowane, w nieskończonej objętości wymagają one dodatkowej regularyzacji. Kinematyczne osobliwości pojawiają się również w próżniowych form-faktorach, a jednym ze sposobów obejścia tego problemu w IQFT jest regularyzacja w skończonej objętości [28–30], innym jest regularyzacja za pomocą "point-splitting" [30]. Jak pokazuję w [A6], w oparciu o [A1, A4] i [66], właściwa regularyzacja dla termodynamicznych form-faktorów jest dokonywana przez całki Hadamarda. Skomentuję ten punkt później.

Wreszcie, miara całkowania ukrywa współczynniki gęstości pochodzące z przepisywania sum na całki. Mianowicie

$$d\mathbf{p}_m d\mathbf{h}_m = \prod_{j=1}^m \left(\rho_{\mathbf{p}}(h_j) \rho_{\mathbf{h}}(p_j) dp_j dh_j \right).$$
(27)

Należy zauważyć, że możliwość utworzenia cząstki zależy od gęstości dziur, a utworzenie dziury jest regulowane przez gęstość cząstek.

(i) Korelacje gęstości w modelu Lieb-Linigera

Model Lieb-Linigera to prosty model opisujący nierelatywistyczne cząstki, ograniczone do jednego wymiaru przestrzennego i oddziałujące lokalnie. Hamiltonian jest dany przez [74]

$$H = \frac{1}{2m} \sum_{j=1}^{N} \hat{p}_j^2 + 2c \sum_{j>k} \delta(x_j - x_k),$$
(28)

gdzie $\hat{p}_j = -i\hbar\partial_{x_j}$ jest operatorem pędu *j*-tej cząstki, a x_j jest jej pozycją. Parametr *c* opisuję siłę ultralokalnych oddziaływań. W granicy termodynamicznej Hamiltonian jest opisywany jednym bezwymiarowym parametrem $\gamma = 2mc/(\hbar^2 D)$ gdzie *D* jest 1-d gęstością. W praktyce często wybieramy pracę w jednostkach, w których $\hbar = 1$ i 2m = 1 i ustalamy gęstość na D = 1 tak, że *c* staje się odpowiednim parametrem. W tym omówieniu skupimy się wyłącznie na c > 0, co odpowiada oddziaływaniom odpychającym. Interesujące są również układy z oddziaływaniami przyciągającymi, zwłaszcza ze względu na potencjał do zrealizowania gazu super Tonks-Girardeau: quasi-stabilnego gazu w dużych, ujemnych *c* [11, 75] i [B16].

Model Lieb-Linigera można eksperymentalnie zrealizować poprzez uwięzienie chmury zimnych gazów atomowych w wydłużonym potencjale podobnym do cygara. To sprawia, że system 3d staje się systemem

quasi-1d. Siła oddziaływań w otrzymanym układzie zależy zatem od długości rozpraszania 3d i od szczegółów potencjału pułapkowania, jak pokazano w [76]. Eksperymentalna kontrola nad siła oddziaływań pozwoliła na zrealizowanie modelu Lieb-Linigera w zakresie *c* od słabo oddziałującego do silnie oddziałującego [6, 7]. Dwa rodzaje pomiarów istotne dla nas to rozkład cząstek [6] i pomiary spektroskopii Bragga dynamicznego czynnika struktury [77, 78], [B13, B14]. Są one związane z dwiema najprostszymi funkcjami korelacji, a mianowicie jedno i dwuciałowymi funkcjami. W tej części autoreferatu skupimy się na dynamicznym czynniku struktury (DSF), czyli transformaty Fouriera funkcji korelacji gęstość-gęstość $\langle \hat{\rho}(x,t)\hat{\rho}(0,0) \rangle$, gdzie

$$\hat{\rho}(x) = \frac{1}{L} \sum_{j=1}^{N} \delta(x - x_j),$$
(29)

jest operatorem gęstości. Zadaniem jest obliczenie funkcji korelacji gęstość-gęstość w granicy termodynamicznej,

$$S(x,t) = \lim_{\text{th}} \langle \boldsymbol{\lambda} | \hat{\rho}(x,t) \hat{\rho}(0,0) | \boldsymbol{\lambda} \rangle, \qquad \boldsymbol{\lambda} \to \rho_{\rm p}(\boldsymbol{\lambda}).$$
(30)

Jak wyjaśniono we wstępie, prosty sposób, polegający na policzeniu prawej strony w układzie skończonym, a następnie przejściu do granicy termodynamicznej, jest generalnie niewykonalny. Zamiast tego, zastosowane tutaj podejście opiera się na przyjęciu termodynamicznej granicy sumy widmowej. W tym procesie suma widmowa przekształca się w całkę widmową, a form-faktory skończonego układu stają się *termodynamicznymi form-faktorami*. Heurystycznie naszym celem jest znalezienie spektralnej reprezentacji funkcji korelacji w systemie nieskończonym i przy skończonej gęstości cząstek,

$$S(k,\omega) = \sum_{m=0}^{\infty} \frac{(2\pi)^2}{(m!)^2} \int d\mathbf{p}_m d\mathbf{h}_m \left| \langle \rho_p | \hat{\rho}(0) | \rho_p; \mathbf{p}, \mathbf{h} \rangle \right|^2 \delta(\omega - \varepsilon(\mathbf{p}, \mathbf{h})) \delta(k - k(\mathbf{p}, \mathbf{h})), \tag{31}$$

za pomocą, jeszcze niezdefiniowanych, termodynamicznych form-faktorów $\langle \rho_{\rm p} | \hat{\rho}(0) | \rho_{\rm p}; \mathbf{p}, \mathbf{h} \rangle$.

Głównym celem [A7], szczegółowo omówionym w [A5], było znalezienie odpowiedniego wyrażenia dla $\langle \rho_p | \hat{\rho}(0) | \rho_p; \mathbf{p}, \mathbf{h} \rangle$. Od czasu oryginalnej pracy N. Slavnova [46] wiadomo było, że w dużym układzie form-faktor można podzielić na dwie części

$$\langle \boldsymbol{\lambda} | \hat{\rho}(0) | \boldsymbol{\mu} \rangle = C \left(\rho_p, \mathbf{p}, \mathbf{h} \right) \times D \left(\boldsymbol{\lambda}, \boldsymbol{\mu} \right).$$
(32)

O ile 'ciągła' część $C(\rho_p, \mathbf{p}, \mathbf{h})$ ma pożądaną strukturę, mianowicie zależy od dwóch stanów tylko poprzez gęstość ρ_p i wzbudzenia cząstkowe i dziurowe, o tyle część 'dyskretna' $D(\boldsymbol{\lambda}, \boldsymbol{\mu})$ zależy od mikroskopijnych szczegółów obu stanów. Oznacza to, że nie ma bezpośredniego sposobu na określenie granicy termodynamicznej prawej strony.

Aby obejść ten problem, w [A7] założyliśmy, że rozsądnym przybliżeniem jest wybranie określonej mikroskopowej realizacji stanów $|\lambda\rangle$ i $|\mu\rangle$. Stan $|\lambda\rangle$ jest po prostu jedną z możliwych realizacji $|\rho_{\rm p}\rangle$ w skończonym układzie. Stan $|\mu\rangle$ jest następnie ustalany jako stan wzbudzony cząstka-dziura względem dokładnie $|\rho_{\rm p}\rangle$, gdzie cząstki i dziury są zdefiniowane przez p i h . W języku liczb kwantowych oznacza to, że oba stany $|\lambda\rangle$ i $|\mu\rangle$ mają te same liczby kwantowe, oprócz kilku, które odpowiadają wzbudzeniom cząstka-dziura. Zauważmy, że jest to rzeczywiście bardzo konkretny wybór, ponieważ w zasadzie $|\mu\rangle$ można uznać za stan wzbudzony cząstka-dziura powyżej *dowolnej* mikroskopowej realizacji $\rho_{\rm p}$, niekoniecznie tej samej co $|\lambda\rangle$. Dokładniej skomentuję ten punkt później w czasie dyskusji nad jedno-ciałową funkcją korelacji.

Wybór ten jest wyraźnie zależny od operatora, jednak możliwy dla klasy operatorów zachowujących liczbę cząstek, takich jak operator gęstości cząstek. W tej sytuacji, mogliśmy zdefiniować termodynamiczny form-faktor dla dowolnego gładkiego rozkładu $\rho_{\rm p}$, przez

$$\langle \rho_{\rm p} | \hat{\rho}(0) | \rho_{\rm p}; \mathbf{p}, \mathbf{h} \rangle = \lim_{\rm th} \left(L^m C\left(\rho_p, \mathbf{p}, \mathbf{h}\right) \times D\left(\boldsymbol{\lambda}, \boldsymbol{\mu}\right) \right).$$
(33)

Ostateczny wzór znaleziony w [A7] dla termodynamicznego form-faktora wynosi

$$|\langle \rho_{\mathbf{p}} | \hat{\rho}(0) | \rho_{\mathbf{p}}; \mathbf{p}, \mathbf{h} \rangle| = \mathcal{A}(\rho_{\mathbf{p}}, \mathbf{p}, \mathbf{h}) \mathcal{D}(\rho_{\mathbf{p}}, \mathbf{p}, \mathbf{h}) \exp\left(\mathcal{B}(\rho_{rmp}, \mathbf{p}, \mathbf{h})\right),$$
(34)

którego składnikami są5

$$\mathcal{A}(\rho_{\rm p}, \mathbf{p}, \mathbf{h}) = \prod_{k=1}^{m} \left[\frac{F(h_k)}{(\rho_{\rm tot}(p_k)\rho_{\rm tot}(h_k))^{1/2}} \frac{\pi \tilde{F}(p_k)}{\sin \pi \tilde{F}(p_k)} \frac{\sin \pi \tilde{F}(h_k)}{\pi \tilde{F}(h_k)} \right] \\ \times \prod_{i,j=1}^{m} \left[\frac{(p_i - h_j + ic)^2}{(h_{i,j} + ic)(p_{i,j} + ic)} \right]^{1/2} \frac{\prod_{i(35)$$

$$\mathcal{B}(\rho_{\rm p}, \mathbf{p}, \mathbf{h}) = -\frac{1}{4} \int_{-\infty}^{+\infty} \mathrm{d}\lambda \mathrm{d}\lambda' \left(\frac{\tilde{F}(\lambda) - \tilde{F}(\lambda')}{\lambda - \lambda'}\right)^2 - \frac{1}{2} \int_{-\infty}^{+\infty} \mathrm{d}\lambda \mathrm{d}\lambda' \left(\frac{\tilde{F}(\lambda)\tilde{F}(\lambda')}{(\lambda - \lambda' + ic)^2}\right) \\ + \sum_{k=1}^m \mathrm{P} \int_{-\infty}^{+\infty} \mathrm{d}\lambda \frac{\tilde{F}(\lambda)(h_k - p_k)}{(\lambda - h_k)(\lambda - p_k)} + \int_{-\infty}^{+\infty} \mathrm{d}\lambda \frac{\tilde{F}(\lambda)(p_k - h_k)}{(\lambda - h_k + ic)(\lambda - p_k + ic)} \\ + \frac{1}{2} \delta S[\vartheta; \mathbf{p}, \mathbf{h}] + \frac{1}{2} \int \mathrm{d}\lambda \, n(\lambda) F'(\lambda) \pi F(\lambda) \operatorname{ctg}(\pi F(\lambda)),$$
(36)

$$\mathcal{D}(\rho_{\rm p}, \mathbf{p}, \mathbf{h}) = \frac{c}{2} \det_{i,j=1}^{m} \left(\delta_{ij} + W_{ij} \right) \frac{\operatorname{Det}(\mathbf{1} - \hat{A})}{\operatorname{Det}(\mathbf{1} - \hat{K}_{n})}.$$
(37)

Wyrażenia te korzystają z notacji, którą teraz wyjaśnię. Po pierwsze, $\tilde{F}(\lambda)$ to skrót od $F(\lambda)n(\lambda)$. Po drugie, symbol P w wyrażeniu na $\mathcal{B}(n, \mathbf{p}, \mathbf{h})$ oznacza wartość główną całki (Cauchy principal value). Wreszcie część $\mathcal{D}(n, \mathbf{p}, \mathbf{h})$ zawiera wyznaczniki następującej natury. Pierwszy wyznacznik jest wyznacznikiem z kwadratowej macierzy o rozmiarze równym liczbie par cząstka-dziura. Elementy $W(h_i, h_j)$ tej macierzy są zdefiniowane jako rozwiązania następującego liniowego równania całkowego

$$W(h_i,\lambda) - P \int_{-\infty}^{\infty} d\alpha W(h_i,\alpha) \tilde{a}^{[\mathbf{p},\mathbf{h}]}(\alpha) \left(K(\alpha-\lambda) - \frac{2}{c} \right) = b_i \left(K(h_i-\lambda) - \frac{2}{c} \right),$$
(38)

z wektorem b_i danym przez

$$b_i = -\frac{\tilde{a}_{\text{res}(h_i)}^{[\mathbf{p},\mathbf{h}]}}{n(h_i)F(h_i)},\tag{39}$$

gdzie $\tilde{a}^{[\mathbf{p},\mathbf{h}]}(\lambda)$ jest zdefiniowane poniżej, a $\tilde{a}^{[\mathbf{p},\mathbf{h}]}_{\operatorname{res}(h_i)}$ oznacza wartość residuum tej funkcji dla $\lambda = h_i$

$$\tilde{a}_{\operatorname{res}(h_i)}^{[\mathbf{p},\mathbf{h}]} = \lim_{\lambda \to h_i} (\lambda - h_i) \tilde{a}^{[\mathbf{p},\mathbf{h}]}(\lambda).$$
(40)

Dwa pozostałe wyznaczniki w $\mathcal{D}(n, \mathbf{p}, \mathbf{h})$ są wyznacznikami Fredholma [79]. Jądro \hat{A} jest dane przez

$$\hat{A}(\lambda,\lambda') = \tilde{a}^{[\mathbf{p},\mathbf{h}]}(\lambda) \left(K(\lambda-\lambda') - \frac{2}{c} \right), \tag{41}$$

gdzie

$$\tilde{a}^{[\mathbf{p},\mathbf{h}]}(\lambda) = \frac{\sin[\pi n(\lambda)F(\lambda)]}{2\pi\sin[\pi F(\lambda)]} \prod_{k=1}^{m} \left(\frac{p_k - \lambda}{h_k - \lambda} \sqrt{\frac{K(p_k - \lambda)}{K(h_k - \lambda)}}\right) e^{-\frac{c}{2} \Pr \int_{-\infty}^{\infty} d\lambda' \frac{n(\lambda')F(\lambda')K(\lambda' - \lambda)}{\lambda' - \lambda}}.$$
(42)

Operator 1 reprezentuje identyczność, $\mathbf{1}(\lambda, \lambda') = \delta(\lambda - \lambda')$ i

$$\hat{K}_n(\lambda,\lambda') = K(\lambda-\lambda')\frac{n(\lambda')}{2\pi}.$$
(43)

Wyrażenie na termodynamiczny form-faktor jest bardzo skomplikowane, ale może być obliczone numerycznie. Pozwala to na porównanie otrzymanych wyników dla funkcji korelacji z innymi znanymi wynikami. Rys. 3 zawiera takie porównanie, gdzie uwzględniliśmy tylko pojedyńcze wzbudzenia cząstka-dziura, z wynikami obliczeń ABACUS [B15]. Podejście oparte na termodynamicznym form-faktorze, na poziomie wzbudzeń pojedyn-

⁵We wzorze na form-faktor przedstawionym w [A7] wystąpiła literówka i brakowało współczynnika 1/2 przed entropią różniczkową $\delta S[\vartheta; \mathbf{p}, \mathbf{h}]$. Zostało to poprawione w [A5].

Rysunek 3: Wkład 1ph do dynamicznego współczynnika struktury $S(k, \omega)$ obliczony za pomocą (34) (pełny, czarny) w porównaniu z ABACUS daje w wyniku system skończony z L = N = 32 (kropkowany, czerwony) i w skończonych temperaturach. Prezentujemy funkcję korelacji o ustalonym pędzie w funkcji energii. Przy małych pędach i energiach metoda termodynamicznego form-faktora całkowicie nasyca wkład do korelatora.

czej cząstki-dziury, prawidłowo przewiduje dynamiczny współczynnik struktury w skończonej temperaturze dla małych pędów i energii. Brakująca waga korelacji powinna pochodzić z wyższych wzbudzeń cząstka-dziura. Bezpośrednio analizując całkę widmową (31) można wykazać, że udział stanów wzbudzonych m par cząstka-dziura jest rzędu k^{m-2} . Porządkuje to sumę widmową na wkłady różnych rzędów w k. W granicy małego pędu wiodący wkład pochodzi od wzbudzeń pojedynczej pary cząstka-dziura. To motywuje do bliższego przyjrzenia się temu reżimowi.

Granica małego pędu. W [**A6**] dalej badaliśmy strukturę termodynamicznego form-faktora operatora gęstości w modelu Lieb-Linigera. Naszym głównym celem było wyprowadzenie wyrażenia na funkcję statycznej korelacji,

$$S(k) = \int \frac{\mathrm{d}\omega}{2\pi} S(k,\omega),\tag{44}$$

w granicy małego pędu (w odniesieniu do pędu Fermiego $k_F = \pi D$) obowiązującej dla dowolnego rozkładu cząstek ρ_p . W tym celu najpierw obliczyliśmy granicę form-faktora dla małego wzbudzenia cząstka-dziura. Obliczenia były dość skomplikowane, szczególnie w części dotyczącej $\mathcal{D}(\rho_p, p, h)$, ponieważ wymagają one dokładnej analizy W(h, h) oraz jądra Fredholma $\hat{A}(\lambda, \lambda')$. Jednak końcowy rezultat przybiera bardzo prostą formę

$$\langle \rho_{\mathbf{p}} | \hat{\rho}(0) | \rho_{\mathbf{p}}; p, h \rangle = 2\pi h_0^{\mathrm{dr}}(h) + \mathcal{O}(p-h).$$

$$\tag{45}$$

gdzie $h_0^{dr}(\lambda)$ jest efektywną wartością własną operatora gęstości cząstek na stanie jednocząstkowym oraz $h_0(\lambda) = 1$. Dla funkcji $f(\lambda)$ jej efektywna wersja $f^{dr}(\lambda)$ jest rozwiązaniem następującego równania całkowego

$$f^{\rm dr}(\lambda) = f(\lambda) + \int \mathrm{d}\alpha \, T(\lambda, \alpha) n(\alpha) f^{\rm dr}(\alpha). \tag{46}$$

Znajomość form-faktora (45) prowadzi do jawnego wyrażenia dla statycznej funkcji korelacji

$$S(k) = \int dh \frac{\rho_{\rm p}(h)\rho_{\rm h}(h)}{\rho_{\rm tot}(h)} (h_0^{\rm dr}(h))^2 + \mathcal{O}(k^2).$$
(47)

W [A6] pokazaliśmy również, że w granicy małego pędu DSF podlega uogólnionej relacji równowagi

szczegółowej

$$\frac{S(k,\omega)}{S(-k,-\omega)} = e^{\mathcal{F}(k,\omega)} + \mathcal{O}(k^2), \tag{48}$$

gdzie funkcja $\mathcal{F}(k,\omega)$ zależy od danych termodynamicznych, a mianowicie pseudoenergii gTBA $\epsilon(\lambda)$ i prędkości efektywnej $v^{\text{eff}}(\lambda)$,

$$\mathcal{F}(k,\omega) = k \frac{\varepsilon'(h)}{k'(h)}, \qquad \omega/k = v^{\text{eff}}(h).$$
(49)

W równowadze termodynamicznej $\varepsilon(h) = \epsilon(h)/T$ i $\mathcal{F}(k, \omega) = \omega/T$. W ten sposób zostaje przywrócona standardowa relacja równowagi szczegółowej. W przeciwieństwie do (48), które jest prawdziwe tylko dla małego momentum, standardowa relacja równowagi szczegółowej obowiązuje dla wszystkich wartości k.

Istnienie uogólnionej równowagi szczegółowej ma ciekawą konsekwencje. Mianowicie, jak pokazaliśmy w [B9], mierząc DSF pozwala ona na odtworzenie rozkładu cząstek ρ_p ,. Pozwala to na rekonstrukcję rozkładu quasi-pędów w nierównowagowym stanie stacjonarnym układu na podstawie spektroskopii Bragga.

Termodynamiczny form-faktor wyprowadziliśmy przy założeniu, że rozkład quasi-pędów jest gładki. Fizycznie ważną sytuacją, która wymyka się temu założeniu, jest stan podstawowy. Innymi istotnymi stanami są tak zwane stany Mojżesza, które są podzielonymi i przesuniętymi stanami podstawowymi [80]. Gdy rozważyć granicę zerowej temperatury na poziomie funkcji korelacji, to jak pokazujemy w [A6], wiodący udział pojedynczej cząstki-dziury wynosi

$$S(k)_{T=0} = \frac{|k|}{v_s}$$
 (50)

To przewidywanie dla funkcji korelacji T = 0 jest poprawne i zgadza się z prostym obrazem, na którym przy małym pędzie korelacja jest realizowana przez efektywne wzbudzenia o liniowej zależności dyspersji,

$$S(k,\omega)_{T=0} = A(k)\delta(\omega - v_s|k|).$$
(51)

Nieznaną funkcję A(k) można ustalić za pomocą następującej reguły sumy [81],⁶

$$\int \frac{\mathrm{d}\omega}{2\pi} \omega S(k,\omega) = k^2.$$
(52)

Daje to $A(k) = 2\pi v_s/|k|$ zgodnie z równaniem (50).

Ta obserwacja rodzi pytanie, czy możemy bardziej formalnie rozszerzyć obliczenia termodynamicznych form-faktorów również na niegładki rozkład quasi-pędów. W [A5] pokazujemy, że tak jest, o ile pęd k jest zgodny z następującym ograniczeniem

$$|k| < \frac{\rho_{\text{tot}}(q)}{T^{\text{dr}}(q,q)}.$$
(53)

To ograniczenie jest bardzo łagodne i w praktyce pozwala wykorzystać termodynamiczne form-faktory do obliczenia funkcji korelacji stanu podstawowego dla pędów rzędu k_F . Dokładniej, analiza ta pokazuje również, że termodynamiczne rozwinięcie jedności jest ważne również w stanie podstawowym, o ile spełniony jest powyższy warunek.

Wkład dwóch par cząstka-dziura do funkcji korelacji. Do tej pory różne wyniki opierały się wyłącznie na analizie udziału pojedyńczego wzbudzenia cząstka-dziura. Form-faktor dla wzbudzenia dwóch par cząstka-dziura, równanie (34), jest znacznie bardziej skomplikowany. Jednak wszystko upraszcza się do rozsądnego wyrażenia w granicach małych wzbudzeń cząstka-dziura. Wtedy form-faktor przyjmuję następującą postać [A5, A2]

$$\langle \rho_{\mathbf{p}} | \hat{\rho}(0) | \rho_{\mathbf{p}}, \mathbf{p}, \mathbf{h} \rangle = 2\pi k(\mathbf{p}, \mathbf{h}) \times \left(\frac{T^{\mathrm{dr}}(h_{2}, h_{1})h_{0}^{\mathrm{dr}}(h_{2})}{k'(h_{1})k'(h_{2})(p_{1} - h_{1})} + \frac{T^{\mathrm{dr}}(h_{1}, h_{2})h_{0}^{\mathrm{dr}}(h_{1})}{k'(h_{2})k'(h_{1})(p_{2} - h_{2})} + \frac{T^{\mathrm{dr}}(h_{2}, h_{1})h_{0}^{\mathrm{dr}}(h_{2})}{k'(h_{1})k'(h_{2})(p_{2} - h_{1})} + \frac{T^{\mathrm{dr}}(h_{1}, h_{2})h_{0}^{\mathrm{dr}}(h_{1})}{k'(h_{2})k'(h_{1})(p_{1} - h_{2})} + (\dots) \right).$$
(54)

⁶Tutaj napisanej dla gęstości jednostkowej gazu, N/L = 1, którą założyliśmy na początku.

Wzór ten zawiera tylko wiodącą, w tym przypadku osobliwą, część form-faktora w zmiennych $p_i - h_j$. Wielokropek (...) oznacza regularne, analityczne wyrazy w tych różnicach. Wkład wzbudzeń dwóch par cząstkadziura (2*ph*) do DSF może być następnie obliczony zgodnie z (31). Wymaga to trzech komentarzy.

Po pierwsze, jak pokazuję w **[A2]** dla małych pędów i energii, wiodący wkład 2 par cząstka-dziura występuje wtedy, gdy obie pary stanowią małe wzbudzenia cząstka-dziura. Innymi słowy, jeśli interesuje nas funkcja korelacji dla małych pędów i energii, możemy użyć form-faktora (54).

Po drugie, podczas wykonywania całek spektralnych wymagana jest pewna ostrożność, ponieważ formfaktory z równania (54) mają bieguny, gdy $p_i \sim h_j$ i dlatego ich kwadratów nie możemy po prostu scałkować. Analizując całki jako wynikające z sum systemu skończonego można pokazać, jak te osobliwości powinny być regulowane. Odpowiedzią okazuje się regularyzacją Hadamarda, która uogólnia metodę wartości głównej Cauchy'ego na bieguny drugiego rzędu. Mianowicie

$$\int_{0} \mathrm{d}x \frac{f(x)}{x^2} = \lim_{\epsilon \to 0} \left(\int \mathrm{d}x \frac{f(x)}{x^2} \Theta(|x| - \epsilon) - \frac{2f(0)}{\epsilon} \right).$$
(55)

Wreszcie, efektywne jądro rozpraszania różnicowego $T^{dr}(\lambda, \lambda')$ występujące we wzorze jest rozwiązaniem następującego równania

$$T^{\rm dr}(\lambda,\lambda') = T(\lambda,\lambda) + \int \mathrm{d}\alpha T(\lambda,\alpha) n(\alpha) T^{\rm dr}(\alpha,\lambda').$$
(56)

Ostateczny wzór na wiodący wkład z dwóch wzbudzeń cząstka-dziura do funkcji korelacji gęstość-gęstość przy małym pędzie to

$$S^{2\text{ph}}(k,\omega) = \frac{(2\pi)^2}{2} \oint_{h^*} dh_1 dh_2 \, n(h_1) n(h_2) \rho_{\text{tot}}(h_1) \rho_{\text{tot}}(h_2) T^{\text{dr}}(h_1, h_2)^2 \\ \times \frac{|v^{\text{eff}}(h_1) - v^{\text{eff}}(h_2)|^3}{(v^{\text{eff}}(h^*) - v^{\text{eff}}(h_1))^2 (v^{\text{eff}}(h^*) - v^{\text{eff}}(h_2))^2} + \mathcal{O}(k^2),$$
(57)

gdzie h^* określa położenie biegunów, czyli $v^{\text{eff}}(h^*) = \omega/k$. Podkreślamy, że zależność od pędu i energii wchodzi się tylko przez stosunek ω/k . To wyrażenie zgadza się z rozwinięciem perturbacyjnym w 1/c przedstawionym w [59] do rzędu $1/c^2$. Stanowi to nietrywialny test termodynamicznych form-faktorów z efektywnym sumowaniem form-faktorów uzyskanym w [59].

(ii) Korelacje wyższych zachowanych gęstości i prądów

Przedstawione powyżej wyniki można uogólnić na funkcje korelacji wyższych zachowanych gęstości $\hat{q}_j(x,t)$ i prądów $\hat{j}_j(x,t)$ występujących w modelu Lieb-Linigera (a także w innych całkowalnych modelach kwantowych). Rozważania te zostały przedstawione w [**A2**]. Operatory lokalnych zachowanych gęstości i prądów spełniają równania ciągłości

$$\partial_t \hat{q}_j(x,t) + \partial_x \hat{j}_j(x,t) = 0, \tag{58}$$

z czego wynika, że ładunek

$$Q_j = \int \mathrm{d}x \hat{q}_j(x, t),\tag{59}$$

jest zachowany w czasie. Z tego wynika, że form-faktory operatorów $\hat{q}_j(x,t)$ i $\hat{j}_j(x,t)$ mają wspólną strukturę [66],

$$\langle \rho_{\mathbf{p}} | \hat{q}_i | \rho_{\mathbf{p}}; \mathbf{p}, \mathbf{h} \rangle = k(\mathbf{p}, \mathbf{h}) f_i(\mathbf{p}, \mathbf{h}),$$

$$\langle \rho_{\mathbf{p}} | \hat{j}_i | \rho_{\mathbf{p}}; \mathbf{p}, \mathbf{h} \rangle = \epsilon(\mathbf{p}, \mathbf{h}) f_i(\mathbf{p}, \mathbf{h}).$$
 (60)

Form-faktory zachowanych gęstości w granicy małego wzbudzenia cząstka-dziura są prostymi uogólnieniami form-faktorów operatora gęstości cząstek. Można je obliczyć z uogólnionej hydrodynamiki [64] lub z programu

termodynamicznego bootstrapu, który przedstawię w następnej sekcji. Dla form-faktorów jednej pary cząstkadziura

$$\langle \rho_{\rm p} | \hat{q}_j | \rho_{\rm p}; p, h \rangle = 2\pi h_j^{\rm dr}(h) + \mathcal{O}(p-h).$$
(61)

podczas gdy dla dwóch par cząstka-dziura ich wspólny współczynnik wynosi

$$f_{i}(p_{1}, p_{2}, h_{1}, h_{2}) = 2\pi k(\mathbf{p}, \mathbf{h}) \times \left(\frac{T^{\mathrm{dr}}(h_{2}, h_{1})h_{i}^{\mathrm{dr}}(h_{2})}{k'(h_{1})k'(h_{2})(p_{1} - h_{1})} + \frac{T^{\mathrm{dr}}(h_{1}, h_{2})h_{i}^{\mathrm{dr}}(h_{1})}{k'(h_{2})k'(h_{1})(p_{2} - h_{2})} + \frac{T^{\mathrm{dr}}(h_{2}, h_{1})h_{i}^{\mathrm{dr}}(h_{2})}{k'(h_{1})k'(h_{2})(p_{2} - h_{1})} + \frac{T^{\mathrm{dr}}(h_{1}, h_{2})h_{i}^{\mathrm{dr}}(h_{1})}{k'(h_{2})k'(h_{1})(p_{1} - h_{2})} + (\dots)\right).$$
(62)

Rozważymy teraz dwu-punktowe funkcje gęstości i prądów

$$C_{ij}(x,t) = \langle \rho_{\mathbf{p}} | \hat{q}_i(x,t) \hat{q}_j(0) | \rho_{\mathbf{p}} \rangle, \qquad \Gamma_{ij}(x,t) = \langle \rho_{\mathbf{p}} | \hat{j}_i(x,t) \hat{j}_j(0) | \rho_{\mathbf{p}} \rangle.$$
(63)

Na przykład, statyczny korelator gęstości, w granicy małego pędu jest prostym uogólnieniem (47) i wynosi

$$C_{ij}(k) = \int \mathrm{d}h \, n(h)\rho_{\mathrm{p}}(h) \left(h_i^{\mathrm{dr}}(h)h_j^{\mathrm{dr}}(h)\right)^2 + \mathcal{O}(k^2).$$
(64)

Zacytuje również wyniki dla dwóch par cząstka-dziura w granicach małych pędu i energii. Pełną formułę można znaleźć w **[A2]**. Wyrażenia zależą od kolejności granic. Mianowicie $\lim_{\omega\to 0} \lim_{k\to 0} C_{ij}^{2ph}(k,\omega) = 0$ i $\lim_{k\to 0} \lim_{\omega\to 0} \Gamma_{ij}^{2ph}(k,\omega) = 0$, natomiast

$$\lim_{k \to 0} \lim_{\omega \to 0} C_{ij}^{2ph}(k,\omega) = \frac{1}{2} \int_{0} dh_{1} dh_{2} n(h_{1}) n(h_{2}) \rho_{h}(h_{1}) \rho_{h}(h_{2}) \left(T^{dr}(h_{1},h_{2}) \right)^{2} |v^{\text{eff}}(h_{1}) - v^{\text{eff}}(h_{2})| \\ \left(\frac{h_{i}^{dr}(h_{1})}{\rho_{\text{tot}}(h_{1}) v^{\text{eff}}(h_{1})} - \frac{h_{i}^{dr}(h_{2})}{\rho_{\text{tot}}(h_{2}) v^{\text{eff}}(h_{2})} \right) \left(\frac{h_{j}^{dr}(h_{1})}{\rho_{\text{tot}}(h_{1}) v^{\text{eff}}(h_{1})} - \frac{h_{j}^{dr}(h_{2})}{\rho_{\text{tot}}(h_{2}) v^{\text{eff}}(h_{2})} \right),$$
(65)

$$\lim_{\omega \to 0} \lim_{k \to 0} \Gamma_{ij}^{2ph}(k,\omega) = \frac{1}{2} \int dh_1 dh_2 n(h_1) n(h_2) \rho_h(h_1) \rho_h(h_2) \left(T^{dr}(h_1,h_2) \right)^2 |v^{\text{eff}}(h_1) - v^{\text{eff}}(h_2)| \\ \left(\frac{h_i^{dr}(h_1)}{\rho_{\text{tot}}(h_1)} - \frac{h_i^{dr}(h_2)}{\rho_{\text{tot}}(h_2)} \right) \left(\frac{h_j^{dr}(h_1)}{\rho_{\text{tot}}(h_1)} - \frac{h_j^{dr}(h_2)}{\rho_{\text{tot}}(h_2)} \right),$$
(66)

przy czym drugie wyrażenie jest regularne, a zatem nie wymaga regularyzacji Hadamarda. Formuła (66) została wyprowadzona w inny sposób w [66] i była kluczowa do opisania efektów dyfuzji w uogólnionej hydrodynamice.

Warto również wspomnieć, że nie są znane wyrażenia dla form-faktorów wyższych lokalnych zachowanych ładunków i prądów w skończonym układzie w modelu Lieb-Linigera. Mimo to elastyczność przedstawionego tutaj podejścia pozwoliła zasadniczo odgadnąć termodynamiczne form-faktory na podstawie przewidywań uogólnionej hydrodynamiki lub z termodynamicznego bootstrapu, ważnego dla relatywistycznych teorii pola, i zastosować je w modelu Lieb-Linigera. Pokazuje to, że termodynamiczne form-faktorów tworzą spójne narzędzie do obliczania dynamicznych funkcji korelacji kwantowych modeli całkowalnych.

(iii) Jednociałowa funkcja korelacji w modelu Lieb-Linigera

Powyższe rozważania koncentrowały się na funkcjach korelacji operatorów, które nie zmieniają liczby cząstek. Powstaje zatem pytanie, czy możliwe jest wykorzystanie idei termodynamicznych form-faktorów również do rozważenia funkcji korelacji operatorów zmieniających liczbę cząstek. Najważniejszymi przykładami są jednociałowe funkcje korelacji lub funkcje Greena. Problem obliczania funkcji jednociałowej funkcji korelacji w modelu Lieb-Linigera najłatwiej jest sformułować przyjmując punkt widzenia QFT z hamiltonianem [23]

$$H = \int_0^L \mathrm{d}x \left(-\psi^{\dagger}(x)\partial_x^2 \psi(x) + 2c\psi^{\dagger}(x)\psi^{\dagger}(x)\psi(x)\psi(x) - \mu\psi^{\dagger}(x)\psi(x) \right).$$
(67)

Tutaj $\psi(x)$ i $\psi^{\dagger}(x)$ są kanonicznymi operatorami anihilacji i kreacji, które podlegają standardowym relacjom komutacji bozonów, a μ to potencjał chemiczny. Form-faktor operatora anihilacji $\langle \boldsymbol{\lambda} | \psi(0) | \boldsymbol{\mu} \rangle$ w układzie o skończonym rozmiarze jest znany [43, 82] i możemy użyć reprezentacji spektralnej do obliczenia dynamicznej funkcji jednociałowej $G(x,t) = \langle \boldsymbol{\lambda} | \psi^{\dagger}(x,t) \psi(0) | \boldsymbol{\lambda} \rangle$ z pomocą programu ABACUS [83].

Aby zilustrować problem przed którym stoimy, muszę bardziej szczegółowo omówić konstrukcję termodynamicznych form-faktorów dla operatorów zachowujących liczbę cząstek. Przypomnijmy, że dla takich operatorów termodynamiczna suma widmowa była zorganizowana według wzbudzeń cząstka-dziura. Te efektywne wzbudzenia cząstka-dziura można rozumieć jako renormalizację wzbudzeń w skończonym układzie za pomocą miękkich wzbudzeń (soft-modes) [84]:

$$|\langle \rho_{\mathbf{p}}|o(0)|\rho_{\mathbf{p}};\mathbf{p},\mathbf{h}\rangle|^{2} = \lim_{\text{th}} \frac{1}{\mathcal{N}} \sum_{\text{soft-modes}} |\langle \boldsymbol{\lambda}|o(0)|\boldsymbol{\lambda};\mathbf{p},\mathbf{h} + \text{soft-modes}\rangle|^{2},$$
(68)

gdzie sumujemy po miękkich wzbudzeniach: są to wzbudzenia niedyspersyjne, czyli wzbudzenia niosące pęd i energię rzędu O(1/L) w rozmiarze układu. Współczynnik normalizacji \mathcal{N} jest równy liczbie miękkich wzbudzeń, które można oszacować na podstawie entropii różniczkowej. Wykonanie tej sumy, ze względu na obecność osobliwości kinematycznych, jest bardzo skomplikowane technicznie. W kilku przypadkach z powodzeniem udało się je jednak wykonać. Ważnym rezultatem w tym aspekcie było wyprowadzenie asymptotyki długo-czasowej i długo-dystansowej funkcji dwupunktowych w modelu Lieb-Linigera [54] i łańcuchu spinowym XXZ w bezmasowym reżimie [55]. Ślady sumowania po wzbudzeniach miękkich można również zidentyfikować w perturbacyjnej rozwinięciu gazu Lieb-Linigera w reżimie Tonksa-Girardeau [59] oraz w podejściu do funkcji korelacji modelu XY za pomocą efektywnych form-faktorów [56].

W praktyce założyliśmy, że sumowanie po miękkich wzbudzeniach można przybliżyć, wybierając jeden stan i mnożąc przez liczbę stanów. Najprostszym wyborem jest wybór stanu bez żadnych miękkich wzbudzeń, wtedy

$$|\langle \rho_{\rm p}|o(0)|\rho_{\rm p};\mathbf{p},\mathbf{h}\rangle|^2 \approx \lim_{\rm th} |L^m \langle \boldsymbol{\lambda}|o(0)|\boldsymbol{\lambda};\mathbf{p},\mathbf{h}\rangle|^2,\tag{69}$$

Zgodność wyników dla funkcji korelacji przedstawionych w poprzednich rozdziałach potwierdza słuszność tego przybliżenia, szczególnie w granicach małych wzbudzeń.

Taka metoda nie działa dla form-faktora operatora anihilacji. Powód jest oczywisty - operator anihilacji zmniejsza liczbę cząstek, podczas gdy stany bra i ket w (69) mają taką samą liczbę cząstek. Przypominając, że postrzegamy λ jako dyskretyzację $\rho_p(\lambda)$, możemy rozważyć dyskretyzację z różną liczbą cząstek, tj. $|\langle \lambda_N | \psi(0) | \lambda_{N-1}; \mathbf{p}, \mathbf{h} \rangle|$ ale okazuje się to zbyt ograniczające. Aby znaleźć rozwiązanie, musimy lepiej zrozumieć przestrzeń odpowiednich wzbudzeń.

W [A1] zbadaliśmy ten problem, koncentrując się na funkcji korelacji stanu podstawowego i zaproponowaliśmy oparcie termodynamicznego form-faktora na dwóch wzbudzeniach spinonowych, patrz rys. 4. Mianowicie dla funkcji jednociałowej odpowiednie termodynamicze rozwinięcie identyczności jest nadal w postaci par wzbudzeń cząstka-dziura

$$G(x,t) = \langle \rho_{\mathbf{p}} | o(x,t) o(0) | \rho_{\mathbf{p}} \rangle = \sum_{m=0}^{\infty} \frac{1}{(m!)^2} \int d\mathbf{p}^m d\mathbf{h}^m e^{it\epsilon(\mathbf{p},\mathbf{h})) - ixk(bfp,\mathbf{h})} \mathcal{G}(x,t;\rho_{\mathbf{p}};\mathbf{p},\mathbf{h}),$$
(70)

ale form-faktor, oznaczony tera
z $\mathcal{G}(x,t;\rho_{\rm p};{\bf p},{\bf h})$ jest bardziej skomplikowany i obejmuje sumowanie po wzbudzeniach 2-spinonowych

$$\mathcal{G}(x,t;\rho_{\rm p};\mathbf{p},\mathbf{h}) \approx \sum_{2-{\rm sp}} |\langle \boldsymbol{\lambda}_N | \Psi(x,t) | \boldsymbol{\lambda}_{N-1}; 2-{\rm sp} \rangle|^2.$$
(71)

Rysunek 4: Liczby kwantowe N-cząstkowego stanu podstawowego (u góry) i konstrukcja stanu 2-spinonowego poprzez stworzenie dwóch dziur w (N + 1)-cząstkowym stanie podstawowym. Suma po wzbudzeniach 2-spinonów, oznacza sumę po różnych wyborach dla h_1 i h_2 .

Rysunek 5: Wykresy $G(k, \omega)$ dla ustalonego pędu i w funkcji energii. "Pełne" wyniki ABACUS (dla N = 100, L = 100) są porównywane z udziałem jedynie wzbudzeń 2-spinonowych oraz z wzbudzeń 2-spinonowych z niewielkimi wzbudzeniami cząstka-dziura. Te efektywne wzbudzenia 2-spinonowe nasycają korelator przy małych energiach. Wykreślamy również wyniki ABACUS dla N = 60, L = 60, aby pokazać, że efekty skończonego rozmiaru układu w metodzie ABACUS są zasadniczo poniżej rozdzielczości wykresu.

Zauważmy, że termodynamiczny form-faktor obejmuje teraz nietrywialną zależność przestrzenną i czasową. Ponadto, w przeciwieństwie do przypadku korelacji gęstość-gęstość, suma we wzorze (70) zawiera wyrażenie m = 0, to znaczy, że istnieje wkład do korelatora nie obejmujący dodatkowych par cząstka-dziura. W przypadku korelatora gęstość-gęstość odpowiadałoby to prostemu wkładowi "disconnected" do korelatora.

Aby ocenić ilościowo to założenie, porównaliśmy nasze przewidywania z wynikami metody ABACUS i wykazaliśmy, że wzbudzenia 2-spinonowe wraz z wzbudzeniami miękkimi całkowicie nasycają dynamiczną jedno-ciałową funkcję korelacji przy małych pędach i energiach, patrz rys. 5. Sugeruje to, że koncepcje termodynamicznej sumy widmowej i termodynamicznych form-faktorów mają również zastosowanie do takich korelatorów.

(iv) Termodynamiczny bootstrap

Termodynamiczny bootstrap, który zainicjowaliśmy w [A4], jest metodą wyznaczania termodynamicznych form-faktorów w całkowalnych kwantowych teoriach pola. Jest to uogólnienie programu próżniowego bootstrapu [27] i zakłada szereg tożsamości, które form-faktory powinny spełniać. Liczba tych ograniczeń jest wystarczająca, aby przewidzieć ogólną strukturę form-faktorów. Podejście typu bootstrap ma tę zaletę, że pozwala uniknąć uciążliwych obliczeń granic termodynamicznych form-faktorów. Jest to szczególnie ważne, ponieważ takie obliczenia należy wykonywać w każdym przypadku, czyli dla konkretnego operatora w konkretnym modelu.

Wprowadźmy następującą notację dla form-faktorów operatora o(x) z wzbudzeniami cząstek m

$$f^{o}_{\rho_{\mathbf{p}}}(\theta_{1},\ldots,\theta_{m}) = \langle \rho_{\mathbf{p}}|o(0)|\rho_{\mathbf{p}};\theta_{1},\ldots,\theta_{m}\rangle,$$
(72)

Rysunek 6: Termodynamiczny form-faktor możemy postrzegać jako granicę form-faktora w skończonym układzie z dodatkowymi cząstkami tła określonymi przez funkcję obsadzeń $n(\lambda)$ (lub równoważnie $\rho_p(\lambda)$). W stanie "in" tło jest dodatkowo przesunięte przez back-flow z powodu obecności wzbudzeń. Ta zmiana jest oznaczona przez '.

Relatywistyczna niezmienność IQFT implikuje, że wzbudzenie dziury w ket jest równoważne, poprzez crossing symmetry, do wzbudzenia cząstek w stanie bra [31]. Przejście cząstki z bra do ket sprowadza się do przesunięcia jej quasi-pędu $\theta \rightarrow \theta + i\pi$. Stąd notacja (72) obejmuje zarówna wzbudzenia cząstkowe jak i dziury. Interesują nas głównie form-faktory z m wzbudzeniami par cząstka-dziura. Są one wyrażane przez form-faktory 2*m*-cząstkowe w następujący sposób:

$$\langle \rho_{\mathbf{p}} | o(0) | \rho_{\mathbf{p}}, \mathbf{p}, \mathbf{h} \rangle = f_{\rho_{\mathbf{p}}}(\mathbf{p}, \mathbf{h} + i\pi).$$
 (73)

Termodynamiczne form-faktory rozumiane są jako termodynamiczne granice form-faktorów o skończonej liczbie cząstek, w których duży podzbiór cząstek, określany mianem cząstek tła, opisuje stan $|\rho_p\rangle$ i ich rozkład jest zgodny z dystrybucją ρ_p . Poza nimi jest parę dodatkowych cząstek $\{\theta_1, \ldots, \theta_m\}$ opisujących właściwe wzbudzenia. Jest to przedstawione graficznie na rys. 6.

Termodynamiczny bootstrap składa się z następujących aksjomatów dla: $f_{\rho_{\rm D}}^o(\theta_1, \dots, \theta_m)$:

• aksjomat rozpraszania

(a) The vacuum scattering axiom.

(b) The thermodynamic scattering axiom.

Rozpraszanie jest operacją lokalną i dlatego obecność cząstek tła nie ma na nie wpływu, a aksjomat przyjmuje taką samą postać w próżni i w stanie termodynamicznym.

$$f^{o}_{\rho_{\mathrm{p}}}(\theta_{1},\ldots,\theta_{i},\theta_{i+1},\ldots,\theta_{m}) = S(\theta_{i}-\theta_{i+1})f^{o}_{\rho_{\mathrm{p}}}(\theta_{1},\ldots,\theta_{i+1},\theta_{i},\ldots,\theta_{m}),\tag{74}$$

aksjomat periodyczności

(a) The vacuum periodicity axiom.

(b) The thermodynamic periodicity axiom.

Aksjomat periodyczności dla próżniowych form-faktorów mówi, że ostatnią cząstkę możemy przesunąć jako pierwszą, kosztem przesunięcia jej quasi-pędu o $2\pi i$. Jest to rozumiane jako przejście cząstki od ket do bra, a następnie ponownie do ket. W przypadku termodynamicznego form-faktora, ze względu na obecność cząstek tła, musimy uwzględnić rozpraszanie z nimi podczas tego procesu. Prowadzi to do dodatkowego czynnika $R_{\rho_{\rm D}}$ i

$$f^{o}_{\rho_{\mathrm{p}}}(\theta_{1},\ldots,\theta_{m}) = R_{\rho_{\mathrm{p}}}(\theta_{m}|\theta_{1},\ldots,\theta_{m})f^{o}_{\rho_{\mathrm{p}}}(\theta_{n}+2\pi i,\theta_{1},\ldots,\theta_{m-1}),\tag{75}$$

• Unormowanie dwucząstkowego form-faktora

Aksjomat unormowania ustala granicę małego wzbudzenia dwucząstkowego form-faktora,

$$f^{o}_{\rho_{\rm p}}(\theta + \mathrm{i}\pi, \theta) = V^{o}(\theta).$$
(76)

Funkcja $V^{o}(\theta)$ jest opisana poniżej.

• aksjomat anihilacji (kinetyczna osobliwość)

Aksjomat anihilacji opisuje osobliwą część form-faktora z więcej niż dwoma wzbudzeniami, gdy quasipęd jednej z cząstek i jednej z dziur pokrywają się. W wersji próżniowej bierzemy w nim pod uwagę rozpraszaniu z wszystkimi pozostałymi cząstkami. W wersji termodynamicznej oznacza to rozpraszanie z cząstkami tła i ze wzbudzeniami,

$$-i\operatorname{res}_{\theta_{1}\to\theta_{2}}f_{\rho_{p}}^{o}(\theta_{1}+\pi i,\theta_{2},\ldots,\theta_{n}) = \left(1-R_{\rho_{p}}(\theta_{2}|\theta_{3},\ldots,\theta_{n})\prod_{j=3}^{n}S(\theta_{2}-\theta_{j})\right)f_{\rho_{p}}^{o}(\theta_{3},\ldots,\theta_{n}),$$
(77)

• zależność czasoprzestrzenna form-faktora

W przypadku operatora działającego na pewnej pozycji x i czasie t, zakładamy, że zależność czasoprzestrzenna odpowiedniego form-faktora rozkłada się tak, że

$$\langle \rho_{\mathbf{p}} | o(x,t) | \rho_{\mathbf{p}}; \lambda_1, \dots, \lambda_m \rangle = e^{\mathbf{i}xk(\boldsymbol{\lambda}) - \mathbf{i}t\varepsilon(\boldsymbol{\lambda})} f^o_{\rho_{\mathbf{p}}}(\theta_1, \dots, \theta_m).$$
(78)

Warto zauważyć, że biorąc pod uwagę nasze wyniki dotyczące jednociałowej funkcji korelacji w modelu Lieb-Liniger, założenie to może być zbyt silne. Jednak dla operatorów zachowujących liczbę cząstek struktura ta jest odpowiednia, co widać z porównania z form-faktorami operatora gęstości dla modelu Lieb-Linigera oraz z wynikami uogólnionej hydrodynamiki. Omówię to porównanie dokładniej poniżej.

W [A4] wprowadziliśmy również dwa kolejne aksjomaty, *aksjomat grupowania* i *ograniczenie wzrostu*. Aby zachować zwięzłość dyskusji, pominę je, ponieważ nie są one kluczowe dla poniższych wyników.

Do sformułowania aksjomatów użyliśmy funkcji $R_{\rho_p}(\theta|\theta_1,\ldots,\theta_n)$, która jest powiązana z funkcją backflow w następujący sposób

$$R_{\rho_{\mathrm{p}}}(\theta|\theta_{1},\ldots,\theta_{m}) = \prod_{j=1}^{m} R_{\rho_{\mathrm{p}}}(\theta|\theta_{j}),$$
(79)

$$R_{\rho_{\rm p}}(\theta|\theta_j) = \exp\left(2\pi \mathrm{i}F(\theta|\theta_j) - \mathrm{i}\delta(\theta - \theta_j)\right). \tag{80}$$

W granicy zerowej gęstości aksjomaty redukują się do standardowych próżniowych aksjomatów [27]. Konkretnie, w tej granicy R_{ρ_p} wynosi 1, a $k(\theta)$ i $\varepsilon(\theta)$ przyjmują standardową, nieefektywną, postać. W dalszej części omówię dwa zastosowania programu bootstrap. Pierwsze wyznacza tak zwane minimalne form-faktory w modelu Sinh-Gordon, drugie dotyczy granicy form-faktorów dla małych wzbudzeń i związku z uogólnioną hydrodynamiką. Przedtem chciałbym przedstawić dwie uwagi. Proponowane aksjomaty wynikają z "termodynamicznej granicy" aksjomatów próżni i definicją termodynamicznego form-faktora. Szczególnym wśród nich jest aksjomat normalizacji, który wynika wyłącznie z definicji samego termodynamicznego form-faktora. Jak pokazujemy w **[A3]**, z definicji termodynamicznego form-faktora mamy

$$f_{\rho_{\rm p}}^{o}(\theta + \mathrm{i}\pi, \theta + \kappa) = \lim_{\mathrm{th}} \frac{f^{o}(\theta_{n} + \mathrm{i}\pi, \dots, \theta_{1} + \mathrm{i}\pi, \theta_{1} + \kappa_{1}, \theta_{n} + \kappa_{n}, \theta + \mathrm{i}\pi + \theta + \kappa)}{\rho_{n}(\theta_{1}, \dots, \theta_{n})},$$
(81)

gdzie

$$\kappa_j = -\frac{T_L^{\rm dr}(\theta_j, \theta)}{L\rho_{tot,L}(\theta_j)}\kappa,\tag{82}$$

opisuje back-flow *j*-tego quasi-pędu tła z powodu wzbudzenia cząstka-dziura sparametryzowanego przez θ i κ . Granicę małych κ można obliczyć przy użyciu technik znanych z IQFT [29]. W wyniku dostajemy

$$V^{o}(\theta) = \frac{1}{2\pi\rho_{\text{tot}}(\theta)} \sum_{k=0}^{\infty} \frac{1}{k!} \int \prod_{j=1}^{k} \left(\frac{\mathrm{d}\theta_{j}}{2\pi}n(\theta_{j})\right) f_{c}^{o}(\theta_{1},\dots,\theta_{k},\theta), \tag{83}$$

gdzie $f_c^o(\theta_1, \ldots, \theta_m)$ jest tak zwanym "connected vacuum form-factor" operatora o(x). W szczególnym przypadku, gdy o(x) odpowiada gęstości $q_j(x)$ lokalnego ładunku zachowanego, wyrażenie po prawej stronie upraszcza się do [64]

$$V^{q_j}(\theta) = 2\pi h_j^{\rm dr}(\theta),\tag{84}$$

mianowicie jest efektywną wartością własną operatora gęstości lokalnego ładunku na stanie jedno-cząstkowym.

Minimalne form-faktory w modelu Sinh-Gordona W tej części zaprezentuję wyniki termodynamicznego bootstrapu dla minimalnych form-faktorów w modelu Sinh-Gordona. Rezultaty te zostały przedstawione w **[A4]**. Model Sinh-Gordon jest całkowalną kwantową teorią pola z działaniem [31]

$$S = \int \mathrm{d}^2 x \left(\frac{1}{2} \left(\partial_\mu \phi(x) \right)^2 - \frac{m^2}{g^2} \cosh(g\phi(x)) \right),\tag{85}$$

z g, parametrem oddziaływania. Z punktu widzenia teorii rozpraszania model Sinh-Gordona ma tylko jeden rodzaj cząstki, która jest własną antycząstką i nie może tworzyć stanów związanych. Macierz rozproszania to pojedyncza funkcja

$$S(\theta) = \frac{\operatorname{tgh} \frac{1}{2} (\theta - i\pi B/2)}{\operatorname{tgh} \frac{1}{2} (\theta + i\pi B/2)}, \qquad S(0) = -1,$$
(86)

gdzie zrenormalizowana stała oddziaływania B(g) wynosi

$$B(g) = \frac{2g^2}{8\pi + g^2}.$$
(87)

Równania bootstrap'u pozwoliły nam odgadnąć uniwersalną część form-faktora. Mianowicie zakładamy, że form-faktor można zapisać jako

$$f_{\rho_{\mathrm{p}}}(\theta_1, \dots, \theta_m) = K^o_{\rho_{\mathrm{p}}}(\theta_1, \dots, \theta_m) f^{\min}_{\rho_{\mathrm{p}}}(\theta_1, \dots, \theta_m),$$
(88)

gdzie minimalny form-faktor $f_{\rho_{p}}^{\min}(\theta_{1}, \ldots, \theta_{m})$ jest niezależny od operatora i uwzględnia aksjomaty rozpraszania i periodyczności. Natomiast $K_{\rho_{p}}^{o}(\theta_{1}, \ldots, \theta_{m})$ zależy od rozpatrywanego operatora i ma strukturę zgodną m.in. z aksjomatami anihilacji i normalizacji. W przypadku jednocząstkowego form-faktora jego minimalną część można wyprowadzić wyłącznie z aksjomatu okresowości. W wyniku dostajemy

$$f_{\rho_{\rm p}}^{\rm min}(\theta) = \exp\left[-\frac{1}{4}\int_{-\infty}^{\infty} \frac{\mathrm{d}t}{t} \frac{C_{\rho_{\rm p}}(t)}{\sinh t} \exp\left(\frac{t(\theta - i\pi)}{i\pi}\right)\right].$$
(89)

Rysunek 9: Minimalny form-faktor jednocząstkowy w modelu Sinh-Gordon.

gdzie $C_{\rho_{\rm D}}(t)$ jest niejawnie zdefiniowane przez

$$R_{\rho_{\rm p}}(\theta|\theta) = \exp\left[\frac{1}{2}\int_{-\infty}^{\infty} \frac{\mathrm{d}t}{t} C_{\rho_{\rm p}}(t) \exp\frac{t\theta}{i\pi}\right],\tag{90}$$

i może być obliczona z funkcji back-flow $F(\theta|\theta')$ zgodnie z (80). Na rys. 9 wykreślamy rzeczywistą i urojoną część log $f_{\rho_{\rm p}}(\theta)$ dla układu w równowadze termodynamicznej. Minimalny form-faktor próżni jest równy 1, co jest asymptotą θ termodynamicznego form-faktora. Jak omawiamy w [**A4**] minimalne form-faktory zawierające wiecej wzbudzeń można uzyskać w podobnej procedurze.

Możliwość zastosowania programu bootstrap jest ograniczona do sytuacji, w których możemy określić część nieuniwersalną $K^o_{\rho_p}(\theta_1, \ldots, \theta_m)$. W następnym rozdziale omówię jedną sytuację, w której możemy znaleźć rozwiązanie dla części nieuniwersalnej.

(v) Reżim hydrodynamiczny i termodynamiczne form-faktory

Znajomość form-faktora dla pojedyńczego wzbudzenia cząstka-dziura w granicy małego pędu, wraz z aksjomatem anihilacji, pozwala obliczyć również granicę małych wzbudzeń z dwiema (i więcej) parami wzbudzeń cząstka-dziura. Jak pokazujemy w **[A3]**, form-faktor dla dwóch par wzbudzeń cząstka-dziura, aby był zgodny z aksjomatem anihilacji, musi mieć następującą postać

$$f^{o}_{\rho_{\rm p}}(\theta_1,\theta_2,\theta_3,\theta_4) = -2\pi \sum_{\sigma \in P_4} S_{\sigma}(\theta_1,\ldots,\theta_4) \frac{\theta_{\sigma_3} - \theta_{\sigma_4} - i\pi}{\theta_{\sigma_1} - \theta_{\sigma_2} - i\pi} T^{\rm dr}(\theta_{\sigma_2},\theta_{\sigma_4}) f^{o}_{\rho_{\rm p}}(\theta_{\sigma_3},\theta_{\sigma_4}) + (\ldots), \tag{91}$$

gdzie $S_{\sigma}(\theta_1, \ldots, \theta_4)$ jest iloczynem macierzy S z macierzą S dla każdej transpozycji obecnej w permutacji σ . Tak jak poprzednio (\ldots) oznacza wyrazy analityczne gdy dowolne θ_j jest blisko dowolnego $\theta_k + i\pi$. Rozważymy teraz konkretny przypadek, gdy $\theta_1 = h_1 + i\pi$, $\theta_2 = p_1$, $\theta_3 = h_2 + i\pi$ oraz $\theta_4 = p_2$. Mianowicie θ_2 i θ_4 to cząstki, a θ_1 i θ_3 to dziury. Ponadto zakładamy, że $p_1 \sim h_1$ i $p_2 \sim h_2$. Wyrażenie można następnie uprościć do:

$$f^{o}_{\rho_{\rm p}}(h_1 + i\pi, p_1, h_2 + i\pi, p_2) = -2\pi T^{\rm dr}(h_1, h_2) \left(\frac{h_2 - p_2}{h_1 - p_1} f^{o}_{\rho_{\rm p}}(h_2, h_2 - i\pi) + \frac{h_1 - p_1}{h_2 - p_2} f^{o}_{\rho_{\rm p}}(h_1, h_1 - i\pi)\right) + (\dots),$$
(92)

W wiodącym rzędzie możemy zastąpić wyrażenia $h_i - p_i$ w licznikach przez $k/k'(h_i)$ otrzymując

$$f^{o}_{\rho_{\rm p}}(h_1 + i\pi, p_1, h_2 + i\pi, p_2) = 2\pi k T^{\rm dr}(h_1, h_2) \left(\frac{f^{o}_{\rho_{\rm p}}(h_2, h_2 - i\pi)}{k'(h_2)(h_1 - p_1)} + \frac{f^{o}_{\rho_{\rm p}}(h_1, h_1 - i\pi)}{k'(h_1)(h_2 - p_2)} \right) + (\dots).$$
(93)

Jest to ostateczna prognoza bootstrapu termodynamicznego dla form-faktora w granicy dwóch małych wzbudzeń typu cząstka-dziura. Zauważmy, że występujące w tym wyrażeniu form-faktory dla pojedynczych wzbudzeń typu cząstka-dziura są znane ze względu na aksjomat normalizacji. W przypadku form-faktorów lokalnych zachowanych gęstości wzory te przybierają szczególnie prostą postać, biorąc pod uwagę normalizację (84). Wiadomo, że w nierelatywistycznej granicy teoria Sinh-Gordon sprowadza się do modelu Lieb-Linigera [85–87]. Możemy w ten sposób porównać wyniki termodynamicznego bootstrap'u z obliczeniami w modelu Lieb-Linigera. W [A2] pokazuję, że granice małych wzbudzeń typu cząstka-dziura dla form-faktorów zawierających jedną lub dwie pary wzbudzeń w obu teoriach zgadzają się ze sobą. Sygnalizuje to, że termodynamiczne podejście oparte na form-faktorach jest na tyle wszechstronne, że umożliwia umieszczenie zarówno wielociałowych modeli kwantowych, jak i całkowalnych kwantowych teorii pola we wspólnej strukturze.

Funkcje korelacji w granicy Eulera. Znajomość form-faktorów w granicy małych wzbudzeń pozwala na obliczenie funkcji korelacji w granicy dużych odległości i długiego czasu. Formalnie, rozważamy długi czas t ze stosunkiem $\xi = x/t$ ustalonym. Odpowiada to tak zwanej granicy Eulera rozważanej na przykład w kontekście uogólnionej hydrodynamiki [64]. Ponadto w tej granicy zakładamy, że funkcja korelacji jest uśredniana lokalnie w czasie i przestrzeni, aby pozbyć się mikroskopowych oscylacji. Ta procedura nosi nazwę "in-cell" averaging [64].

Wiodący wkład do dwu-punktowej funkcji korelacji w skali Eulera pochodzi ze stanów wzbudzonych obejmujących niewielką liczbę cząstek i dziur. Wiodące wyrazy są dane przez wkłady pojedynczej cząstki i pojedynczej dziury. Wkłady te oscylują i znikają pod wpływem wspomnianego wyżej uśredniania. Kolejny wkład obejmuje pojedyncze wzbudzenie cząstka-dziura i jest dany przez

$$S_{1\rm ph}^{o_1,o_2}(\xi t,t) = \int \frac{dp}{2\pi} \frac{dh}{2\pi} n(h)(1-n(p)) \exp\left[it\left(\xi(k(p)-k(h))-(\epsilon(p)-\epsilon(h))\right)\right] \\ \times f_{\rho_{\rm p}}^{o_1}(p,h+i\pi) f_{\rho_{\rm p}}^{o_2}(p,h+i\pi)^*,$$
(94)

i w granicy dużego t może być oszacowany za pomocą przybliżenia stacjonarnej fazy. Oznaczmy $\vec{h}_0 = (h_*(\xi), h_*(\xi))$ punkty stacjonarne, gdzie $v^{\text{eff}}(h_*(\xi)) = \xi$. Wynik przybliżenia to

$$S_{1\rm ph}^{o_1,o_2}(\xi t,t) = t^{-1} \sum_{h \in \{h_*(\xi)\}} \frac{\rho_{\rm p}(h)(1-n(h))}{|(v^{\rm eff})'(h)|} V^{o_1}(h) V^{o_2}(h) + \mathcal{O}(1/t^2).$$
(95)

Wynik ten zgadza się z przewidywaniami hydrodynamiki uogólnionej [64] i zapewnia dodatkowe potwierdzenie zgodności pomiędzy tą metodą a termodynamicznymi form-faktorami.

Podsumowanie i wnioski

W autoreferacie opisałem, w jaki sposób pojęcia termodynamicznej sumy widmowej i termodynamicznych form-faktorów są przydatne do obliczania dynamicznych funkcji korelacji w kwantowych modelach całkowalnych. Motywacja do opracowania nowych metod rozwiązywania tych problemów pochodzi z dwóch źródeł. Z jednej strony interesuje nas lepsze zrozumienie silnie skorelowanych układów kwantowych oraz kwestia termalizacji w takich układach. Z drugiej strony postęp w metodach eksperymentalnych pozwala na badanie dynamiki równowagowej i poza-równowagowej w takich modelach. To inspiruje do poszukiwania metod obliczania funkcji korelacji dynamicznej w szerokiej klasie możliwych stanów, nie ograniczających się do stanów podstawowych czy równowagi termicznej.

Przedstawiłem główne wyniki konstrukcji termodynamicznych form-faktorów i skupiłem się na wynikach dotyczących dynamicznych funkcji korelacji w granicy małego pędu i energii. Jest to reżim, w którym mamy najlepszą kontrolę nad termodynamicznymi form-faktorami. Główne wyniki dotyczą wkładu cząstka-dziura i dwie cząstki-dziury do dwupunktowych funkcji operatorów zachowujących liczbę cząstek (prace [A2] i [A5-7]). W modelach całkowalnych są to wszystkie operatory związane z lokalnymi zachowanymi gęstościami i ładunkami. Omówiłem zastosowanie tej metody do modelu Lieb-Linigera. Przedstawiłem również ogólny szkielet programu termodynamicznego bootstrapu, który pozwala otrzymać wyrażenia dla termodynamicznych funkcji korelacji w dowolnym stanie systemu. Równolegle pokazałem, że metoda termodynamicznych form-faktorów jest przydatna również do zrozumienia funkcji korelacji operatorów zmieniających liczbę cząstek.

Tutaj kanonicznym przykładem była funkcja jednociałowa w modelu Lieb-Linigera [**A1**]. Przedstawione wyniki dowodzą użyteczności podejścia termodynamicznych form-faktorów do dynamicznych funkcji korelacji modeli całkowalnych.

Przyszłe badania powinny dążyć do rozszerzenia stosowalności tego podejścia na wielopunktowe funkcje korelacji (w [88] zaprezentowano podejście do tego problemu z punktu widzenia GHD) oraz do sformułowania równania Boltzmanna za pomocą termodynamicznych form-faktorów (problem ten omówiono wstępnie w [89]). Problemy te wykraczają jednak poza problem wyznaczenia standardowych dynamicznych funkcji korelacji, którym poświęcony jest ten autoreferat.

5 INFORMACJA O WYKAZYWANIU SIĘ ISTOTNĄ AKTYWNOŚCIĄ NAUKOWĄ ALBO ARTYSTYCZNĄ REALIZOWANĄ W WIĘCEJ NIŻ JEDNEJ UCZELNI, INSTYTUCJI NAUKOWEJ LUB INSTYTUCJI KULTURY, W SZCZEGÓLNOŚCI ZAGRANICZNEJ

Moje badania naukowe rozpoczęły się w 2009 roku, kiedy zostałam doktorantem na Uniwersytecie w Amsterdamie pod opieką prof. Jean-Sébastiena Caux. Głównym tematem mojej pracy były modele kwantowej fizyki wielu cząstek, które są całkowalne, w szczególności model XXZ łańcuchów spinowych i model Lieb-Linigera. Po ukończeniu studiów doktoranckich przeniosłem się do SISSA, aby kontynuować badania nad modelami całkowalnymi w grupie prof. Giuseppe Mussardo. Podczas pobytu w SISSA moja praca koncentrowała się na kwantowych całkowalnych teoriach pola. W 2015 roku otrzymałem grant FUGA Narodowego Centrum Nauki i rozpocząłem pracę na Uniwersytecie Warszawskim w grupie prof. Piotra Sułkowskiego. Oznaczało to również istotną zmianę, na teorię węzłów i topologiczną teorię strun, obszaru moich badań. W 2018 roku zostałem zatrudniony jako adiunkt na Uniwersytecie Warszawskim, a rok później otrzymałem grant SONATA na prowadzenie badań w zakresie kwantowych modeli całkowalnych. Od tego czasu dzielę swoją działalność badawczą między całkowalne modele kwantowe z zastosowaniami w układach materii skondensowanej, topologiczną teorię strun oraz kilka mniejszych projektów z dziedziny fizyki matematycznej i statystycznej. W swoich badaniach współpracuję z naukowcami z różnych instytucji.

W uzupełnieniu do prac [A1-A7] stanowiących osiągnięcie naukowe, poniżej opisuję publikacje [B1-B17], które są wynikiem różnych działań naukowych, jakie prowadziłem przez lata.

W artykule [B17] używamy dokładnych wyrażeń dla form-faktorów w mikroskopijnych modelach całkowalnych, takich jak łańcuch spinowy XXZ, model Calogero-Sutherlanda i model Lieb-Linigera, aby obliczyć nieuniwersalne współczynniki funkcji korelacji stanu podstawowego w cieczy Luttingera i jej nieliniowego rozszerzenia opisującego tak zwane edge singularities. Obliczenia wymagały starannego i technicznie trudnego obliczenia granicy termodynamicznej niektórych form-faktorów.

W artykule [B16] wykorzystaliśmy funkcje korelacji gęstość-gęstość do scharakteryzowania metastabilnego stanu modelu Lieb-Linigera zwanego gazem super Tonks-Girardeau. Omówiliśmy w jaki sposób stan ten można uzyskać za pomocą tak zwanego "interaction quench" z silnie oddziałującego modelu Lieb-Linigera, określiliśmy ilościowo stabilność gazu poprzez rozważenie eksperymentalnie istotnych procesów które prowadzą do jego kolapsu i ostatecznie pokazaliśmy, że funkcje korelacji w takim metastabilnym stanie są quasidługozasięgowe.

W artykule [B15] przedstawiliśmy wyniki dla dynamicznego czynnika struktury (DSF) modelu Lieb-Linigera w skończonej temperaturze. Wyniki uzyskaliśmy za pomocą algorytmu ABACUS i były one istotne z dwóch powodów. Po pierwsze, były to wyniki ilościowe dla dynamicznego czynnika struktury w szerokim, eksperymentalnie istotnym zakresie parametrów oddziaływań i temperatur. Po drugie, udało nam się przezwyciężyć różne trudności techniczne i algorytmiczne w uogólnieniu metody ABACUS ze stanu podstawowego do przypadku skończonej temperatury.

Artykuły [B13-14] są wynikiem naszej współpracy z dwiema grupami eksperymentalnymi i opierają się na wcześniej opracowanym podejściu do dynamicznego współczynnika struktury modelu Lieb-Linigera w skończonej temperaturze. W obu artykułach pokazujemy zgodność wyników eksperymentalnych z przewidywaniami teoretycznymi wskazującymi na możliwość eksperymentalnej realizacji modelu Lieb-Linigera. Dopasowanie danych eksperymentalnych, pochodzących z rozpraszania Braggowskiego, wymagało uogólnienia podejścia teoretycznego do niejednorodnych układów w pułapce, które osiągnęliśmy za pomocą przybliżenia gęstości lokalnej.

W artykule [B12] rozwijamy koncepcję ładunków quasi-lokalnych. Standardowe ładunki zachowane w kwantowych teoriach pola są związane z ultralokalnymi zachowanymi gęstościami. W niniejszej pracy pokazujemy, że do scharakteryzowania nierównowagowych stanów stacjonarnych m.in. Generalized Gibbs Ensemble bardziej odpowiednie może być zastosowanie ładunków o gęstościach nie dokładnie lokalnych. Zamiast tego ich gęstość działa na skończonym przedziale przestrzennym. W pracy rozważamy przykłady takich ładunków w teorii pola dla modelu Isinga i w modelu Lieb-Linigera. W dalszej pracy [B10] pokazujemy w praktyce, jak stworzyć uogólniony zespół Gibbsa z ładunkami quasi-lokalnymi i że nowy formalizm jest bardziej praktyczny w porównaniu z ładunkami ultralokalnymi. Podajemy przykłady ilustrujące te kwestie w teorii pola dla modelu Isinga.

Artykuł [B11] dotyczy dynamiki nierównowagi w supersymetrycznych kwantowych teoriach pola (1+1)d. W tej pracy znajdujemy zbiór stanów początkowych zgodnych z supersymetrią, analizujemy widma takich teorii i na koniec obliczamy przewidywania dla dynamicznych funkcji korelacji. Idee ilustrujemy przykładami w trójkrytycznym modelu Isinga i modelu Sine-Gordon. Pokazujemy również, jak skonstruować uogólniony zespół Gibbsa z dodatkowymi ładunkami supersymetrycznymi.

Artykuły [B8,B9] są spin-offem mojej pracy nad termodynamicznymi form-faktorami. W [B9] analizujemy uogólnioną równowagę szczegółową, którą odkryliśmy podczas pracy nad form-faktorami operatora gęstości w modelu Lieb-Linigera. Stosujemy tę relację, aby znaleźć związek pomiędzy między dynamicznym czynnikiem struktury a mikroskopowym rozkładem quasi-pędów. Proponujemy ten związek jako eksperymentalną metodę pomiaru rozkładu quasi-pędów, a tym samym pełną charakterystykę stanu równowagowego lub stacjonarnego układu. W artykule [B8] używamy termodynamicznych form-faktorów do przewidzenia tak zwanych edge-singularities i quasi-długozakresowego porządku w nierównowagowym stanie stacjonarnym, który pojawia się po połączeniu dwóch termodynamicznie różnych (np. w różnych temperaturach) modelach Lieb-Linigera.

W artykule [B7] analizujemy niezmienniki węzłów za pomocą nowo odkrytego związku pomiędzy węzłami a teorią kołczanów (quiverów). Pokazujemy, że pewne niezmienniki węzłów są związane z kombinatorycznym problemem liczenia ścieżek i ścieżek ważonych *q* na dyskretnej sieci. Relacja ta pozwoliła nam określić, wcześniej nieznane, quivery odpowiadające niektórym węzłom torycznym. To z kolei dało kolejne jawne przykłady związku pomiędzy węzłami a quiverami. Nasze rozważania doprowadziły również do sformułowania jawnych wzorów na funkcje generujące i niezmienniki Donaldsona-Thomasa dowolnych (niezwiązanych z węzłami i ścieżkami) symetrycznych quiverów.

Artykuły [B6] i [B2] opisują dalsze zastosowania teorii reprezentacji kołczanów w topologicznej teorii strun. Pokazujemy, że wkład otwartych strun do funkcji podziału w takich teoriach, w pewnych specjalnych geometriach zwanych strip geometries, przybiera postać funkcji generującej niezmienniki Donaldsona-Thomasa. Ponadto w pracy [B6] pokazujemy, że funkcje te mogą być rozumiane jako uogólnienie funkcji hiper-geometrycznych i znajdujemy rekurencyjną zależności, które spełniają. Natomiast w [B2] pokazujemy, że funkcje podziału można postrzegać jako pewne funkcje falowe, a zmiana położenia brany jest równoznaczna ze zmianą polaryzacji funkcji falowej. Identyfikujemy grupę SL(2, Z) przekształceń realizujących te operacje i opisujemy ich działanie na opisujące je quivery.

W artykule [B5] zajmujemy się badaniem uogólnionej hydrodynamiki, czyli teorii nierównowagowej dynamiki stanów niejednorodnych w kwantowych modelach całkowalnych. Proponujemy numeryczną metodę rozwiązywania równań GHD w reżimie liniowym. Odkrywamy, że termalizacja w takich systemach odbywa się poprzez a) homogenizację w przestrzeni rzeczywistej oraz b) termalizację w przestrzeni quasi-pędów. Identyfikujemy kluczową rolę dyfuzji dla tych ostatnich.

Artykuł [B4] zadaje pytanie, jak bardzo kwantowe są oddziałujące łańcuchy spinowe, takie jak model XXZ. Rozważamy w nim krótkie łańcuchy i ilościowo opisujemy nielokalność korelacji i splątanie w stanach podstawowych takich układów i w skończonych temperaturach. Pokazujemy, że pojedynczy element macierzy gęstości niesie istotne informacje dla tego problemu. Nasze rozważania ilustrujemy przykładami dla modelu Isinga, łańcucha spinowego XXZ i modelu Majumdara-Ghosha.

W artykule [B3] ponownie rozważamy funkcje generujące niezmienniki Donaldsona-Thomasa. Analizujemy poszczególne klasy quiverów i wyprowadzamy odpowiadające im klasyczne i kwantowe wielomiany A. Te wielomiany kodują relacje, z których można odzyskać funkcje generującą. Głównym rezultatem naszej pracy jest postulat, że zarówno funkcje generującą, jak i kwantowy wielomian A, można obliczyć za pomocą topologicznej rekurencji. Podajemy przykłady konkretnych obliczeń ilustrujących tą hipotezę.

Artykuł przeglądowy [B1] dotyczy najnowszych osiągnięć uogólnionej hydrodynamiki i dynamicznych

funkcji korelacji. Ogólna dyskusja przeplata się z konkretnymi przykładami z kwantowych modeli całkowalnych, w których idee hydrodynamiczne są powiązane z obrazem quasi-cząstek oferowanym przez te ostatnie. W szczególności przedstawiamy jak wyniki uogólnionej hydrodynamiki i termodynamicznych form-faktorów uzupełniają się i pozwalają na głębsze zrozumienie dynamicznych funkcji korelacji w takich układach.

Lista publikacji nieujętych w Osiągnięciu w pkt. 4

- [B1] J De Nardis, B Doyon, M Medenjak, M Panfil Correlation functions and transport coefficients in generalised hydrodynamics arXiv preprint arXiv:2104.04462 3 2021.
- [B2] T. Kimura, M. Panfil, Y. Sugimoto, P. Sułkowski Branes, quivers and wave-functions SciPost Physics 10, 051 (2021).
- [B3] H. Larraguivel, D. Noshchenko, M. Panfil, P. Sułkowski Nahm sums, quiver A-polynomials and topological recursion Journal of High Energy Physics 2020, 151 (2020).
- [B4] A. Niezgoda, M. Panfil, J. Chwedeńczuk Quantum correlations in spin chains Physical Review A 102 (4), 042206 (2020).
- [B5] M. Panfil, J. Pawełczyk Linearized regime of the generalized hydrodynamics with diffusion SciPost Physics Core 1, 002 (2019).
- [B6] M. Panfil, P. Sułkowski *Topological strings, strips and quivers* Journal of High Energy Physics 2019 (1), 124 (2019).
- [B7] M. Panfil, M. Stošić, P. Sułkowski Donaldson-Thomas invariants, torus knots, and lattice paths Physical Review D 98 (2), 026022 (2018).
- [B8] J. De Nardis, M. Panfil Edge Singularities and Quasilong-Range Order in Nonequilibrium Steady States Physical Review Letters 120 (21), 217206 (2018).
- [B9] J. De Nardis, M. Panfil, A. Gambassi, L. Cugliandolo, R. Konik, L. Foini Probing non-thermal density fluctuations in the one-dimensional Bose gas SciPost Physics 3 (3), 023 (2017).
- [B10] F.H.L. Essler, G. Mussardo, M. Panfil On truncated generalized Gibbs ensembles in the Ising field theory Journal of Statistical Mechanics: Theory and Experiment 2017 (1), 013103 (2017).
- [B11] A.C. Cubero, G. Mussardo, M. Panfil Quench dynamics in two-dimensional integrable SUSY models Journal of Statistical Mechanics: Theory and Experiment 2016 (3), 033115 (2016).
- [B12] F.H.L. Essler, G. Mussardo, M. Panfil Generalized Gibbs ensembles for quantum field theories Physical Review A 91, 051602 (2015).

- [B13] F. Meinert, M. Panfil, M.J. Mark, K. Lauber, J.-S. Caux, H.C. Nägerl Probing the Excitations of a Lieb-Liniger Gas from Weak to Strong Coupling Physical Review Letters 115 (8), 085301 (2015).
- [B14] N. Fabbri, M. Panfil, D. Clément, L. Fallani, M. Inguscio, C. Fort, J.-S. Caux Dynamical structure factor of one-dimensional Bose gases: Experimental signatures of beyond- Luttinger-liquid physics Physical Review A 91 (4), 043617 (2015).
- [B15] M. Panfil, J.-S. Caux Finite-temperature correlations in the Lieb-Liniger one-dimensional Bose gas Physical Review A 89 (3), 033605 (2014).
- [B16] M. Panfil, J. De Nardis, J.-S. Caux Metastable criticality and the super Tonks-Girardeau gas Physical Review Letters 110 (12), 125302 (2013).
- [B17] A. Shashi, M. Panfil, J.-S. Caux, A. Imambekov Exact prefactors in static and dynamic correlation functions of one-dimensional quantum integrable models: Applications to the Calogero-Sutherland, Lieb-Liniger, and XXZ models Physical Review B 85 (15), 155136 (2012).

6 INFORMACJA O OSIĄGNIĘCIACH DYDAKTYCZNYCH, ORGANIZACYJNYCH ORAZ POPULARYZUJĄCYCH NAUKĘ LUB SZTUKĘ

A. DOŚWIADCZENIE W NAUCZANIU

- 2015 Wykłady i ćwiczenia na Uniwersytecie Warszawskim: Poziom licencjatu: Fizyka z matematyką, Termodynamika Poziom magisterski: Quantum Integrable Field Theories, Statistical Physics, Stochastic Processes in Physics and Biology, Introduction to exactly solvable models, opiekun Zespołowego Projektu Studenckiego.
- **2017** Seria wykładów zatytułowanych "Symmetries, lattices and physics" przedstawionych podczas Abecedarian School on Symmetries and Integrability of Difference Equations, Montreal, Canada;
- 2009 2013 Ćwiczenia prowadzone na Universiteit van Amsterdam; Poziom licencjatu: Classical mechanics, Electrodynamics Poziom magisterski: Condensed Matter Field Theory

B. DZIAŁALNOŚĆ ORGANIZACYJNA

- Członek komitetu organizacyjnego nadchodzącej konferencji StringMath (2022).
- Członek komitetu organizacyjnego i naukowego nadchodzącje VII Warszawskiej Szkoły Fizyki Statystycznej (2022).
- Współorganizator Seminarium Fizyki Materii Skondensowanej na Wydziale Fizyki, Uniwesrsytet Warszawski (2021/2022).
- Członek komitetu organizacyjnego "Quantum fields, knots and strings", wrzesień 2018.

- Członek komitetu organizacyjnego "StringPheno18", lipiec 2018.
- Członek komitetu organizacyjnego i naukowego 'Advanced School of the Integrability', marzec 2017.
- Organizator seminarium "Statistical Physics" w SISSA, Trieste, 2014/2015.
- Założyciel i członek Rady Doktorantów w Institute of Physics, Universiteit van Amsterdam, 2012/2013.

C. POPULARYZACJA NAUKI

- Członek zespołu "Zapytaj Fizyka" odpowiedzialny za udzielania odpowiedzi na pytania o zjawiska fizyczne zgłoszone przez internautów, maj 2018 grudzień 2019
- Seria popularno-naukowych wykładów (łącznie 30h) o kwantowych podstawach magnetyzmu zatytułowana "Magnetyzm magnesu" w ramach Uniwersytetu Otwartego Uniwersytetu Warszawskiego, luty czerwiec 2018

7 INNE INFORMACJE ZAWODOWE

- Opiekun naukowy Oleksandra Gamayuna, stypendysty fundacji NAWA w ramach programu ULAM, od czerwca 2021,
- Członek 3 komisji doktorskich; 1 na Université Catholique de Louvain (lato 2020) i 2 na Uniwersytecie Warszawskim (jesień 2021),
- Opiekun Felipe Sant'ana, postdoka zatrudnionego w ramach mojego grantu SONATA, od października 2020,
- Laureat Stypendium MEiN dla Młodych Naukowców, (2020 2023),
- Promotor dwóch prac magisterskich i jednej licencjackiej.
- Głowny wykonawca grantu SONATA "Dynamic correlation functions of quantum integrable models: in and beyond the equilibrium" (2019 2023) i grantu FUGA "Topological field theories, new knot invariants and integrable models" (2015 2018),
- Stypendysta programu Huygens Holenderskiego Ministerstwa Edukacji, Kultury i Nauki, (2008–2010).

Literatura

- K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995).
- [2] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Science 269, 198 (1995), http://www.sciencemag.org/content/269/5221/198.full.pdf.
- [3] M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen(De), and U. Sen, Advances in Physics 56, 243 (2007), https://doi.org/10.1080/00018730701223200.
- [4] I. Bloch, J. Dalibard, and W. Zwerger, Reviews of Modern Physics 80, 885 (2008).
- [5] M. A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, and M. Rigol, Reviews of Modern Physics 83, 1405 (2011).
- [6] B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I. Cirac, G. V. Shlyapnikov, T. W. Hänsch, and I. Bloch, Nature 429, 277 (2004).
- [7] T. Kinoshita, T. Wenger, and D. S. Weiss, Science 305, 1125 (2004).
- [8] A. H. van Amerongen, J. J. P. van Es, P. Wicke, K. V. Kheruntsyan, and N. J. van Druten, Phys. Rev. Lett. 100, 090402 (2008).
- [9] B. Fang, A. Johnson, T. Roscilde, and I. Bouchoule, Phys. Rev. Lett. 116, 050402 (2016).

- [10] S. Hofferberth, I. Lesanovsky, B. Fischer, T. Schumm, and J. Schmiedmayer, Nature 449, 324 (2007).
- [11] E. Haller, M. Gustavsson, M. J. Mark, J. G. Danzl, R. Hart, G. Pupillo, and H.-C. Nagerl, Science 325, 1224 (2009).
- [12] T. Langen, R. Geiger, and J. Schmiedmayer, Annual Review of Condensed Matter Physics 6, 201 (2015), https://doi.org/10.1146/annurev-conmatphys-031214-014548.
- [13] T. Kinoshita, T. Wenger, and D. S. Weiss, Nature 440, 900 (2006).
- [14] M. Rigol, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008), arXiv:0708.1324 [cond-mat.stat-mech].
- [15] J. Dziarmaga, Advances in Physics 59, 1063 (2010), https://doi.org/10.1080/00018732.2010.514702.
- [16] J. Eisert, M. Friesdorf, and C. Gogolin, Nature Physics 11, 124 (2015).
- [17] L. D'Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, Advances in Physics 65, 239 (2016), https://doi.org/10.1080/00018732.2016.1198134.
- [18] F. H. L. Essler and M. Fagotti, Journal of Statistical Mechanics: Theory and Experiment 6, 064002 (2016), arXiv:1603.06452 [cond-mat.quant-gas].
- [19] P. Calabrese and J. Cardy, Journal of Statistical Mechanics: Theory and Experiment 6, 064003 (2016), arXiv:1603.02889 [cond-mat.stat-mech].
- [20] L. Vidmar and M. Rigol, Journal of Statistical Mechanics: Theory and Experiment 6, 064007 (2016), arXiv:1604.03990 [cond-mat.stat-mech].
- [21] B. McCoy and T. T. Wu, The two-dimensional Ising model (Harvard Univ. Press, Cambridge, Mass., 1973).
- [22] B. M. McCoy, E. Barouch, and D. B. Abraham, Phys. Rev. A 4, 2331 (1971).
- [23] V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, *Quantum Inverse Scattering Method and Correlation Functions* (Cambridge Univ. Press, Cambridge, 1993).
- [24] S. Pakuliak, E. Ragoucy, and N. Slavnov, SciPost Phys. Lect. Notes, 6 (2018).
- [25] J. M. Maillet and G. Niccoli, Journal of Mathematical Physics 59, 091417 (2018).
- [26] M. Karowski and P. Weisz, Nuclear Physics B 139, 455 (1978).
- [27] F. A. Smirnov, Form Factors in Completely Integrable Models of Quantum Field Theory (World Scientific, 1992).
- [28] B. Pozsgay and G. Takacs, Nucl. Phys. B788, 167 (2008), arXiv:0706.1445 [hep-th].
- [29] B. Pozsgay and G. Takács, Nuclear Physics B 788, 209 (2008).
- [30] F. H. L. Essler and R. M. Konik, J. Stat. Mech. 0909, P09018 (2009), arXiv:0907.0779 [cond-mat.str-el].
- [31] G. Mussardo, Statistical Field Theory (Oxford University Press, 2010).
- [32] B. Pozsgay and G. Takacs, J. Stat. Mech. 1011, P11012 (2010), arXiv:1008.3810 [hep-th].
- [33] B. Bertini, D. Schuricht, and F. H. L. Essler, J. Stat. Mech. Theor. Exp. 2014, P10035 (2014).
- [34] A. Cortés Cubero and D. Schuricht, Journal of Statistical Mechanics: Theory and Experiment 2017, 103106 (2017).
- [35] B. Pozsgay and I. Szécsényi, Journal of High Energy Physics 2018, 170 (2018).
- [36] A. LeClair and G. Mussardo, Nuclear Physics B 552, 624 (1999).
- [37] H. Saleur, Nucl. Phys. B567, 602 (2000), arXiv:hep-th/9909019 [hep-th].
- [38] B. Pozsgay, J. Stat. Mech. 1101, P01011 (2011), arXiv:1009.4662 [hep-th].
- [39] A. Leclair, F. Lesage, S. Sachdev, and H. Saleur, Nuclear Physics B 482, 579 (1996).
- [40] O. Castro-Alvaredo and A. Fring, Nuclear Physics B 636, 611 (2002).
- [41] B. Doyon, Journal of Statistical Mechanics: Theory and Experiment 2005, P11006 (2005).
- [42] B. Doyon, Symmetry, Integrability and Geometry: Methods and Applications (2007), 10.3842/sigma.2007.011.
- [43] A. G. Izergin and V. E. Korepin, Commun. Math. Phys. 94, 67 (1984).
- [44] N. A. Slavnov, Theor. Math. Phys. 79, 502 (1989).
- [45] T. Kojima, V. E. Korepin, and N. A. Slavnov, Communications in Mathematical Physics 188, 657 (1997).
- [46] N. A. Slavnov, Theor. Math. Phys. 82, 273 (1990).
- [47] N. Kitanine, J. M. Maillet, and V. Terras, Nucl. Phys. B 554, 647 (1999).
- [48] S. Belliard, S. Pakuliak, E. Ragoucy, and N. A. Slavnov, Journal of Statistical Mechanics: Theory and Experiment 2013, P04033 (2013).
- [49] J. Fuksa and N. A. Slavnov, Journal of Statistical Mechanics: Theory and Experiment 2017, 043106 (2017).
- [50] S. Z. Pakuliak, E. Ragoucy, and N. A. Slavnov, Theoretical and Mathematical Physics 181, 1566 (2014).
- [51] A. Hutsalyuk, A. Liashyk, S. Pakuliak, E. Ragoucy, and N. Slavnov, Nuclear Physics B 911, 902 (2016).

- [52] J. Schlappa, K. Wohlfeld, K. J. Zhou, M. Mourigal, M. W. Haverkort, V. N. Strocov, L. Hozoi, C. Monney, S. Nishimoto, S. Singh, A. Revcolevschi, J.-S. Caux, L. Patthey, H. M. Rønnow, J. van den Brink, and T. Schmitt, Nature 485, 82 (2012).
- [53] J.-S. Caux, J. Math. Phys. 50, 095214 (2009).
- [54] N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov, and V. Terras, J. Stat. Mech. Theor. Exp. 2012, P09001 (2012).
- [55] K. K. Kozlowski, Journal of Mathematical Physics 60, 073303 (2019), https://doi.org/10.1063/1.5094332.
- [56] O. Gamayun, N. Iorgov, and Y. Zhuravlev, SciPost Physics 10 (2021), 10.21468/scipostphys.10.3.070.
- [57] E. Granet, M. Fagotti, and F. H. L. Essler, SciPost Phys. 9, 33 (2020).
- [58] E. Granet, Journal of Physics A: Mathematical and Theoretical 54, 154001 (2021).
- [59] E. Granet and F. H. L. Essler, SciPost Phys. 9, 82 (2020).
- [60] O. A. Castro-Alvaredo, B. Doyon, and T. Yoshimura, Phys. Rev. X 6, 041065 (2016).
- [61] R. van den Berg, B. Wouters, S. Eliëns, J. De Nardis, R. M. Konik, and J.-S. Caux, Phys. Rev. Lett. 116, 225302 (2016).
- [62] B. Doyon, arXiv (2019), arXiv:1912.08496 [cond-mat.stat-mech] .
- [63] B. Doyon and H. Spohn, SciPost Physics 3, 039 (2017).
- [64] B. Doyon, SciPost Physics 5, 054 (2018), arXiv:1711.04568 [math-ph].
- [65] J. De Nardis, D. Bernard, and B. Doyon, Phys. Rev. Lett. 121, 160603 (2018), arXiv:1807.02414 [cond-mat.statmech].
- [66] J. D. Nardis, D. Bernard, and B. Doyon, SciPost Phys. 6, 49 (2019).
- [67] A. C. Cubero, arXiv (2020), arXiv:2001.03065 [cond-mat.stat-mech].
- [68] A. B. Zamolodchikov and A. B. Zamolodchikov, Annals of Physics 120, 253 (1979).
- [69] C. N. Yang and C. P. Yang, J. Math. Phys. 10, 1115 (1969).
- [70] J. Mossel and J.-S. Caux, J. Phys. A: Math. Theor. 45, 255001 (2012).
- [71] J.-S. Caux and R. M. Konik, Phys. Rev. Lett. 109, 175301 (2012), arXiv:1203.0901 [cond-mat.quant-gas].
- [72] M. Gaudin, La fonction d'onde de Bethe (Masson, Paris, 1983).
- [73] V. E. Korepin, Communications in Mathematical Physics, 391 (1982).
- [74] E. H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963).
- [75] G. E. Astrakharchik, J. Boronat, J. Casulleras, and S. Giorgini, Phys. Rev. Lett. 95, 190407 (2005).
- [76] M. Olshanii, Phys. Rev. Lett. 81, 938 (1998).
- [77] A. Brunello, F. Dalfovo, L. Pitaevskii, S. Stringari, and F. Zambelli, Phys. Rev. A 64, 063614 (2001).
- [78] N. Fabbri, D. Clément, L. Fallani, C. Fort, and M. Inguscio, Phys. Rev. A 83, 031604 (2011).
- [79] F. Bornemann, Mathematics of Computation 79, 871 (2009).
- [80] T. Fokkema, I. S. Eliëns, and J.-S. Caux, Phys. Rev. A 89, 033637 (2014).
- [81] L. P. Pitaevskii and E. M. Lifshitz, Statistical Physics, Part 2. Vol. 9 (Butterworth-Heinemann, 1980).
- [82] V. Korepin and N. Slavnov, Communications in Mathematical Physics 136 (1991), 10.1007/BF02099079.
- [83] J.-S. Caux, P. Calabrese, and N. A. Slavnov, J. Stat. Mech. Theor. Exp. 2007, P01008 (2007).
- [84] J.-S. Caux, Journal of Statistical Mechanics: Theory and Experiment 2016, 064006 (2016).
- [85] M. Kormos, G. Mussardo, and A. Trombettoni, Phys. Rev. A 81, 043606 (2010).
- [86] M. Kormos, G. Mussardo, and B. Pozsgay, Journal of Statistical Mechanics: Theory and Experiment 2010, P05014 (2010).
- [87] A. Bastianello, A. De Luca, and G. Mussardo, Journal of Statistical Mechanics: Theory and Experiment 2016, 123104 (2016).
- [88] M. Fava, S. Biswas, S. Gopalakrishnan, R. Vasseur, and S. A. Parameswaran, Proceedings of the National Academy of Sciences 118, e2106945118 (2021).
- [89] J. Durnin, M. J. Bhaseen, and B. Doyon, Phys. Rev. Lett. 127, 130601 (2021), arXiv:2004.11030 [cond-mat.statmech].

Manlil