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c) Discussion of the scientific aim of the above papers and
the achieved results with a discussion of their possible ap-
plications.

1 Introduction

The notion of continuity is deeply rooted in the foundations of modern phy-
sics. The fundamental theories such as fluid mechanics, classical electrody-
namics, quantum mechanics and general relativity are defined on differential
manifolds and consequently the laws of these theories are formulated in the
form of differential equations. The undoubted success of differential calculus
in physical theories caused that the difference equations defined on discre-
te sets have been regarded as secondary with respect to their continuous
counterparts for centuries. This situation changed with the development of
numerical methods and e.g. due to attempts to quantize gravity. The need for
the development of mathematical tools for difference equations appeared and
this dissertation, which develops the theory of discrete integrable systems,
belongs to the trend that responds to the demand.
In particular the difference geometry [1], the theory that tries to build a

discrete world from scratch, however, without losing the correspondence with
differential geometry (that is why this area is nowadays perversely referred to
as the discrete differential geometry [2]) but also without blind copying the
differential geometry, provides us with a guiding principle. Namely, first we
confine ourselves to a certain class of surfaces having an additional feature,
then we discretize the class of surfaces so that the resulting discrete lattices
had the same feature and then we extend the results obtained in this way
to more general objects that do not have the feature. In the case of the
difference geometry integrability is the additional feature - first we choose
a class of surfaces described by integrable nonlinear differential equations
and discretize the class in such a way that the resulting class of lattices is
described by integrable nonlinear difference equations.
By integrability of nonlinear equations, both difference ones and diffe-

rential ones, we mean a series of interrelated properties including, first, the
existence of Bäcklund transformations (allowing to construct from the known
solutions of the equation its new solutions) and non-linear superposition prin-
ciple (allowing to superpose these new solutions), second, the existence of the
system of linear equations (Lax pair) which (what is very important from

3



the point of view of this paper) is covariant under the so-called Darboux
type transformations and for which compatibility conditions give the nonli-
near equations in question, third, inverse scattering and algebro-geometric
methods [3, 4, 5]. We will use the term Darboux type transformations in its
broadest meaning, i.e. the binary Darboux transformation, which is often cal-
led the fundamental transformation, as well as its reductions, will be referred
here to as Darboux type transformations. It will be important for us that ma-
ny of the techniques for constructing solutions of nonlinear equations is based
on these transformations, while we ignore the role of these transformations
in the theory of linear equations.
Let us emphasize, the fundamental object in the continuous case is the

class of the surfaces and not the differential equation describing the class.
Focusing on the class of surfaces we unify differential equations that describe
them. This statement, in the theory of integrable systems, we owe Antoni
Sym [6]. The classical example are pseudo-spherical surfaces. The standard
way to describe them is to give the angle φ(u, v) between asymptotic lines,
the angle satisfies the sine-Gordon equation

∂u∂vφ(u, v) = sinφ(u, v).

Another way of description is to give the normal vector ~n(u, v), which sa-
tisfies the following non-linear system (this system appears e.g. in theory of
nonlinear σ-models or in theory of harmonic maps)

∂u∂v~n(u, v) = f(u, v)~n(u, v), ~n(u, v) · ~n(u, v) = 1

One can obtain the position vector ~r(u, v) of pseudo-spherical surfaces using
the so-called Lelieuvre formulas

∂u~r(u, v) = ∂u~n(u, v)× ~n(u, v), ∂v~r(u, v) = ~n(u, v)× ∂v~n(u, v).

We will come back to Lelieuvre formulas in a moment.
We come to a burning problem of difference geometry. In the continuous

case, we are able to change the parameterization of the surface surface ũ =
f(u, v), ṽ = g(u, v). In particular, the linear differential equations of second
order in two independent variables, which can appear in the geometry of
solitons e.g. as

- an equation of the Lax pair
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- or a part of the non-linear system (see the above description of the
pseudo-spherical surfaces by means of the normal vector)

- or equations of moving frame,

are usually reduced, by appropriate choice of the parameterization, to the
canonical form

[∂x∂x + ǫ∂y∂y + α(x, y)∂x + β(x, y)∂y + γ(x, y)]ψ(x, y) = 0,

where ǫ = −1, 0, 1. In the case of hyperbolic equations (i.e. when ǫ = −1) we
often take

[∂u∂v + a(u, v)∂u + b(u, v)∂v + c(u, v)]ψ(u, v) = 0 (1)

as the canonical form. In difference geometry only some of specific parame-
terizations (coordinate nets) have been discretized so far, for example, the
asymptotic coordinates. This restriction manifests on the level of equations
in discretization of canonical form (1) only or, in other words, in the discre-
tization of operator ∂u∂v + a(u, v)∂u + b(u, v)∂v + c(u, v). This is a weakness
of differential geometry, for which we are trying to find a remedy here.
In the presented series of articles, we try to compensate the lack of a

sufficiently general change of the independent variables in the discrete case,
by considering more general discrete operators than those previously conside-
red in the difference geometry. We present discretization of linear differential
operators of second order in two independent variables. Classes of discrete
operators we discuss here admit the Darboux type transformation in full ana-
logy to their continuous counterparts and their less general discrete versions.
In particular, we show the full (i.e. without specification to canonical form
(1)) discretization of the linear operator of the second order in two indepen-
dent variables, as well as the full discretization of formally self-adjoint linear
operator of the second order in two independent variables. We show examples
of the application of the obtained operators in the theory of integrable systems
and difference geometry.
The necessity to consider the theory of discrete integrable systems on

regular lattices other than Z
n was pointed out already in 1997 by S.P. Novikov

[7, 8]. Considerations on the discretization of self-adjoint elliptic equations of
second order in two independent variables so that the discrete operators were
factorizable (and as a result so that the discrete operators admitted Laplace
transformations) led to a 7-point self-adjoint operator given on the triangular
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lattice. Laplace transformations play an important role in the classification of
differential and difference integrable equations and therefore the articles [7, 8]
should be regarded as the beginning of applications of regular lattices other
than Z

n in the theory of integrable systems. In the articles that the present
dissertation consist of we went a step further. We showed e.g. that the 7-point
operator also admits the Darboux type transformations (or more precisely
their subclass referred to as Moutard type transformations) and as such can
be considered as part of the Lax pairs for integrable systems. It is worth
mentioning that opposite to the two-dimensional operators considered herein,
for one-dimensional operators terms Darboux transformation and Laplace
transformation can be used interchangeably.
Let us finally put the issue of discretization of differential equations in a

broader perspective. Among the fundamental physics of nonlinear equations
such as Einstein’s equations, Navier-Stokes equations or Gross-Pitaevskii
equations, their special cases such as respectively Ernst equation, the Kadom-
tsev-Petviashvili equation or nonlinear Schrödingera equation are integrable.
An attempt can be made to discretize full equations (e.g. Einstein’s ones or
Navier-Stokes ones), starting from the results obtained for the integrable di-
scretizations of integrable special cases of these equations. However, we have
to learn first how discretize integrable equations so that they reproduce in
the continuum limit not only an equation describing a geometrical situation
but also the freedom that in the continuous case comes from the possibility
of change of the independent variables. The first such example in the litera-
ture we recall in section 5 of this dissertation, where we discuss the results
of article [H3] concerning the discretization Lelieuvre formulas of equi-affine
geometry [9].

2 Darboux type transformations

The transformation for the operator d
2

dx2
− u(x)− λ, nowadays known as the

Darboux transformation, was received by Darboux [10, 11] via separation
of variables in the so-called Moutard transformation [12, 13]. We recall the
Moutard transformation, since a large part of the presented dissertation is
dedicated to this class of Darboux type transformations. Let ψ is the kernel
of a Moutard operator

M := ∂x∂y − F (x, y) (2)
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and θ denotes particular non-zero element of the kernelMθ = 0 (particular
solution of the Moutard equation), then set of functions ψ̃ given by solutions
of the pair of linear differential equations

∂x(θψ̃) = θ∂xψ − ψ∂xθ, ∂y(θψ̃) = −θ∂yψ + ψ∂yθ,

belongs to the kernel of Moutard operator M̃ := ∂x∂y − F̃ (x, y) where
F̃ = θ∂x∂y

1
θ
. Further studies on this type of transformations led to the con-

struction of a transformation, not without reason referred to as fundamental
transformation, for operators ∂u∂v + a(u, v)∂u + b(u, v)∂v + c(u, v) (or sys-
tems of such operators associated with a compatible system of equations of
the form (1)) [14].
Let us present the essence of this transformation in a manner which can

be used for both continuous and discrete case [H6,H9].
First, two operators of the second order L and L (differential ones or

difference ones) we refer to as (gauge) equivalent iff there exist two operators
of multiplication by a function (in the cases considered here, these functions
are functions R

2 → R in the continuous case, while in the discrete case R
2

should be replaced by an appropriate regular lattice) θ, φ such that L = φLθ.
The point is that if we multiply L from the right side by an element of
the kernel of the operator L, Lθ = 0 and on the left by an element of the
kernel of the formally adjoint operator L† to the operator L, L†φ = 0 then
equation (φLθ)Ψ = 0 can be rewritten in the continuous case in the form
∂xP + ∂yQ = 0 and in the discrete case as (Tm − 1)P + (Tn − 1)Q = 0,
which guarantees existence of the function Ψ̃ given in the continuous case
by P = ∂yΨ̃, Q = −∂xΨ̃, while in the discrete case via Q = (Tm − 1)Ψ̃,
P = −(Tn − 1)Ψ̃. Given θ, φ (functional parameters of the transformation),
then set of functions Ψ̃ obtained from set of functions Ψ belongs to the
kernel of a second order linear operator, the so-called Darboux transform of
operator L.
The key results of presented dissertation are contained in the papers

[H1,H6] and in the review paper [H9], where we compare these results with the
known results of the two-dimensional difference operators admitting Darboux-
type transformations. Here we present only the main facts.
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2.1 6-point scheme

In article [H6] we show, that the difference operator given on the six points
of the triangular regular lattice

Am,nTmTm +Bm,nTnTn + 2Cm,nTmTn +Gm,nTm +Hm,nTn + Fm,n, (3)

where Tm and Tn denotes elementary shift operators on the triangular lattice,
passing in the natural continuum limit into the most general linear operator
in two independent variables

a(x, y)∂x∂x+ b(x, y)∂y∂y+2c(x, y)∂x∂y+ g(x, y)∂x+h(x, y)∂y+ f(x, y), (4)

admits the Darboux type transformation having all the features of a fun-
damental transformation, see the Conclusion 2 of article [H6] (as well as
Theorem 3.1 from [H9]).
It is important in the theory of integrable systems to question whether

the class of operators can be restricted to a certain subclass of operators,
which is preserved by a (reduced) Darboux type transformation. We deal
with this issue in the article [H6] as well.
Constraints Am,n ≡ 0, Bm,n ≡ 0 and Fm,n ≡ 0 are preserved by the trans-

formation (Theorem 3.1 from [H9]). Setting Am,n ≡ 0 and Bm,n ≡ 0, we get
results for the two-dimensional case of the article [15]. Setting Am,n ≡ 0,
Bm,n ≡ 0 and Fm,n ≡ 0, leads to results for the two-dimensional case from
the articles [16, 17]. These constraints do not change the nature of the trans-
formation, the transformation still remains a fundamental transformation,
its functional parameters are functions θ and φ. This procedure is referred in
[H6] and [H9] to as a specification of the operator. Specifications Am,n ≡ 0
and Bm,n ≡ 0 leads to a discretization of the hyperbolic operator appe-
aring in the equation (1). In the continuous case the effect analogous to the
specification a(x, y) ≡ 0 and b(x, y) ≡ 0 can be obtained by changing the
parameterisation, i.e. a change of the independent variables. In the discrete
case we need a drastic change of operator from given on the six points to the
operator given on four points.
The class of operators can also by reduced by choice of a special gauge.

Since this procedure is less important in the theory of integrable systems (in
theory Darboux transformation we operate on equivalence classes of gauge
equivalent operators) we will omit it here, we refer the interested reader to
the articles [H6] and [H9]. Finally, we have at our disposal reductions, when
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the solutions φ of the equation formally adjoint to the equation can be expres-
sed in terms of a solution θ of the equation by a difference substitution. We
describe in Section 3.3 of [H9] two such cases, Goursat one and Moutard one,
in the presence of constraints Am,n ≡ 0 and Bm,n ≡ 0 and although both of
these cases were known earlier (see [H14] and citations therein) investigation
of the reduction of fundamental transformation to the Darboux type trans-
formations for discrete Moutard equation and discrete Goursat equation is
the original result of the paper [H9].

2.2 7-point self-adjoint scheme

In the article [H1] we show that formally self-adjoint difference operator from
article [8]

am,nTm+am−1,nT
−1
m +bm,nTn+bm,n−1T

−1
n +cm+1,nTmT

−1
n +cm,n+1T

−1
m Tn−fm,n,

(5)
which is a discretization of the formally self-adjoint two-dimensional diffe-
rential operator

∂x[A(x, y)∂x + C(x, y)∂y] + ∂y[C(x, y)∂x +B(x, y)∂y]− F (x, y), (6)

admits, in full analogy to its continuous counterpart, a kind Darboux type
transformation: a Moutard type transformation. Moreover, both in continu-
ous and in the discrete case, we are able to specify the operators, since both
constraint cm,n ≡ 0 and its continuous version C(x, y) ≡ 0 are preserved
by mentioned transformations. In the discrete case specification leads to the
operator

am,nTm + am−1,nT
−1
m + bm,nTn + bm,n−1T

−1
n − fm,n, (7)

which is a discrete counterpart of operator

∂x[A(x, y)∂x] + ∂y[B(x, y)∂y]− F (x, y). (8)

Again, in the continuous case the specification C(x, y) ≡ 0 can be obtained
via change of independent variables.
These results are worth setting together with the known results on di-

scretization of the two-dimensional formally self-adjoint differential operator.
Namely the Moutard operator (2) has two discretizations: discrete Moutard
operator [18, 19]

TmTn + 1− fm,n(Tm + Tn)
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and adjoint discrete Moutard operator [H14]

TmTn + 1− fm+1,nTm − fm,n+1Tn.

It is easy now to understand our primary motivation. We wanted to find a
full discretization of the equation (6) (but the one which admits Moutard
type transformation) and not just the particular version (2). In particular,
our main motivation was to investigate the discrete operators of elliptical
nature i.e. schemes for which the discrete Dirichlet boundary value problem
is the proper boundary value problem (see article [H3] of this dissertation).
The question remains whether there are connections between the discrete

Moutard operator and operators (5) or operator (7)? We will present an
affirmative answer to this question in the next section.

2.3 Q-difference operators

The paper [H4] shows that the results obtained in [H1] and [H6] can be
rewritten in terms of q-differential operators. It is worth mentioning the MSc
thesis written under my supervision [20], where fundamental transformation
of q-differential operators was presented in a way closer to the original article
by Jonas [14].

3 The sublattice approach

The particular form of discrete Moutard equation

[TmTn − 1−
pm − qn
pm + qn

(Tm − Tn)]ψ(m,n) = 0

plays the crucial role in the theory of discrete holomorphic functions, see [21]
and references therein (also introduction in [H5]), the equation is discrete
counterpart of Cauchy-Riemann equations. To the best of my knowledge
it is in the field of discrete holomorphic functions the sublattice approach
was used for the first time, leading to discrete analog of Laplace equation.
We give the general formulation of the approach on the second page of the
paper [H5]. Here, we go straight to the examples, leading to the announced
in the previous section links between discretizations of formally self-adjoint
operator.
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3.1 Discrete Moutard operator on Z
2 lattice and the

5-point scheme

Proposition 1 and Proposition 2 from [H5] give a surprising characterization
of discrete Moutard equations. Namely, having taken the linear equation
αm,nψm+1,n+1 + βm,nψm+1,n + γm,nψm,n+1 + δm,nψm,n = 0 relating values of
function ψ at four points of the square lattice Z

2 and writing down this
equation for four squares meeting at point (m,n)

αm,nψm+1,n+1 + βm,nψm+1,n + γm,nψm,n+1 + δm,nψm,n = 0,
αm−1,nψm,n+1 + βm−1,nψm,n + γm,nψm−1,n+1 + δm−1,nψm−1,n = 0,
αm,n−1ψm+1,n + βm,n−1ψm+1,n−1 + γm,n−1ψm,n + δm,n−1ψm,n−1 = 0,
αm−1,n−1ψm,n + βm−1,n−1ψm,n−1 + γm−1,n−1ψm−1,n + δm−1,n−1ψm−1,n−1 = 0,

one can eliminate from them the four variables ψm−1,n, ψm+1,n, ψm,n−1 and
ψm,n+1 iff the equation is gauge equivalent to a Moutard equation. The re-
maining five points satisfy the self-adjoint equation Lψ = 0, where L is
operator (7) with suitably redefined shift operators on the lattice consisting
of “black points” see Figure 1. This gives the relationship between the 5-point

(m+1,n)(m−1,n)

(µ−1,ν)<=>(m−1,n+1) (m+1,n+1) <=> (µ,ν+1)

(µ,ν)<=>(m,n)

  (m,n+1)

(m,n−1)

(µ,ν−1)<=>(m−1,n−1) (m+1,n−1) <=> (µ+1,ν)

Rysunek 1: From discrete Moutard equation to 5-point self-adjoint scheme.

self-adjoint operator and discrete Moutard operator. More importantly, we
showed that one can transfer integrable features from lattice to sublattice:

- from the Darboux type transformation and their superposition princi-
ple for discrete Moutard operator we derive Darboux type transforma-
tion and their superposition principle for self-adjoint 5-point scheme,

- from algebro-geometric solutions for the discrete Moutard equation we
construct algebro-geometric solutions for self-adjoint 5-point equation.
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3.2 Discrete Moutard operator on quasiregular rhom-

bic tiling and the 7-point scheme

Analogously to the method we described in the previous subsection, one
can get the relationship between the 7-point scheme and discrete Moutard
operator (see paper [H7]). One has to replace lattice Z

2 with quasiregular
rhombic tiling (Figure 2).
On each rhombus of such tiling we prescribe a Moutard equation i.e. the

sum (or difference) of the values of function ψ in opposite vertices of the
rhombus has to be proportional to the sum (or difference) of the values of
the function in the remaining two vertices of the rhombus. Taking six copies

−

−

−
−

− −

−
−

−

++

++

+ +

++

+

Rysunek 2: Quasiregular rhombic tiling

of the equation for the six rhombi having common vertex of blue color (or
grey in black and white printing) in Figure 2 and eliminating the values of
function at the points marked with pluses and minuses we obtain in this
way 7-point self-adjoint operator (5). It turns out that due to the sublattice
approach one can deduce the Darboux type transformation for the 7-point
self-adjoint operator (5) from the Moutard transformation for the discrete
Moutard oparator, what we showed in Chapter IV A of article [H7].

3.3 Self-adjoint operator on the hexagonal lattice

Taking three copies of Moutard equation at three rhombi with a common
vertex marked in Figure 2 with plus (or minus), we can eliminate values
of function at the points marked in blue. This gives a pair of equations
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(and hence pair of operators) on a hexagonal lattice (which consists of the
vertices marked with a plus and vertices marked with a minus in Figure 2).
One equation of the pair relates values of function at point marked with
plus and at three closest points marked with minus. In the second equation,
conversely, the values of the function at the point marked with minus are
related with values of the function in the closest three vertices denoted by
a plus. As in the previous case, the sublattice approach allows us to derive
Darboux type transformation for a pair of equations on a hexagonal lattice
from Darboux type transformation for discrete Moutard equation (what we
showed in section IV B of article [H7]).

3.4 A very short summary of the section 3

Figure 1 of review article [H9] (its full-scale version can be found in preprint
of paper [H9] i.e. on Figure 1 from version [22]) collects our results and
the results of other authors concerning the discretization of two-dimensional
linear differential operators of second order.

4 Integrable generalization of Toda chains to

square and triangular lattices

With a Darboux covariant linear operators (5) and (7) it is natural to ask
about the non-linear equations associated with them, i.e. to treat these ope-
rators as part of the Lax pair (the linear problem) of a non-linear system.
In articles [H2] and [H8] we showed that it leads to the genaralization of the
so-called Toda chains [23] i.e. systems of equations of the form

d2Qm(t)

dt2
= ∆me

∆mQm−1(t),

on function Qm(t) depending on continuous variable t and discrete variablem
(where ∆m = Tm− 1). In case of operator (7) we get the following equations
on Z

2 lattice (see the article [H2] of this dissertation)

Cm,n
d
dt

(

1
Cm,n

dQm,n
dt

)

=∆m
(

Cm,nCm−1,ne
∆mQm−1,n

)

+∆n
(

Cm,nCm,n−1e
∆nQm,n−1

)

,

Cm+1,n+1
Cm,n

= e−∆m∆nQm,n ,
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In the case of the operator (5) considerations lead to the system of equations
on a triangular lattice (see paper [H8] of this dissertation)

dF
dt
+ 1
ξ
∆1

(

ξξ−1A
2
−1

)

+ 1
η
∆2

(

ηη−2B
2
−2

)

+ 1
ζ
∆3

(

ζζ−3C
2
−3

)

= 0,

1
A
dA
dt
+ 1
2
∆1(ξF )−

1
2
BC1
A
(η + ζ)2 +

1
2
B
−3C−3
A
(η + ζ)−3 = 0,

1
B
dB
dt
+ 1
2
∆2(ηF ) +

1
2
A3C
B
(ξ − ζ)3 −

1
2
AC1
B
(ξ − ζ)1 = 0,

1
C
dC
dt
+ 1
2
∆3(ζF ) +

1
2
B
−1A−1
C
(ξ + η)−1 −

1
2
A3B
C
(ξ + η)2 = 0,

AB1(ξ − η)1 = A2B(ξ − η)2,

AC(ξ + ζ) = A3C1(ξ + ζ)2,

B−3C1(η − ζ)1 = BC−3(η − ζ).

where to make formulas shorter we denoted the shift operators on a triangular
lattice with subscripts, i.e. Tif ≡ fi, Ti

−1f ≡ f−i, (moreover ∆i = Ti −
1) i = 1, 2, 3. Please note that the shift operators on a triangular lattice
are not independent, we have T1T3 = T2. Darboux type transformations for
the operators considered in the previous sections allowed us to construct
Bäcklund transformations for the above non-linear systems of equations. In
the articles [H2] and [H8] we discuss the specific forms of the above non-linear
equations as well as their reductions and their particular solutions.

5 Geometric aspects - Lelieuvre formulas

Revealing new integrable structures, in our case complicated (complex) struc-
ture of discrete equations that are discretizations of self-adjoint equations and
that admit Moutard type transformations, usually finds application in discre-
te differential geometry. We focus here on Lelieuvre formulas, the classical
issue of equi-affine geometry [9]. These formulas allows us to determine the
surface from its (co)normal field and its affine fundametal form. With some
not too restrictive assumptions (see conditions (31-33) of the article [H3])
one can show, that normal field to a surface in Euclidean space E

3 (or more
generally conormal field to a surface in three-dimensional equi-affine space
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eA3) satisfies second order formally self-adjoint equation. When the equation
is the Moutard equation (Mψ = 0 where M is (2)) formulas give the surface
parameterized with the asymptotic lines. When the equation is of the form
Lψ = 0, where L is operator (8), formulas give the surface parameterized
with conjugate lines. Finally, generic equation Lψ = 0, where L is operator
(6), reproduces after using Lelieuvre formulas generic parameterization of the
surface.
In the discrete case, the discrete Moutard equation gives via Lelieuvre

formulas discrete asymptotic lattices [24]. In article [H3] we showed, that
Lelieuvre formulas for the equation associated with operator (7), i.e. discre-
tization of (8), give quadrilateral lattices i.e. discrete analog of conjugate nets.
Moreover, Lelieuvre formulas for the equation Lψ = 0 where L is operator
(5) give generic (up to conditions (39-42) from article [H3]) two-dimensional
lattices.
Thus we received another example, where understanding of the various

aspects of integrable discretization allows us discretize classic constructions
of differential geometry. However, for the first time in the discrete differential
geometry we referred not only to the specific surface parameterization while
discretizing but also to a generic parameterization of the surfaces.

6 The outlook

The theory of nonlinear discrete integrable equations reflecting not only the
particular coordinate net on the soliton surfaces but also the freedom to
change their parameterization is still in its infancy. Sublattice approach de-
scribed in [H5] and [H7] was a promising candidate for analog of change of
the independent variables for discrete equations. It seems, however, that it
was the insufficient candidate. One of the possible directions of development
of the theory was suggested by A. Doliwa in article [26], where sublattice
approach was enriched with the possibility of making Laplace transforma-
tions and where it was shown that theory of quadrilateral latices [15] can be
derived from the results of paper [16] on the Hirota-Miwa equation.
The most important, yet unsolved, problem is whether the results of ar-

ticle [H6] can be generalized to more dimensions in analogy to the papers
[16] and [15]. In other words, whether there exists integrable discretization
of the surfaces sustaining conjugate nets but without direct reference to the
conjugate nets. It should be mentioned that the investigation of possibility
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of a generalization of integrable equations to more dimensions grew into a
method of detection and study of discrete integrable equations [27, 25]. Al-
though our papers in this area concerns only Z

n lattices [H17,H18,H19], our
colleagues use the lattices other than Z

n lattices [28].
As we mentioned in the introduction, linear operators are often part of

the system of nonlinear differential equations. Therefore a chance to discrtize
the latter appears. Although this topic is not emphasized in a series of articles
present dissertation consist of, we would like to present at least one example
that illustrates perspectives of the methods used in the series of papers.
Namely, position vector ~Rm,n and its square of the length |~Rm,n|

2 of di-
screte isothermic surfaces satisfy a Moutard equation in the so-called affine
gauge (see book [2])

∆m

(

Θm,nΘm,n+1∆n

[

~Rm,n
|~Rm,n|

2

])

+∆n

(

Θm,nΘm+1,n∆m

[

~Rm,n
|~Rm,n|

2

])

= 0. (9)

In the continuum limit we obtain the equation for the position vector of
discrete isothermic surface parameterized with curvature lines. Prescribing
these equations on quasiregular rhombic tiling and applying sublattice ap-
proach we get

∆m

(

A∆−m

[

~R

|~R|2

]

+ C∆−n

[

~R

|~R|2

])

+∆n

(

B∆−n

[

~R

|~R|2

]

+ C∆−m

[

~R

|~R|2

])

= 0,

where to make formulas shorter, we have omitted independent variables.
The last system of equations in the continuum limit goes to the system
of equations for the position vector of isothermic surfaces in the generic
parameterization. We do not know geometric characterization of the discrete
system of equations. We also failed to construct the Bäcklund transformation
for the system of equations. On the other hand, the sublattice approach allows
us to obtain solution of these equations from the solutions of system (9).
The list of open problems is much longer. A large part of monograph [2],

which describes the results on integrable discretization of specific parame-
terizations on soliton surfaces, should be reviewed to check if it possible to
generalize the results to generic parameterizations. Discretization of ellip-
tic versions of nonlinear integrable differential equations such as the Ernst
equation are not known yet.
Discrete differential geometry is still ahead of us.
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5. Description of the remaining scientific achievments

Articles before PhD

[H10] M. Nieszporski and A. Sym, 2000, Bäcklund transformations for
hyperbolic surfaces in E3 via Weingarten congruences, Theoretical
and Mathematical Physics, 122(1), 84–97.

[H11] M. Nieszporski, 2000, The multicomponent Ernst equation and the
Moutard transformation, Physics Letters A, 272(1–2), 74–79.

[H12] A. Doliwa, M. Nieszporski, and P.M. Santini, 2001, Asymptotic lat-
tices and their integrable reductions: I. the Bianchi-Ernst and the
Fubini-Ragazzi lattices, Journal of Physics A-Mathematical and Ge-
neral, 34(48), 10423–10439.

[H13] M. Nieszporski, 2002, On a discretization of asymptotic nets, Jour-
nal of Geometry and Physics, 40(3–4), 259–276.

[H14] M. Nieszporski, 2002, A Laplace ladder of discrete Laplace equations,
Theoretical and Mathematical Physics, 133(2), 1576–1584.

Articles after PhD

[H15] A. Doliwa, M. Nieszporski, and P.M. Santini, 2004, Geometric di-
scretization of the Bianchi system, Journal of Geometry and Physics,
52(3), 217–240.

[H16] M. Nieszporski and Sym A, 2009, Bianchi surfaces: integrability in
an arbitrary parameterization, Journal of Physics A-Mathematical
and Theoretical, 42(40), 404014:1–404014:10.

[H17] P. Kassotakis and M. Nieszporski, 2011, Families of integrable equ-
ations, SIGMA, 7, 100:1–100:14.

[H18] P. Kassotakis and M. Nieszporski, 2012, On non-multiaffine consis-
tent-around-the-cube lattice equations, Physics Letters A, 376(45),
3135–3140.

[H19] J. Atkinson and M. Nieszporski, 2013, Multi-quadratic quad equ-
ations: Integrable cases from a factorized-discriminant hypothesis,
International Mathematics Research Notices,
e-pub: doi: 10.1093/imrn/rnt066.
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Article [H10] is another example showing the unifying aspects of the
theory of soliton surfaces. Results by Bianchi on a special subclass of
Weingarten congruences i.e. so-called Bianchi congruences were used to
construct the solutions of Ernst equation.

Article [H11] shows various integrable aspects of Weingarten congruences
and is an itroduction to my PhD dissertation which allowed me to identify
several integrable subclasses of Weingarten congruences.

Article [H13] discusses integrable aspects of discrete asymptotic nets and
introduces the concept of discrete Weingarten congruence. As a result, it
was possible to find a series of discrete integrable systems, in particular,
the two discussed in [H12], namely the discrete Bianchi-Ernst system and
discrete Fubini-Ragazzi system.

Article [H14] introduces the concept of a Laplace ladder of difference
equations describing the quadrilateral lattices. The main findings of this
article was the discovery of a discrete adjoint Moutard equation as well
as the discovery of the discrete nonlinear Goursat equation.

In article [H15] we deal with the geometrical aspects of the discrete
Bianchi-Ernst system (from article [H13]) and its Bäcklund transforma-
tions.

Article [H16] concerns integrable aspects of Bianchi surfaces given in gene-
ric parameterizations. It is a preparation to find integrable discretization
of parameterizations of the surfaces other than asymptotic parameteriza-
tion.

The articles [H17], [H18] i [H19] form a series of articles dedicated to sys-
tems of bond-vertex models given on lattice Z

n, which admit the existence
of a three-parameter family of scalar potentials (excluding the possibility
of adding a constant to the potential). For specific values of parameters
the potentials satisfy known consistent-around-the-cube equations [25]
(which, due to consistency-around-the-cube are integrable). For other va-
lues of the parameters we obtain new multivalued recurences: correspon-
dences consistent around the cube. By integrability of correspondence we
understand the possibility to obtain their solutions from solutions of equ-
ations listed in the article [25] (due to Bäcklund transformations between
these equations constructed by us).
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