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c) Description of the scentific goals of the above mentioned work, obtained
results and prospects of applications

The description is organized as follows: in the next section I discuss the coarse-graining and the
backreaction problem in general relativity. Then T present in Section 4.2 the state of the art hefore the
papers |[H1-H6| appeared and outline three possible approaches to the problem. In Section 4.4 1 focus
on the specific unsolved questions I addressed in my publications. I discuss the publications in detail in
Sections 4.5-4.9 and conclude with a summary and the future prospects.
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4.1 Introduction: Coarse-graining and the backreaction problem in general
relativity

Coarse-graining is one of the fundamental ideas of theoretical physics, allowing to describe very com-
plicated systems with a large number of degrees of freedom in an approximate but much simpler and
tractable way. The basic idea is very simple: we carefully choose a number of variables describing the
state of the system on large scale disregarding the fine details. We then derive the effective equations
governing the behaviour of these collective, large-scale variables under certain reasonable assumptions
aboul the physics of the fine scales and its influence on the large-scale variables. If the choice we have
made is correct then the eflective equations form a closed system and we obtain a good approximation
of the physics of the full system.

Rigid body mechanics provides an old and excellent example of the power of the coarse-graining
approach: from the microscopic point of view a rigid body is an enormously complicated system composed
of a crystalline or amorphous lattice of atoms bound by electromagnetic forces. Nevertheless when the
forces in question, the velocities and angular velocities are small enough we may describe its motion
completely using surprisingly few parameters: the position of its center of mass, its velocity, body’s total
mass and moments of inertia, three Euler’s angles describing its orientation and its angular velocity. It
turns out that the complicated, small scale dynamics of the system doesn’t play any significant role as
long as we are ouly interested in the collective motion of all constituents of the body.

This approximation has its limitations of course: it tends to break down if the forces in question
are too large or the spin is too fast, although we may still improve it by including the solid mechanics
of the system. its oscillatory modes ete. Coarse-graining provides thus more than just a set of effective
parameters describing a complicated system and a set of relations between them. It can also provide a
framework in which we may find ways to improve the effective deseription when the system approaches
its limits of validity.

Coarse-graining is widespread in many other fields of theoretical physics. The Navier-Stokes equations
can be thought of as arising from the coarse-graining of the equations of the kinetic theory of gases. The
renormalization group flow in quantum ficld theory can be interpreted as coarse-graining over very small
scales or equivalently over very high energies. One of very few branches of physics where the problem of
coarse-graining has not been researched too well is general relativity (GR).

GR is currently the established theory of gravitation and at the same time the theory of the geometry
of spacetime. It postulates that the geometry of spacetime is pseudo-Riemannian and that the metric
tensor g,,.. of the spacetime, describing the way we measure angles and distances, is related to the matter
content of the spacetime via a system of second order partial differential equations (PDE’s), called the
Einstein equations®

Gy = 81G Ty, 1)

They relate the curvature of the geometry, given by a combination of the second derivatives of the
metric tensor and represented by the Einstein tensor G, to the stress-energy tensor of the matter
T~ Note that while the left hand side of the Einstein equations is obviously a local, geometric object
depending on the metric tensor and its partial derivatives at a given point p, the right hand side is usually
understood as a stafistical object, encoding the information about the average matter content in a small
region of spacetime in the vicinity of the point p. This statistical, somewhat nonlocal interpretation of
1y, 1s widespread in GR textbooks. It is clear that it tacitly involves the coarse-graining of the finest
structures of matter: rather than solving the Einstein equations with all the details of the distribution
of mass on atomic and subatomic scales we are supposed to represent it by a suitable local average in
which the inhomogeneities on scales much lower that the scale of the system are absent. The stress-
energy tensor is thus a “naive” average of the matter content, given by the sum of contributions from all
matter constituents present in the vicinity of p, while g, represents the geometry of spacetime without
the distortions caused by the granularity of matter. This interpretation is very useful and prevalent
in astrophysical relativity because it allows to solve the Einstein equations for objects like galaxies or
galaxy clusters without investigating their small scale structure, but it immediately raises a number of
questions.

Firstly, can it be justified rigorously il we assume GR to hold exactly locally, down to the finest
scales of the system? Recall the classical Maxwell’s theory of electromagnetism, where we represent a
complicated motion of electrons or ions by a large-scale, averaged electric current. This procedure is easy
to justify in this case because the equations involved are exactly linear. The local Maxwell equations
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for complicated electric and magnetic fields on atomic level imply the same equations holding for the
averaged, large-scale electric and magnetic fields, provided that we average the sources (i.e. charges and
currents) in an appropriate way. But for a nonlinear system of PDE’s like (1) it is entirely unclear whether
the large-scale equations, obtained by averaging the local metric, will have the form of Einstein equations
with the “naive” average stress-energy tensor on the right hand side. In a generic case we expect those
two to be different and the difference between them is often referred to as the backreaction. Secondly, on
a more fundamental level it is unclear how actually we are supposed to understand the average tensorial
quantities like the metric or the stress-energy tensor. In a general spacetime the geometry does not
admit any symmetries and consequently we cannot rely on the Euclidean structure of the spacetime to
define the coarse-graining in terms of. for example. the Fourier transform. In fact there is no general
coordinate-independent way to compare or combine tensorial quantities at two distant points which
makes the standard prescription for coarse-graining in physics, integrating over a region and dividing by
its volume, impossible to use as it yields a strongly coordinate system-dependent result.

4.2 State of the art

The problem of backreaction and averaging, despite being fundamental in the discussion of applicability
of GR. to astrophysics, has attracted surprisingly little attention throughout most of the history of
mathematical relativity. In 1968 Isaacson considered the propagation of gravitational waves on a general
background metric in the perturbative. short wavelength approximation [1, 2]. He calculated the influence
of the gravitational waves on the large-scale stress-energy tensor obtained by averaging out the waves and
considering the nonlinear relation between the metric and the stress-energy tensor. This way Isaacson
derived the expression for nonlinear corrections in coarse-graining over the graviational wave modes.

However, most of research in this direction so far has been done in the context of the backreaction
and fitting problems in cosmology 3, 4]. Recall that in the modern cosmological paradigm we assume
that the geometry of the Universe in the largest scales is described by a manifold equipped with a
homogeneous and isctropic metric whose physical scale evolves in time, called the Friedman-Lemaitre-
Robertson-Walker metric (FLRW). In the FLRW model the matter is assumed to be distributed in an
exactly homogeneous way. Both the fitting problem and the backreaction problem have their origin in
the observation that in the physical Universe the matter distribution is far from homogeneous on lower
scales and any realistic backreaction model needs to take this fact into account. Ellis and Stoeger 3]
noted that this fact affects the observations and introduces an observation bias in cosmology. This path
of research led to the study of the direct influence of inhomogeneities on the observations [5, 6, 7, 8, 9].
Another approach was presented later by Buchert and others, when they noted that the small scale
structure can potentially influence the large scale dynamics of the Universe in many ways |10, 11, 12, 13].

The topic sparked a hot debate around early 2000’s, when some authors suggested that the backre-
action terms may explain the apparent accelerated expansion of the universe observed recently in the
redshift-luminosity relation for the type I supernovae |13, 14]. The claim was rejected by the mainstream
community, but the problem of backreaction in cosmology remained discussed until now. In particular,
Buchert’s research programme was challenged by Wald and Ishibashi [15]. Their arguments against
Buchert’s approach and the backreaction idea in general rely on a set of assumptions about the metric
tensor of the Universe g,,: they assume that it does not deviate very much from an average, large-scale
one together with its derivatives and show that this is consistent with the Universe having very large
density contrasts. Under these assumptions they show that the Einstein equations reduce to a simple,
linear system for one variable and the nonlinear terms are negligible. In their later papers Green and
Wald [16, 17] present a more refined approach, where they effectively assume that the metric is close
to the large-scale one, its first derivatives are controlled and satisfly a technical condition concerning its
weak limit. They later derive an expression for backreaction as a traceless, positive tensor, and argue
that in the context of cosmology it is fairly small.

The arguments presented in |15, 16, 17] rely on the assumption that the deviation of the physical
metric from the average one is small everywhere and therefore linearization or a similar type of pertur-
bative approximation is valid. They advocate the approach based on assuming a priori that the physical
metric is FLRW plus corrections which are small everywhere, adding perturbations, evaluating various
observables and ftting the parameters of the model to observations - as it is commonplace in cosmology
nowadays.

Unfortunately when the condition of small perturbations is not met, even locally, the validity of the
whole approach is very much in question. In cosmology and astrophysics we expect this condition to break
down for example close to very compact massive objects like neutron stars or black holes. The question
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is thus whether or not the results of naive averaging can be applied in the presence of regions with strong
distortions of the metric tensor, which lie beyond the validity of the perturbative expansion, and how
should one possibly correct them. Additionally, it is possible that the inhomogeneities in question, while
large, mimic the observational properties of the homogeneous model (with small perturbations) [18, 19].

The backreaction discussion has been going on until 2016, with Buchert et al pointing out various
problems with the Green-Wald formalism |20], including the issue of its gauge dependence and the correct
definition of the average quantitics. Green and Wald responded with 2 further papers |21, 22|, where
they defended the validity of their approach.

The general problem of the impact of inhomogeneities in cosmology can be divided into two related
but distinct components:

o The question of the physical backreaction: how should we define the coarse-grained field variables,
especially the metric tensor? Note that the prescription should be covariant, ie. it should not
depend upon structures introduced ad hoc such as a solution-specific coordinate system. Otherwise
the results will be coordinates-dependent and thus difficult to interpret. Given a coarse-graining
formalism, how do the Einstein equations behave under the coarse-graining? This part of the
backreaction problem belongs more to the realm of mathematical relativity and PDE theory.

e The question of the observational consequences of the inhomogeneities: how do the inhomogeneities
affect the light propagation and the cosmological observations (redshift-luminosity relation ete.) as
well as the data analysis? This problem is obviously related to the previous one, since the physical
backreaction effects on the large scale obviously affect also the light propagation. It is important
from the point of view of the observational cosmology.

In papers [I11-HG] T am concerned mostly with the first problem. The research presented there belongs
therefore to the field of mathematical relativity. The main questions I was addressing in my work can
be summarized as follows:

e How large are the backreaction effects in real astrophysical situations? In particular, how do they
affect the large scale dynamics in cosmology? These problems are difficult once we leave the lincar
or perturbative regime in GR. They are difficult to attack in full generality, so we may begin
by semewhat simplified questions: how do the backreaction terms depend on the details of the
microscopic structure and for which matter distributions can they be significant?

e What is the status of the fluid approximation in GR and cosmology? This is especially interesting
for highly discretized matter content, i.e. matter in the form of compact objects (black holes,
neutron stars etc.) in the vicinity of which the linear approximation in GR breaks down. Can one
prove the existence of a continunm limit for a large number of objects?

4.3 Possible approaches to the backreaction and coarse-graining problem

In the literature one may identifly three lines of reasearch approaching the hackreaction problem. The first
one is the perturbative approach in which the metric tensor is expanded using some kind of approximation
scheme (short-wave approximation |2, 23], linearized GR. |24, 25| or the combination of both [16, 26, 22]).
The results obtained this way have a limited regime of validity.

Secondly, one may study the exact solutions of the Einstein equations corresponding to inhomogene-
neous cosmological models. Unfortunately not too many exact solutions of this type are known. The
largest family is the Swiss-cheese family (or cut-and-paste family, as David Wiltshire calls them appro-
priately), in which some parts of the homogeneous FLRW solutions have been replaced by a Lemaitre-
Tolman-Bondi metric, the Szekeres metric or the Schwarzschild solution [27, 28, 29, 30]. Models of this
type have been investigated by many authors |31, 32, 33]. Their evolution can be performed analitically
(up to quadratures) and their basic properties are well known. However they require a very special, sim-
plified geometry of the inhomogeneities. The study of other examples requires numerical techniques. The
progress in the numerical relativity in the recent decade, fuelled by the study of the black hole mergers
[34, 35], has made it possible to solve within a reasonable time the full 3+1 equations for fairly com-
plex matter distributions with black holes as matter sources at least on a sufficiently powerful computer
cluster. This has been done for the first time in [H2].

Rather than considering the full time evolution of the Einstein equation one can focus on the initial
data. Recall that the initial data for the Einstein equations consist of a three-manifold with a positive
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metric g;; and the extrinsic curvature tensor I;;. The data are subject to the 4 constraint equations
relating them to the matter distribution:

R®) 4 (KL)? — Ky K = 167G T
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These equations have a physical meaning and their solution are sufficient to study backreaction in the
To: and Tyg components of the stress-energy tensar. They are also significantly easier to work with and
many techniques have been developed to solve them, including the conformal decomposition method of
Lichnerowicz and York [36, 37]. The study of these examples has been pioneered by Linquist and Wheeler
[38], who were first to consider the black hole lattices (BHL's), i.c. arrangements of black holes with a
discrete symmetry resembling a crystal lattice. They can be constructed easily using exact expression
thanks to the Lichnerowicz ansatz. Later these initial data have been considered in |39, 12].

However the most valuable results one may envisage are exact, analytical results valid for a large
family of solutions. They could have the form of exact expressions for backreaction or inequalities
estimating it. Due to the difficulty of the problem no results of this kind have appeared in the literature
before my papers.

4.4 Specific problems discussed in the series of publications

The papers I present for the habilitation had a common goal of advancing the understanding of the
mathematics of coarse-graining in GR, the backreaction effects for inhomogeneous distributions of matter
and the continuum limit problem beyond the regime of applicability of simple perturbative techniques. I
would like to give here a short overview of the “missing gaps” in the literature I addressed in the papers
presented here.

e Exact results concerning the backreaction. One obvious gap is the lack of any general but
exact results concerning the value of the backreaction. While it is very likely that there is no simple
expression for backreaction valid in any situation, one may still consider a physically interesting
family of solutions and aim for results in the form of inequalities bounding the backreaction from
above. The use of inequalities of various types has a long history in the context of GR, see for
example the positive mass theorem or the inequalities concerning the area, angular momentum and
mass of a horizon of a black hole [40, 41, 42]. Inequalities, while not as useful or versatile as full,
exact expressions for given quantities, still provide us with information about the quantity they
estimate. In particular, they may be useful in determining when we need to take the backreaction
effects into account. Apart from that the way the bound depends on the properties of the solution
has a often deeper physical meaning. This observation leads us in a natural way to the next
unsolved problem.

e Dependence of the backreaction terms on the details of the microscopic matter dis-
tribution. It is not at all clear which details of the microscopic matter distribution matter when
we evaluate the backreaction terms. This is obviously a erucial problem if we would like to apply
statistical methods to the cosmic structure: it is impossible to apply GR consistently if we do not
know which properties of the distribution of small scales give rise to large relativistic effects on
larger scales. The backreaction terms in various averaging or coarse-graining schemes have usually
a simple expression in terms of the properties of the microscopic metric tensor, but these results
are of limited use because the microscopic metric is more difficult to determine form observations
made from large distances.

e Exact results concerning the continuum limit. Discretized matter distributions with very
compact, relativistic sources can be described using the dust or the Einstein-Vlasov collisonless
matter approximation. Intuitively we might expect the approximation to work better if the ratio
between the macroscopic scale and the scale of compact objects is larger, or equivalently - if the
number of the objects diverges while keeping the macroscopic parameters intact. This is known
in statistical physics as the continuum limit. Does this limit always exist in GR? Does the metric
tensor in this case converge to the appropriate large-scale average one and in what sense? Note
that due to the presence of the compact objects this problem lies outside the validity regime of

linearized Einstein equations.
I
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e Discussion of the geometry of the general Linquist-Wheeler spherical universe models
without symmetries. Clifton, Tavakol and Rosquist discussed thoroughly the geometry and
other properties of the initial data with regular BHL’s on S* [12], Wheeler described in detail the
5BI1 configuration in [39]. but these results were limited to configurations with the largest possible
groups of isometries. It would be interesting to sec what features of these models carry over to BH
arrangements without any symmetries imposed.

e Full 3D numerical simulations of black hole lattices. As we mentioned, the BHL's offer
a simple and excellent example of a matter distribution which is homogeneous on large scales,
bul microscopically strongly inhomogeneous and relativistic. This makes them one of the most
important families of solutions one would like to study in the context of backreaction as well as a
perfect testbed for coarse-graining schemes. Many papers have dealt with the evolution of these
models, including the seminal Lindquist-Wheeler paper |38], but only using various approximation
schemes |43, 44, 45]. However the advancement of the numerical relativity techniques in the early
2000°s, inclnding the first reliable 2 BH merger simulation [46] using the moving puncture method,
as well as the steady increase of the computational power of the computer cluster, offer a new way
to study the time develoment of these models using numerical integration of the full 3D Einstein
equation. Studies of this kind were missing until 2012.

e Covariant coarse-graining of the tensorial part of the Einstein equations and the matter
equations of motion. The Buchert’s averaging scheme, probably the most widely used coarse-
graining formalism in inhomogeneous cosmology, takes only the scalar part of the equations into
account. Ideally we would like the coarse-graining to involve the tensorial parts of the evolution
equations as well.

4.5 Paper [H1]: Coarse-graining of inhomogeneous dust flow in general rel-
ativity

The goal of the paper |H1| is to provide an alternative to the Buchert’s averaging scheme which extends
the coarse-graining to the tensorial part of the equations. We consider a solution of the Einstein equations
with dust. We assume that we have an a priori given 341 splitting of the spacetime (if the dust flow is
irrotaticnal then the comoving, orthogonal splitting can serve this purpose). Recall that in the Buchert’s
averaging scheme we assign the coarse-grained expansion to a comoving volume D of fluid using its
physical volume. Buchert assigns the effective scale factor to D) via

Vo(t) \ /2
acjf(t) = (V,;J(tg)) ) (2)

where t; is a fixed time. The scale factor is then used to define the average expansion rate (6)p,
which satisfies a volume-averaged version of the Raychaudhuri equation and the Hamiltionian constraint
equation. This way Buchert defined the coarse-grained scalar quanties obeying the same evolution
equation as the local ones plus well-defined backreaction terms. The downside of his approach is that
he is only able to do it for the scalar part of the equation, while the cosmic flow on fine scales may also
exhibit vorticity and shearing, both described by tensorial objects.

The main obstacle one encounters when trying to define the coarse-grained vorticity and shear is
the need for covariance. The prescription for the tensorial quantities should be coordinate system-
independent, otherwise it will yield results which are difficult to interpret physically. In fact, a coordinate-
dependent prescription may assign backreaction to the homogeneous FLRW model seen in perturbed
coordinates. But covariance is difficult to achieve in Riemannian or pseudo-Riemannian geometry where
no simple prescription for averaging tensor quantities exists.

The main idea behind the paper |II1] is that we do not need the coarse-grained guantities to be
literally averages with respect to a measure. The assignment of the large-scale [low can be obtained
in a different manner as long as it satisfies the commonsense properties of the large-scale variables, for
example it coincides with the standard averages in simple case.

Let now Qij = v“',j denote the velocity gradient of a non-relativistic fluid in a Fuclidean space. Tts
trace is the expansion of the fluid, its symmetric tracefree part constitutes the shear and its antisymmetric
part is the vorticity. The volume average of Qij over a region D can be turned into a boundary integral
using the Gauss theorem

( 5 » (Q‘j> = Vﬁl / vi_‘jdar = VEI/ 1.=i'r';,jd20. (3)
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Generalizing the first expression into an arbitrary geometry is difficult, but we can equally well generalize
the second one. Outside the Euclidean context they won’t be exactly equal. but still they can be both
used as the basis of the definition of (Q%). Quantities defined using only the boundary data are known
in GR as guasi-local [47].

In order to define the quasi-local, coarse-grained shear, expansion and velocity I use a classic result of
differential geometry, i.e. the isometric embedding theorem of §2 surfaces. Recall that given a 2-surface
C of 52 topology and a sufficiently regular positive-definite metric with pesitive curvature we may find
an isometric embedding J : ¢/ — R? into the 3D Euclidean space. Moreover the embedding is unique up
to reflections and Euclean motions of the image [48].

Consider now the 2-metric g4p5(t) induced on 9D. Assuming it satisfics the assumptions of the
isometric embedding theorem at least for some time we may find a one-parameter family of isometrie
embeddings f; into R®. We may calculate the time derivative of the position of each point under the
embeddings obtaining a fictitious velocity field v* in R? defined on the image of the embedding. The
velocity field can then be used to define the average using equation (3). Due to the ambiguity of the
cmbedding the velocity field is defined only up to the generators of translations and rotations, but this
does not affect the value of the shear and expansion. As for the vorticity. T present a slightly different but
related method of coarse-graining using the projection of the 4-velocity field of the fluid to the constant
time slice.

The coarse-grained {@Q*;) is defined in the abstract target space R? of the embedding f;, but in [49] I
show how this space can be identified with the tangent space to the constant time slice at the points lying
on the boundary of D, thus providing a geometric meaning to the construction above. (Q?} becomes a
tensor field defined everywhere on the boundary of D.

I show in |H1| that the coarse-grained quantities satisfy a generalized version of the Raychaudhuri
equation, identical to the local Raychaudhuri equation except a bunch of backreaction terms arising due
to the inhomogeneities present inside D. 1 also prove that it satisfies the basic assumptions about the
coarse-graining: in the limit of the domain D shrinking to a point the coarse-grained quantities reproduce
the local ones and in a few exact solutions (FLRW, LTB, Gédel) the results agree with the common
sense expactations.

The main conclusions of [H1] can be summarized as follows:

e The isometric embedding theorem offers a way to assign coarse-grained expansion, shear and vorite-
ity to a finite portion of the fluid in GR in a covariant way. The quantities in question are quasi-local,
ie. they depend only on the data at the boundary of the coarse-graining domain. The method
requires the boundary in question to have the 52 topology and a positive curvature everywhere.

e The expansion, shear and vorticity satisfy a generalized version of the Raychaudhuri equation with
an additional backreaction term due to the inhomogeneities inside the domain of integration. The
backreaction consists of a Newtonian term, also present in coarse-graining in purely Newtonian
cosmology, and a relativistic term.

e In the limit of a very small coarse-graining domain the coarse-grained quantities agree with the
local ones, as expected and the generalized Raychaudhuri equation tends to the local one along a
timelike geodesic, also as expected.

4.6 Papers [H2] and [H3]: Numerical evolution of the black hole lattices

Black hole lattices (BHL’s), i.e. arrangements ol black holes with a discrete symmetry of reflections and
rotations, offer a simple and neat example of a discretized matter content which, when viewed on large
scales, seems uniform. They have first been investigated by Lindquist and Wheeler using approximate
methods [38], later extended by Clifton and Ferreira |45, 43]. Wheeler described in detail the initial data
of the 5-BH configuration on a 3-sphere [39]. All configurations on a sphere were later described in [12].

Two main advantages of BIL’s are their relative simplicity due to the high symmetry and at the same
titne high degree of nonlincarity of black hole configurations allowing to proble the nonlinear regime of
GR. Recall that in the FLRW solutions three types of spatial slices are possible: flat (R*), spherical S%
in case of closed models and hyperbolic H®. Introducing a black hole lattice breaks the full isometry
group of these manifolds to a discrete subgroup. The full isometry group of each of them, ie. E(3)
SO(4) and S0O(1, 3) respectively, allows for different types of diserete subgroups.

In [H2] we first discuss the construction of the initial data for a BH lattice starting from the flat,
spherical or hyperbolic metric using the Lichnerowicz-York conformal method [36, 37, 50]. In the first
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step we take the background, Riemannian 3-metric b;; which is either the metric of a round sphere ~

i
hyperbolic space quf or a flat, Euclidean 4;;. We assume the physical metric to be related to by via a

conformal transformation

¢" bij, (4)

Uij
while the extrinsic curvature is given by

K

K= 3 iz 4 Ay, (5)

where A;; is traccless. The constraint equations take a simplified form of

R®) K?

- i
Bl =g P At = ~Talifp (6)

o s O i

D; A4 — gwﬁzﬁﬂ DK 0 (7)
A being the Laplacian operator of the conformal metric b;;, R its Ricci scalar and ﬁij being related to
Ay by Ay = 1,/:2At-j. Before we proceed we note that there is a relationship between the curvature of the
underlying manifold, the momentary expansion rate of the model and the matter content, reminescent
of the relation between the topology, the expansion rate and the matter content in the FLRW models,

see [H2]. Namely, in the FLRW spacetimes it follows from the first Friedmann equation,

RO K
8 ¥ 12

=2nGp (8)

that if the matter density p is positive, then either the expansion rate K doesn’t vanish or the curvature
R ig positive and thus the spatial slice topology is S (or both). It is impossible to have a model
that is momentary at rest and at the same time of flat or hyperbolic geometry (R®) > 0). This also
holds in the BH lattice case: it is impossible to have time-symmetric (K;; = 0) initial data in which the
underlying lattice geometry is flat or hyperbolic. We are thus left with two distinct cases: the spherical
time-symmetric case or the non-time-symmetric cases (spherical, flat or hyperbolic). In [H2] we discuss
thoroughly the first case while in [H3] we consider the latter case with a flat, cubic lattice.

The time symmetric spherical lattice corresponds to Ky = 0 and b;; = qf’; being the metric of a
round, unit 3-sphere. Fix the coordinate system (A, 0.¢) on 53, The vacuum vector constraints are
satified trivially and we are only left with the Hamiltonian constraint equation in the form of a linear,
elliptic equation for the conformal factor:

Ay ——-1y=0. (9)

1t has no regular solutions, but it does have a Green’s function with a puncture-type singularity %:

O = 555 (10)
An arbitrary number of solutions of this kind, centered at points 21, ....znx may be superimposed:
N o
Plz) = ; ;mT(%_ﬂ— (11)

where A(ir,y) denotes the geodesic distance on 53 and o, are real coefficients. For positive afsand N > 3
this initial data correspond to the distorted original sphere with N asymptotically flat ends joined through
throats with minimal surfaces. The geometry of the throats is very close to the Schwarzschild geometry
(for N = 2 it is the Schwarzschild geometry), so we may think of the punctures as N BH’s in a spherical,
vacuum cosmological model.

In [H2] and |13| T considered only BHL’s whose cells are regular polyhedra with BH’s located at
the center. It turns out that on S° there exist only 6 arrangements ol this type, corresponding to the
6 possible tessellations of an §% splere [12]. The tessellations have the symmetry group of a regular,
4-dimensional polytope inscribed in the 3-sphere. The black holes in this case are positioned at the
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vertices of the polytope. The arrangements have 5, 8, 16, 24, 120 or 600 BH'’s in a lattice. Note that
there is no possibility of varying the size of a cell. Instead of one or more parameter families of crystaline
lattices of different sizes we know in the Euclidean space we only have a finite number of fixed geometries
to work with.

In |H2| we consider the 8BII lattice on 5% and perform the full 3D numerical simulations of the
evolution of the model. The tools for the numerical solving of the Einstein equations with black holes
are publicly available since 2011 [51]. They were developed for the purpose of modelling the binary
hlack hole mergers in order to study the gravitational radiation emitted in the process [35]. Detailed
examination of the merger waveform was a crucial step in the gravitational wave detection by LIGO and
other GW observatories.

When we attempt to use the BH merger codes to simulate a BHL we immediately run into a problem.
The codes were written assuming asymptotically flat boundary conditions, while the BHL cells require
more complicated. periodic boundary conditions. These are relatively easy to impose for flat, cubic
lattices, where the shape of the cell is perfectly cubic and the walls meet at right angles, but much
harder in general |52]. Fortunately we have found a simple workaround which allows to evolve the data
immediately without explicitly imposing the periodicity conditions.

The trick is based on the observation that one may regard the initial data described above as the
standard, asymptotically flat Lichnerowicz initial data constructed on R3. If we consider the 3-sphere
as a unit sphere in R? given hy (le2 -+ (X2)2 + (X3)2 + ()('4)2 =1 then the stereographic projection
P given by

g 2X?

i) =

where z° are the Cartesian coordinates in R?, is conformal, i.e. the pushforward of 'y,sj satisfies

-2 -2
Poyd = (|ZP/4+1)" 6. (13)
Assume now that one of the punctures, say «, is located exactly at X = (1.0,0.0). This point is not in
the domain of P (it has been “mapped to infinity”). In this situation the physical metric v;; projected
down to R? takes the form of

"f%f; = ¢ ”fﬁ — (01)4 o by
N
T 200 1+|ﬁ5|2/4 1
wE) = 1+ C—— 14
() E T a4)

i.e. it has the lorm of the standard, asymptotically flat Lichnerowicz initial data with N —1 black holes,
located at 71;, up to a constant rescaling. This rescaling can be removed by rescaling the Cartesian
coordinates?.

The Lichnerowicz initial data with punctures can easily be handled by EinsteinToolkit without any
modifications. The corresponding R® initial data consists of 7 punctures located at points

No = (0,0,0), (15)
Ns = (2,0,0),
Ni = (-2,0,0),
N = (0,2,0),
Ns = (0,-2,0),
N: = (0,0,2),
Ne = (0,0,-2)

with mass parameters mg = 4M and mg, ..., my = 4v/2M, M being a mass and length. The solution
together with minimal surfaces enclosing the punctures is given in Figure 1. Note that the black hole
at a1, at first glance absent from (14), did not disappear from the sohution. Its presence may be
detected when we search for minimal surfaces on the spatial slice: it will show up as a minimal surface
encompassing all other ones. While it is not immediately clear from this form of the initial data that all
BH’s are identical and can be exchanged using an isometry, it does turn out to be true if we consider
the conformal factor (14).

2Note missprints in equations (21), (23) and (24) in [H2|: 4 in the denominator should be replaced by 4A'1’.
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Figure 1: Left: The initial position of the 7 BH’s represented by the minimal surfaces encompassing the
punctures and the edges of the elementary cells for the 8-black-hole configuration. The quasi-cubes are
projected to R?. Note that the 8 cubical lattice cells are isometric after the conformal rescaling. Right:
The 8th minimal surface encompassing the configuration.

We evaluated both the kinematical and the dynamical effects of backreaction. We have taken the
geodesic length of a cell edge Dogge as the measure of the size of the model and used it, together with
its first derivative al t = 0, to fit an FLRW model. The kinematical effects have the form of total mass
correction of the model: the effective mass obtained from the fit is 25% larger than the sum of the ADM
masses of the individual black holes, in consistence with the results from [12], where the fit is performed
differently.

The results of the numerical evolution is given in Figure 7 of [H2|. Note that the model is symmetric
with respect to the time reversal t — —t, so evolving it forward in time is sufficient to understand the
11l evolution of this model. The numerical evolution we performed lasted until the coordinate time of
around { = 1500 in the time units consistent with the equations. Later the evolution froze in the vicinity
of the black holes due to the properties of the gauge conditions employed. This is not very surprising,
because the gauge condition used in the simulations, taken from [33], has been developed for the purpose
of investigating BH mergers and is known to slow down the evolution at the punctures to a complete
stall and at the same keep it going far away. Later experiments with modifying the gauge conditions
done by E. Bentivegna and 1. Hinder allowed to push the evolution somewhat further, but the results
have not been published yet. ;

Even before the freezing, around ¢t = 8004, the numerical error grew significantly and consequently
we do not include further points in the plot. Up until that time the evolution of Degqe. expressed in the
proper time of Gaussian observers 7, follows the FLRW evolution with 1% accuracy, which is close to
the numerical error of the simulations. We did not observe thus any dynamical cffects of backreaction
in this model within our limits of precission.

Apart from that we have followed the evolution of the mariginally outer trapped surfaces (MOTS)
representing the outer boundary of the black hole. We also measured the geodesic distance Dy, between
the NMIOTS’s of 2 neighbouring BH’s. This quantity may look at first like another promising candidate
for the measure of the scale, along with D.4,., but we have found out that it cannot be used for that
purpose. Quite surprisingly it has a non-vanishing first derivative at ¢ = 0 despite the fact that the initial
data is time-symmetric and the black holes are initally at rest. This result looks like a contradiction
with the time reversal symmetricity of the solution. The resolution of this paradox lies in the fact that
the MOTS's we were looking at were future MOTS’s. The initial data surface of this solution contains
mariginally trapped surfaces that are bifurcation surfaces analogous to the bifurcation surface in the
Schwarzschild geometry. The future and past outer trapped horizons cross there in perfect symmetry
with each other, see Figure C2 from [[I2]. This way the distance hetween the two future MOTS decreases
with the velocity of 2 even at # = 0. This behaviour has to be contrasted with the behaviour of the scale
factor of the FLRW solution which has a maximum at { = 0. F \M
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[12] is to my knowledge the very first paper discussing the full numerical evolution of a BHL. In this
sense it was a pioneering work in the field of numerical relativity applied to inhomogeneneous cosmology.
This route was then followed by others |54, 55, 56, 57| (see also [58| using the Regge calculus instead of
the full 3D simmlations). |H2| has been cited by essentially all subsequent papers about the numerical
evolution of BHL’s and many papers discussing other inhomogeneneous cosmological models. 1t was also
cited in a number of review papers about numerical relativity and inhomogenencous cosmolgical models
[35. 34, 59]. Its main conclusions can be summarized as follows:

e The main effect of backreaction in the regular 8BH lattice is the kinematic backreaction in the
form of mass renormalization. On the other hand the evolution is consistent with a dust FLRW to
a high degree.

e Unlike the edge length, the distance between the black holes, defined as the distance between the
corresponding MOTS, is a poor measure of the size of this universe as its behaviour at the moment
of the largest expansion is quite different from the behaviour of the scale factor.

In the next paper devoted to the BHL’s |[H3| we looked at a cubic lattice of BH’s. As we noted above,
the lattice cannot be stationary. The construction of the initial data requires a non-vanishing extrinsic
curvature and therefore, unlike the situation in [H2|, the Hamiltionian constraint equation is not a linear,
elliptic PDE any more. The initial data was constructed numerically, using methods borrowed from |60],
with a few improvements |61]. In the initial data we considered the extrinsic curvature was positive
and constant near the cell faces, it vanishes inside a sphere around the cell center, with a transitional
zone in between, In the center we placed a puncture-type singularity of the type of . The initial data
construction allows for choosing the mass parameter m of the central black hole, the value of the mean
extrinsic curvature near the cell faces and the length of the cell edge. The code solves the nonlinear
elliptic equation for the conformal factor by the relaxation method. Note that the conformal factor
rescales all the fixed quantities, so their physical values in the initial data turn out to be slightly different
from the assumed ones.

In [I13] we followed the evolution of 4 sets of initial data with 4 different values of the mass m. The
evolution lasted for a fairly long time, but at some point the code seems to have lost the numerical accu-
racy. The evolution required a modification of the standard (-tracker gauge condition. The simulations
were performed in three runs with increasing resolutions. The comparison of the runs showed first-order
convergence up until a moment depending on the black hole mass, later the convergence of the results
became problematic.

We discussed in [H3] the time evolution of the edge length and the geometry of the solution. The
edge length seems to follow the dust FLRW evolution with a high accuracy save for quick oscillations.
The oscillations are probably caused by excited gravitational wave modes in the cell. This is a fairly
common occurence for the initial data constructed using the conformal method in the multi-black hole
merger studies [62]. They did not appear in [H2] because the initial data had a simpler geometry and
wags time-symmetric. Note that in the BH merger simulations these modes are fairly quickly radiated
away to infinity. This is not the case in simulations with periodic boundary condtions like [H3|, where
the excited waves remain closed in the cubic cells.

Unlike |[H2| this paper was not the first one to report a numerical siimulation of a cubic BHL. Two
weeks before it appeared on the arXiv Yoo, Okawa and Nakao posted their paper |54]. Our analysis of
the results is nevertheless more thorough then in the aforementioned paper.

The main conclusions of |H3| can be summarized as follows:

o The main effect of backreaction in cubic lattices of BH’s with initial data constructed by the’
prescription from [60] is the kinematical effect of mass renormalization.

e The time evolution of the solution is fairly close to the corresponding dust FLRW model apart
from quick oscillations superimposed on the continuous expansion, caused probably by excited
gravitational wave modes within the lattice cells.

e The effective pressure of the solution has the form of quick oscillations around 0, with magnitude
comparable with the matter density, but which average out to 0 in long term.

4.7 Paper |H4]: Continuum limit and backreaction in the spherical Linquist-
Wheeler model with BH’s

This is the most mathematically involved paper of the series and at the same time the most innovative in
its approach. Recall that there are only 6 possible regular lattices on a 3-sphere. This is insufficient if we
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would like to proble the continuum limit, i.e. check what happens if the number of black holes becomes so
large that they can be treated as a continuum, just like a fluid in the kinetic theory. Therefore I considered
there the time-symmertric Lindquist-Wheeler initial data from (11) with an arbitrary number of black
holes and with arbitrary masses and positions. I addressed two main questions:

1. In what sense and under what conditions does the 3-metric of the initial data converge to the
metric of a closed FLRW in the moment of largest expansion?

2. What is the difference between the total mass of this model, i.e. the sum of the ADM masses of all
BIl’s, and the effective mass one obtains by assigning a coarse-grained FLRW model to the initial
data by averaging the data in a suitable sense?

The averaging and the FLRW fitting in this model can be done casily by averaging the conformal factor
1 using the standard volume form 7 on the 'round’ $%:

i} ;
(w)—Q—ﬂg/SEuW:

272 heing the volume of S%. Note that the singularities in the Green’s function (11) are of the type 3,
i.e. integrable in 3 dimensions, so the integral above converges.

The key result of the paper is contained in two inequalities. The first one, Theorem 3.1 in [H4|,
bounds the deviation of the conformal factor (and thus of the whole 3-metric ¢;;) from the average one
at a given point

19() — ()| < Ce Ue(E, Amin) "

The second one, Theorem 3.2 in the same paper, estimates the dimensionless mass deficit, i.e. the
difference between the total mass and effective mass inferred from the average metric divided by the
same effective mass?
|Mcfj = Miotl
Mg

S CE VVE (E iag ngnax:émin) =+ %_dl (17)

o o
The estimates depend on a handful of parameters describing the microscopic details of the black hole
distribution. In particular, the function U(E, Api,) from (16) depends on the distance from the nearest
puncture Ay, and the modified cap discrepancy E. The latter measures how evenly the black holes are
distributed on the sphere. It is a modification of the standard cap discrepancy, already known in the
literature [|. It provides global bounds on how the standard volume of a spherical cap differs from the
volume measured by a measure concentrated at the punctures. For sufficiently even arrangements of
BI’s it converges to 0 with the number of black holes diverging. The bound depends on F via a positive
power and on A, via a negative one, i.e. it bounds the deviation more far away from the nearest BH
and less in their vicinity.

The function W, (E, P 6n1ax,6min) from (17) depends again on F, but also on the ratio between
the largest parameter o; and the sum of all o; as well as the largest and the smallest distance between
any two pairs of BH’s. The dependence on the latter is again via a negative power, so the bound is
weaker when any of the black holes get too close. This way the convergence of the relative difference
between the two masses to 0 depends on the convergence rates of E and d,,;, to 0: the latter needs to
converge sufficiently slowly with N — oc.

I also present in [H4] the construction of a sequence of solutions with a growing N in which you
can easily estimate the convergence rate of F and Omin, use the inequalities above to understant the
geometry of the solution for very large N and prove that in this limit the left hand side of (17) vanishes
{asymptotic additivity of masses). The same solution with a slight modification (a pair of close BH’s
replacing each BH) can be shown to have a very similar geometry, but on the other hand the BI masses
are not asymptotically additive. Indeed, 0., in the modified solutions converges much faster to 0 and
(17) yiclds no bound on the mass deficit.

This is to my knowledge the first paper proving an cxact, non-perturbative result concerning the
backreaction and the continuum limit in GR in the form of inequalities. Its pioneering nature lies also
in the methods of the proof. First, we observe that both oy and ¢ can be expressed as a sum of a
few terms which are easy to estimate and a term of the form of a difference between the volume average

3Note the missprint in the denominator of equations (24) and the definition of oas on page{& Mo1 should read M.y y.
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of the Green’s function (10) and the weighted average of its values over the punctures. The weighted
average is quite similar to the partial sum in the definition of a Riemann integral and thus one may
intuitively expect this difference to converge to 0 as the number of points diverges.

The problem of estimating expressions of this kind is known in mathematics in the context of the
quasi-Monte Carlo integration theory |63, 64, 65, 66]. It is fairly easy for regular functions, but rather
hard if we allow (integrable) singularities in the integrand |63, 67, 68, 69]. None of the results available
in the literature seemed to work in my case, so the proof is original. It is based on a version of the
Koksma-Hlawka identity for unbounded functions. The result may be of interest even outside the field
of the backreaction problem and general relativity, in the theory of the quasi-Monte Carlo integration.

|H4] attracted a considerable interest in the backreaction community. Shortly afterwards Clifton
presented somewhat related results in BH configurations obtained by the method of images [70]. Liu and
Williams considered later BHL using various approximation schemes and the Regge calculus |71, 58],
citing |H4|. Moreover, the results from [H4| were mentioned by both sides in the backreaction debate
between Green and Wald on one hand and Buchert et al on the other |17, 20]. Note also that the ball
bearing example from |17] and its discussion bears some similarity to the solutions I considered. The
paper |H4| was included by the Editioral Board of the Classical and Quantum Gravity in the CQG
Highlights 2013/2014 in cosmology.

The main conclusions of [H4| can be summarized as follows:

e Infinite sequences of time-symmetric, vacuum initial data on 53 with BH’s as the only sources of
sravitational field may have a continuum limit as the number of black holes diverges. The limit
has the form of a spherical FLRW model with a continuous, homogeneous distribution of matter.
Convergence requires the BII's to be distributed uniformly over the 53, The precise criterion is
given in terms of the discrepancy between the standard measure on the round 5% and the measure
concentrated in the punctures.

e The convergence of the metric tensor to the continuum limit is not pointwise, but rather more
compicated: the metric tensor remains strongly distorted for arbitrary large N in the vicinity of
each black hole, i.e. in the region within a finite number of Schwarzschild radii from them. As
the number of BH’s N grows the black holes and the distorted regions cover densely the solution.
However in the region far away from the nearest black hole the metric still converges to the FLRW
one. Moreover, it is the faraway regions that asymptotically take up the whole volume of the 59,
thus making the distorted region negligible.

e The existence of the continuum limit does not imply automatically the vanishing of backreaction,
i.e. the relative difference between the total mass of the corresponding FLRW solution and the sum
of the ADM masses of the BH's. It is necessary to add a condition on the microscopic distribution
of the BH’s, namely we need to make sure that the BH’s do not get too close to each other. In [H4|
we demand that the minimal distance between a pair of punctures doesn’t decrease too quickly.

e It is the clustering of matter on small scales that gives rise to backreaction. It is easy to understand
the physical reason for that: clustering of matter means larger binding energy, which in GR needs
to be taken into account as a source of the gravitational fields on larger scale (“gravity gravitates”).

e It is possible to prove inequalities estimating the backreaction terms in GR using techniques taken
from the measure theory and the quasi-Monte Carlo integration theory.

4.8 Paper [H5]: Nested structures

The large-scale matter distribution in the Universe is known to be nested: large walls are made of smaller
fillaments, each of them made of galaxy clusters, which in turn are made of individual galaxies. This
situation is quite different from the simplified examples discussed in [H2-H4|, where we had a well-defined,
macroscopic homogeneity scale, a microscopic scale defined by very small compact objects (black holes
ete.) and virtually no structures in between. In [H5] I therefore consider the situation when the matter
distribution is homogeneous on the homogenerity scale Rpom, but below that the structure is present on
all scales down to the fixed smallest ripples scale Roin- The goal of the paper is to understand how the
backreaction effects depend on the matter distribution in this case, when exacly we should expect them
to be significant and which parameters characterizing the matter distribution play an important role in

estimating them. 7~
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Figure 2: Construction of the multiscale foam with one dimension suppressed. The Schwarzschild solution
in the form of the Flamm’s paraboloid (top-left). The paraboloid is then cut along a circle and the
remaining hole is filled with an appropriately fitted blue spherical cap producing the solution gy (top-
right). We then fit a number of funnel-shaped sections of Schwarzschild to a number disks excised from
the cap. The funnels are then cut along appropriately chosen circles and the interior replaced again with
matching caps (bottom-left). The positions of the cuts on the funnels are chosen carefully so that the
small caps covered the same solid angle as the original cap, yielding g;. The whole step is then repeated
for each of the small caps producing g,. Note the self-similarity of the construction.

Just like [H4], [H5] is a careful analysis of an exact solution of the Einstein equations with a simplified
geometry. Unlike the models from [H2-H4| it is not vacuum, but it is filled with matter in the form of
presureless dust. Tt belongs to the generalized Swiss cheese class of models, obtained by matching a
constant density FLERW solution with a vacuum Schwarzschild solution along a sphere. The construction
proceeds as follows: we begin by an outer Schwarzschild solution matched to an inner homogeneous ball
of dust with a closed FLRW geometry (see Figure 2). This matching is fairly standard and has been
described in detail in many textbooks |72, 73|. We then excise inside the ball a number of spherical
voids, i.e. regions of appropriately matched inner Schwarzschild metrics. Inside these voids we match
again spherical overdensities in the form of internal FLRW solutions with a larger matter density. The
size of the inner balls of matter has been chosen in such a way that the ball is a perfectly scaled down
copy of the orginal ball of dust. The construction may then be repeated on each small ball of dust. We
may iterate the last step as many times as we want, obtaining this way an almost self-similar, fractal
distribution of hoth matter and the gravitational field.

Let N denote the nesting level of the construction, i.e. the number of iterative steps of the con-
struction. We may compare the ADM mass of the solution M4par, measured at a distance from the
initial ball of matter and the total mass M, defined, as usual, as the integral of the mass density of
the dust. The construction of the voids and overdensitics has no influence whatsoever on M 4pas, but it
does change the total mass, which can be expressed as a series

MO = MO  AME) +-- + AMED, (18)

in which AM) is the correction introduced by the k-th step of the construction. Due to the self-
similarity of the metric the series above is geometric and can be summed exactly, see the equation (37)
from [H5]. The relative mass deficit 2 = M—“’M&”P— which is simply the integrated backreaction of the
Too component, can be expressed exactly as a function of the parameters describing the construction:
the dimensionless compactness parameter ¢ of the ball of matter delined as the ratio between its mass
(expressed in the geometric units) and its size, the total volume fraction o excised from the uniform ball

of dust at each step and finally the nesting level N. e
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Section in divectiog (1.14)

Figure 3: The solution with a large backreaction despite very weakly relativistic inhomogeneities. The
voids constitute and Appollonian packing of a 3-sphere.

In the Newtonian approximation the mass deficit must vanish, because the mass measured far away
from the body is related to the integral of the mass density via the Gauss law. Any difference between
the two is therefore a non-linear GR effect. In objects without a complicated nested structure, like a
uniform ball of matter, it is preportional in the leading order to the compactness parameter ¢:

z(e) = Ch e + O(e?), (19)

') being a constant determined by the geometry of the system. Note that due to the self-similarity of
the solution the compactness of the initial ball of matter ¢ is equal to the compactness of any smaller
overdensity. ¢ is thus a universal constant characterizing how stongly relativistic the whole structure is.

In [H5] I presented a configuration of overdensities and voids (sce Figure 3) in which the mass deficit
takes the form of

z = Cy Ne+ 0(£?), (20)

where N is the nesting level and 'z is again a constant. Obvioulsy no matter how small = is, it can
be compensated by a sufliciently large value of N. This happens despite the fact that for small £ each
of the voids and inhomogeneities seems to lie within the reach of the Newtonian approximation, where
the backreaction effects are.negligible. The reason for their amplification is the accumulation of small
contributions from various intermediate scales where inhomogeneities are present. The deficit from (20)
can be re-expressed in the following form:

x = CseD + O(e?) (21)

where D is the dimensionless depth of structure, i.e. the logarithm of the ratio of the homogeneity scale
and the scale of the smallest ripples:

D = In Jhom. (22)
min

We conclude that D is an important parameter characterizing the backreaction in matter distributions

with nested structues.

1 prove in [H5] that these results are both time- and gauge-independent. Tt is interesting to contrast
them with the claims of Ishibashi and Wald from [15]. The authors dismiss there the idea that the
backreaction may explain the accelerated expansion of the Universe and state explicitly in the abstract
the reason why: “We poini out that our universe appears to be described very accurately on all scales
by a Newlonianly perturbed FLREW metric. {(This assertion is entirely consistent with the fact that we
commonly encounter |the density contrast of| dp/p > 1090 .) If the universe is accurately described by
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o Newlonianly perturbed FLEW melric, then the back-reaction of inhomogeneiiies on the dynamics of
the universe is negligible.” QObvioulsy the toy model discussed in [H5] shows that the bare fact that the
inhomogeneities on all scales seem to be well described by a Newtonian perturbation does not guarantee
(hat total backreaction is negligible. A more refined analysis. which includes the depth of the cosmological
structure, is needed to give a reasonalbe estimate of the nonlinear GR effects present. The paradoxical
properties of the toy model illustrate the fundamental difference between the coarse-graining of nested,
multiscale structures and the inhomogeneities of a given scale.

|[H5] was cited by Buchert et al in their rebuttal paper |20] as an example where the Green-Wald
formalism fails to capture the backrcaction effects. Tt was also mentioned by other authors discussing
the backreaction in inhomogeneneous Universe |25, 74, 32|, as well as the review paper on the Hubble
law by MacCallum |75].

The main conclusions of the paper [H5| can be summarized as follows:

e In nested structures, in which overdensities of a given size contain smaller structures, the total
backreaction in the form of mass deficit is the sum of contributions from all intermediate scales
from the scale of the smallest inhomogeneities up to the homogeneity scale.

e The magnitude of the contribution is proportional to the dimensionless compactness parameter £
of each of the structures on a given scale. If £ is small then the structures, when considered in
isolation from the rest of the solution, can be described using the Newtonian approximation and the
backreaction effects are small. Nevertheless if the nesting level is large enough the backreaction may
turn out to be substantial, because small contributions may accumulate to a large value. This may
happen despite the fact that on each scale the matter distribution seems very weakly relativistic.
More than that, in my example the solution is everywhere isometric to a scaled-down copy of a
very weakly relativistic solution with a uniform ball of matter. Large backreaction is therefore a
global, emergent cffect which cannot be explained by the presence of strong gravitational fields in
any of the overdensities or voids.

e In the leading order of expansion in £ the backreaction in proportional to the product of £ and the
depth of structure D. The latter is therefore an important dimensionless parameter scaling the
magnitude of the backreaction effects in nested structures.

e The backreaction problem in nested structures lies within the reach of the perturbative approxi-
mation applied together with the renormalization group approach.

4.9 Paper [H6]: Evolution of the BIL along the curves of local discrete
rotational and reflection symmetry (LDRRS)

The paper [H6] is a reaction to the paper written by Clifton, Gregoris, Rosquist and Tavakol in 2013
[56], in which the authors proposed a way to investigate the time development of the regular lattices
of black holes on S2. The idea is to consider the Einstein equations along certain special curves on
the manfold. The curves are the axes of a discrete rotational symmetry of the solution, ie. an axial
symmetry with respect to a finite subgroup of the full U(1) group of rotations around it. Additionally the
solution exhibits a number of reflection symmetries with respect to several hyperplanes passing through
these curves. In [56] the authors derive the vacuum FEinstein equations along the curves of local discrete
rotational and reflection symmetry (LDRRS). According to the authors the vacuum Einstein equations
at the points on a LDRRS curve turn out to decouple entirely from the rest of the solution. Namely,
the equations reduce to local ODE’s when expressed in the Gaussian normal coordinates. The resulting
ODE’s turn out to be solvable by quadratures. This way the time evolution of these models can be
followed to arbitrary long times using a desktop computer at least along the edges of the cells as well as
some of the cell diagonals. It is also straightforward to investigate the basic optical properties of these
lattices along the LDRRS curves, i.e. the redshift-luminosity relation for objects and observers lying
on them. Obviously this result, when confirmed, would simplify tremendously the study ol the time
evolution of the BH lattices in vacuum.

At the same time my collaborators were testing the new code for tracing null geodesics and investigat-
ing the optical properties of spacetimes concurrently with their numerical evolution on a cluster. As one
of the test cases we have chosen the regular lattices of BH’s on a sphere. We have noticed immediately
a discrepancy between the results of the full 3D simulations and those coming from the simple code
implementing the CGRT equations. Having eliminated the possiblity of bugs in both codes we turned
to the CGRT equations themselves. We decided to rederive them carefully using the ADM formulation
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of the Einstein equations (the authors of |56] used a less known, othonormal frame-based formulation of
van Elst and Uggla |76]).

After a lew weeks of fairly complex equation manipulations we realized that the CGRT result is
incorrect. The authors imposed the LDRRS conditions on all geometric objects along the curve and
showed that all vectors and tensors in question must take a special, reduced form. Additionally due to
the reflection symnetry at these points the curl of all tensorial objects must vanish. Tn order to derive
the CGRT equations one has to differentiate the ADM equations with respect to time and derive the
equation for the time derivative of the 3-dimensional Ricci tensor. This equation taken together with
the ADM rest of the equations form a closed system except one term proportional to the curl of the
magnetic Weyl tensor Hy;. The term has no evolution equation of its own at this order of differentiation
with respect to . Clifton and collaborators use then the reflection symmetry arguinent to prove that the
problematic term vanishes. This is however incorrect, because H;; is not a tensor, but a psendotensor,
obtained by contracting the Weyl with the volume 3-form. H;; can be in fact expressed as the curl of
the extrinsic curvature tensor. Now while a curl of a tensor has to vanish along the plane of symmetry,
the curl of a curl of a tensor does not. The problematic term doesn’t vanish a priori and the CGRT
equation do not close.

Quite interestingly the anomalous term vanishes together with its first 2 time derivatives in our time-
syminetric initial data. Thus the difference between the true solution and the solution of the CGRT
equation grows very slowly, like 8. In order to confirm the hypothesis that the magnetic part of Weyl
allects the local evolution along the LDRRS curves we compared the anomaly in the CGRT equations in
the full 3D simulations with the curl of the magnetic Weyl. We obtained a good numerical match. On top
of that we calculated the analytic expression for the first non-vanishing derivative of the offending term
in the initial data and compared the result with the numerically evaluated derivative in the numerical
solution?. Again the values matched very well.

The main conclusions of the paper |H6| can be summarized as follows:

e The full Einstein equations along the LDRRS curves simplify to a system of ODE’s which in
general includes the curl of the magnetic Weyl tensor H;;. This curl does not have to vanish along
an LDRRS curve, as was reported in [56], and thus the ODE’s do not form a closed system.

e In case of the 8B model the magnetic Weyl vanishes initially and the correction term with respect
to the simplified, closed system with the curl of TT;; set to 0 is of the order of #° for short times.

e It is nevertheless not possible to obtain any conclusions concerning the long-time behaviour of the
BHL’s without the full 3D numerical simulations.

4.10 Summary and future prospects

The papers [H1-H6), despite very different methods, represent various approaches to the same backre-
action problem and to the issue of coarse-graining in GR. They should also be considered voices in the
decade-long backreaction debate among cosmologists and relativists. Qut of this list [H4| and |H5| are
probably the most important ones in terms of the relevance of the results and the novelty of the mathe-
matical methods. They both concern fundamental issues connected with the application of the Einstein
equations to inhomogeneous matter distributions. [H4] clarifies the notions of the continuum limit and
the fluid approximation in GR and introduces mathematical precission and rigor to the problem. It
shows how the “best fit FLRW metric” arises in a natural although complicated way in the continuum
limit, providing an illustration of the possible solution of the Ellis and Stroeger’s “litting problem” in
cosmology. The example is a more precise illustration of the origin of the smooth FLRW metric than
the ball bearing example from [17] (it has in fact been noted in that paper and some subsequent ones).
It also explains that backreaction, in the form of mass renormalization, is a distinct problem from the
fitting question or the validity of the continunm approximation. |H5| on the other hand highlights the
collective, emergent character of the backreaction effect: it is there even though inhomogeneities on every
scale, considered in isolation from the rest, are very well deseribed using the Newtionian approximation.

The numerical studies discussed in papers [H2, H3, H6], although based on very highly simplified
models, constitutes an important step towards fully relativistic 3+1 numerical simulations of inhomo-
geneous cosmological models and the structure formation. This type of research is likely to dominate
the field of comsology in the next decade, providing the basis for the interpretation of the observational

1Since the result contained many thousands of terms the caleulation was done using Mathematica. The reduction of
the result to a simpler form using various symmetries and identities took several hours.
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data of increasing precission. Hopefully it will provide as much important input for cosmology as the
BH merger simulations did for the gravitational wave astronomy in the last decade. In my future work
I plan to continue my collaboration with numerical relativists on this topic.

The results and methods presented here open up new directions for research in both mathematical
and numerical relativity. An obvious continuation of [H4| is the generalization of the results to more
general situations, for example general, asymptotically flat initial data (time symmetric, constant mean
curvature or more complicated). In both [H4| and [H5| I would like to extend the formalism to include
the time evolution of the initial data and the pressure backreaction effects, proceeding in the similar
direction as |24], but in a more general setting.

Finally the results of [1] suggest the use of quasi-local quantities constructed from the geometry of
the boundary of the coarse-graining region to obtain the full large-scale Einstein equations, not only the
matter flow.

5 Other research accomplishments

a) Bibliometric data according to Web of Science (as for April 18th, 2016)
number of papers: 14 4 1 preprint
h-index (Hirsch index): 7
number of citations: 106
number of citations with self-citations excluded: 95

total impact factor (the sum of the two-year journal impact factors from the publication year, 2014
data used for publications from 2015): 40.454

b) Research not contributing to the habilitation
Research published before the PhD degree

e Normal conformal Cartan connection. This is the topic of my MSc project, done under the
supervision of J. Lewandowski, in the field of conformal geometry, i.e. the geometry of manifolds
equipped with metric given up to a conformal rescaling. We calculated the Yang-Mills current
of the normal conformal Cartan connection, an object associated with the conformal geometry of
a manifold. In dimension 4 we proved that the current, which is an invariant of the conformal
geometry, has the only non-vanishing components proportional to the Bach tensor, another known
invariant of the conformal geometry. The vanishing of the Bach tensor is a necessary but not sufli-
cient condition for a metric to be conformally equivalent to an Einstein metric. We then considered
geometries with a reducible normal conformal Cartan connection in signature (—, +,+, +), arising
from metrics with a null Killing vector and of Petrov type N, called the Fefferman metrics. We
found all examples of Fefferman metrics with a vanishing Bach tensor [77]. Metrics of this type are
of interest for mathematicians because they provide examples of metrics for which the Bach tensor
vainshes, but which are not conformal to an Einstein metric, thus proving the necessity of another
condition for a metric to be conformally Einstein (note however that our example was not the first
one |78]).

e Isolated and dynamical horizons. This is the topic of my PhD project. I worked together
with J. Lewandowski and T. Pawtowski on the multidimensional generalization of the notion of
an isolated horizon, i.e. a generalization of the standard event horizon as the boundary of a Kerr
or Schwarzschild black hole. We managed to generalize the first law of black hole mechanics to
multidimensional isclated horizons |79]. In the standard dimension and signature 341 I introduced
a formalism describing the geometry of an isolated and dynamical horizon using a single set of
variables |80]. This is non-trivial as the isolated horizons, representing the boundary of a black
hole not interacting with its environment at the moment, are null surfaces, while the dynamical
ones, representing black holes accreting matter or interacting gravitationally with the surroundings,
are spacelike. I also introduced the notion of angular momentum of an isolated or dynamical horizon
without an axial symmetry [81]. It is defined using the conformal decomposition of the 2-metric of
a section of the horizon into a round metric and the conformal factor (the uniformization of a 52
surface). The angular momentum is a quasi-local quantity arising from the Hamiltonian formulation
of general relativity as the generator of an appropriately defined rotation of the horizon.
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Rotation curves in fully relativistic models of galaxies. In 2005 I wrote the first paper
pointing out the error in the relativistic galaxy model proposed by Cooperstock and Tieu [82].
Their proposal sparked a short but hot debate among the researchers working on the galactic
dynamics and dark matter. Their model was supposed to explain the flat rotation curves in
galaxies by general relativistic corrections in gravitationally bound systems, without the need of
dark matter of any kind. I showed in [83] that the model they proposed contains an overlooked sheet
of exotic matter through the galactic plane which modifies the rotation curves, thus invalidating
their proposal. The original Cooperstock-Tieu paper was not published and thus neither was my
rebuttal paper. The result appeared laler in a proceedings paper [84].

Research conducted or published after the PhD

Tsodyks-Markram model of synaptic depression. Project in theoretical biology. I worked
in collaboration with J. Mazurkiewicz (J. Jedrzejewska-Szmek) and J. Zygierewicz on the regular-
ization of the ODE’s describing the response of a synapes to stimuli. In particular, we focused on
the short-term synaptic depression described by the the Tsodyks-Markram model. T helped to find
the analytical form of solutions corresponding to the response to a time-localized, Dirac delta-like
stimulus [85].

Einstein-Vlasov equations: variational principle and axisymmetric solutions. In col-
laboration with a nuber of relativists from Germany I worked on the Einstein eguations coupled
with matter in the form of collisionless dust (described by the relativistic Vlasov equations). Main
results: deriving the equations from a variational principle and successful numerical search for
stationary, axisymmetric solutions (unpublished so far).

Numerical methods for finding the isometric embedding of $? surfaces with a positive
metric of positive curvature in R2. In collaboration with M. Jasiulek we proposed a numerical
method to find the isometric embedding of a surface of 5 topology equipped with a Riemannian
geometry with a positive curvature in the Euclean space [86]. It is known that this embedding
always exists and that it is unique (up to rigid motions and reflections) [48]. Our algorithm is
based on the original proof of the existence of the embedding by Nirenberg [87]. It finds the
embedding for surfaces which do not deviale very much from a sphere. The application of the code
involves the visualization of various surfaces in numerical relativity as well as coarse-graining of
the fluid flow in cosmology [H1], [49].

Prizes and awards

Project “Nonlinear effects of general relativity in the coarse-graining of inhomaogeneous gravitational
fields and matter sovrces” submitted to the European Research Council for the ERC Starting 2015
programme (panel PE1-Mathematics) reaches the second step of the review, ie. the interview.
Obtains the final degree B (not financed).

The paper [H4| has been selected by the Editorial Board of Classical and Quantum Gravity as a
CQG Highlight 2013/2014 in the field of cosmology, i.c. one of the best papers based on criteria of
interest, significance and novelty. The author was also asked to write a short introduction to the
paper for the CQG plus webpage.

Juliusz Fukasiewicz prize for the best student of the Stefan Batory High School in the field of
science in 1998

Reached the 3rd stage of the Polish Physics Olympiad (1997) and Polish Mathematics Olympiad
(1998) for high school students

Awarded once the 2nd and twice the 3rd prize in the Warsaw Technical University Physics Com-
petition for high school students (1996-1998)

d) Directing research projects

2012-2014; Principal Investigator of the project “The role of small-scale inhomogeneities in general
relativity and cosmology” funded by the Foundation for Polish Science (FNP) within the HOMING
PLUS program, co-funded by the European Union

2006: One-year grant from the Polish Ministry of Science and Informatization for graduate students
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e) Participation in research projects

e 2007: Participated in the MASTER grant (MISTRZ) of the supervisor Prof. J. Lewandowski,
funded by the Foundation for Polish Science (FNP)

f) Talks

Invited conference talks

e July 2016: 14th Marcel Grossmann Meeting, Rome. “Nonlinear ¢ffects and coarsc-graining in
general relativity” - 20-minute opening talk on the parallel session on inhomogeneous cosmelogical
models.

Contributed conference talks (selection)

e Nov 2015: 2nd Conference of the Polish Society on Relativity (POTOR), Warsaw, “Coarse-graining
of the Finstein equations: recent results”

o July 2014: 1st Conference of the Polish Society on Relativity (POTOR), “Nonlinear effecls of
general relativity from multi-scale structure”

e March 2014: 4th Central European Relativity Seminar, ESI Vienna, “Backreaction and conlinuum
lmit in a closed universe filled with black holes”

e July 2013: GR20/Amaldi 10, Warsaw, “Periodic lattices of bluck holes as inhomogeneous cosmo-
logical models”

e Dec 2012: Follow-up workshop “Dynamics in General Relativity: Black Holes and Asymptotics”,
ESI Vienna, “Black hole lattices on S* and on R®: initial data and evolution”

e Feb 2012: Relativity workshop at Jagiellonian University, Krakow, talk about the 8-black hole
model of the Universe investigated with Eloisa Bentivegna

e Jul 2011: Relativity workshep at the Erwin Schrédinger Institute in Vienna, collaboration with
researchers from other institutes including Eloisa Bentivegna and Lars Andersson

e Sep 2010: Relativity workshop in Edinburgh, 45min talk about covariant coarse-graining of inho-
mogeneous dust flow in GR

e Jul 2009: 12th Marcel Grossman Meeting in Paris. 12min talk about covariant coarse-graining of
inhomogeneous dust flow in GR

e Jun 2009: Invisible Universe 2009 Conference, UNESCO Paris. 15min talk about covariant coarse-
graining of inhomogeneous dust flow in GR

e Mar 2009: 49th Krakéw School of Theoretical Physics, Zakopane, March 2009. A 45min talk on
covariant averaging in cosmology and the backreaction problem

e Jul 2006: 11th Marcel Grossmann Meeting in Berlin. Talk about isolated and dynamical horizons

o Jul 2006: IRGAC 2006, Barcelona. 2nd International Conference on Quantum Theories and Renor-
malization Group in Gravity and Cosmology. Talk about Cooperstock-Tieu model of galaxies

e Jun 2003: Conference “Gravitation: A Decennial Perspective", Center for Gravitational Physics
and Geometry, PennState University, State College PA, USA. 30-minute talk about the results of
the M. Sc. thesis

e Sep 2002: Astro-Particle Physics Workshop during the Polish-German Student Summer Academy
in Krzyzowa. One-hour talk about supernovae and neutrinos (together with S. Lewicka)

Invited talks on seminars (selection)

o Numerous talks at the Relativity Seminar at the Faculty of Physics, University of Warsaw, including
Apr 2016: “Backreaction and continuum limat in a closed universe filled with black holes”

e Oct 2009: Cosmology seminar, Institute for Theoretical Physics, University of Heidelberg, “Co-
varianl coerse-graining of Finstein equations and the backreaction problem in cosmology”
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Oct 2013: Astronomical Observatory, Jagiellonian University, Krakow, “Numerical evolution of
reqular black hole latiices”

Oct 2013: Institute of Physics, Jagiellonian University, Krakow, “Buackreaction and continuum limit
in a closed universe filled with black holes”

Apr 2014: Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Potsdam,
“Nonlinear effects of general relativity from multi-scale structure”

Feb 2015: Centre de Recherche Astrophysique de Lyon Teole Normale Supérieure de Lyon, “Non-
linear effects and coarse-grainaing in general relativity”

May 2015: University of Helsinki, Department of Physics, Division of Particle Physics and Astro-
physics “Neonlinear effects and coarse-graining in general relativity”

Oct 2015: Institute of Physics, Jagiellonian University, Krakow, “Nonlinear effects and coarse-
graining in general relativiiy”

g) National and international collaboration

e 2001: Research project with prof. J. Stepaniak from the Institute of Nuclear Problems (IPJ),

Warsaw, within the VASA collaboration in high energy physics and cyclotron physics, Warsaw
University /Faculty of Physics and The Svedberg Laboratory, Uppsala, Sweden - writing a code for
the data analysis during the calibration runs for the particle detectors as an undergraduate student

2007-2008: Collaboration with biophysicists J. Jedrzejewska-Szmek (Mazurkiewicz) and J. Zy-
gierewicz from University of Warsaw on a project in theoretical biology

2008-2010: Collaboration with L. Andersson, M. Ansorg, J. Hennig (Max Planck Institute for
Gravitational Physics, Potsdam) and G. Rein (University of Bayreuth, Germany), working on the
Einstein equations with collisonless matter.

2010-present: Collaboration with numerical relativists Eloisa Bentivegna (Max Plack Institute for
Gravitational Physics, Potsdam and University of Catania) and later also with Tan Hinder (Max
Plack Institute for Gravitational Physics, Potsdam) on inhomogeneous cosmological models, espe-
cially the black hole lattices, their evolution and optical properties. Papers from this collaboration
have been included in the habilitation series |H2, H3, H6|.
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