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¢) Discussion of the scientific goal of the above works and achieved results together with
discussion of their applications.

1 Introduction

To bridge the gap between a microscopic system defined by a Hamiltonian, and its
equilibrium macroscopic properties (such as the phase diagram and the equations of
state) poses a central task of equilibrium statistical physics. A framework ta achieve
this goal is provided by the Gibbs ensemble theory, within which thermodynamics
is extracted by means of computing the partition function. This is a purely techni-
cal problem, though usually not a very easy one. Its difficulty stems from the fact
that the calculation involves a large number of coupled degrees of freedom. Quite
contrary, most approximate methods of theoretical physics work only for problems
involving just one degree of freedom. These methods heavily rely on extensivity,
and involve approximations allowing for treating the original system as a one-body
problem with some effective field created by the remaining degrees of freedom. These
methods, referred here as mean-field type, are often successful in delivering at least
qualitatively correct description of the system in question (and often much more!)
provided not too many of the original degrees of freedom reside in a spatial region
of the size of the correlation length. Systems close to a second-order phase transi-
tions are one example case which certainly does not fall into this categary, since the
correlation length at the critical point is infinite. The renormalization group (RG)
approach to the equilibrium many-body problem [1, 2] aims at going around the dif-
ficulties encountered within mean-field (or any perturbation theory around a soluble
model) by refraining from summing fluctuations corresponding to different energy
scales in one step. Its basic philosophy is to organize this summation according to a
decreasing scale. It consists in building an effective theory for a subset of degrees of
freedom (the low-energy modes) by integrating out the others (high-energy modes).
If the rapid-mode integration could be performed exactly, one might iterate this step
to arrive at an exact solution to the original problem. This is however not the case in
the most interesting situations, where a practical construction of the effective theory
is approximate.

1.1 Non-perturbative renormalization group

In the most common formulation one constructs the RG transformation perturba-
tively and follows the flow of a finite number of couplings under the scale reduction.
Within the framework of field theory, another possible approach is to consider an ex-
act equation governing the flow of a generating functional for a family of correlation
functions [3]. In any practical calculation one subsequently makes an ansatz on the
allowed form of this flowing functional. This way of proceeding is usually referred to
as "functional RG"” (fRG), "non-perturbative RG" (NPRG), or "exact RG” (ERG).
There are different implementations of the NPRG. The so-called Wilson-Polchinski



formulation [1, 3, 4] relies on an exact flow equation for the generator of connected
correlation functions, This early variant of NPRG led to a number of important
formal results [3], However, practical implementations of this idea (even for simple
systems) were developed only in the last 20 years within the framework of the (so
called) one-particle irreducible (1PI) variant of NPRG [3, 5], also known as the ef-
fective action method. The present author’'s contribution takes this formulation as
the starting point.

1.2 The 1PI scheme

In the present context of equilibrium statistical physics we are confronted with the
task of computing the partition function

Z = /DXG—S[X] ’ (1)

We have assumed that the partition function can be cast in the form of a functional
integral. Standard procedures provide routes to formulate numerous problems in this
way [6, 7]. Condensed-matter models are always valid up to a certain lengthscale
(like lattice spacing). The theory we discuss below is therefore always supplemented
with an upper cutoff Ayy in momentum space.

The fluctuating field x(z) depends on the spatial coordinates in d dimensions and
is here taken to be single-component and real for the sake of simplicity of the pre-
sentation, The following reasoning easily generalizes to x(x) being multicomponent,
complex, or Grassmann-valued. By adding the source term [ d%zx(z)J(z) and tak-
ing the logarithm, one obtains the generating functional for connected correlation
functions

W[J] = log / Dye=SW+[ dax(@I@) @)
We will consider the Legendre transform
Tlg = —WIJ] + [ dag(e)J(a) 3)
where S
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The quantity I'[¢] corresponds to the thermodynamic potential, whose natural vari-
able is the average value of the fluctuating field x (which in a particular setup may
for example be magnetization). Following standard literature, we shall refer to I'[¢)]
as free energy or the (full) effective action.

The scale-dependent effective action I'y[¢] is a generalization of this notion with the
difference that one includes only fluctuations with momenta g > A in the partition
function summation. By lowering the momentum cutoff scale A from Ayy, successive
modes are incorporated. By definition ['y—o = I'. On the other hand, we associate
Ta=Ayy With S[¢] (the "microscopic” action).



An explicit construction can be carried out as follows [3]: We define
WalJ] = 1Og/DX6—5[X]—ASA[x]+f d%ad (z)x(x) ’ (5)

where the infrared (IR) cutoff term AS,[x] has been added, with

A%M=%/é%ﬂh@ﬂ@ﬂﬂn- (6)

The cutoff function Ra(q) is assumed to vanish for A — 0 and diverge for A = Ayy.
We also impose that for § < 1 we have Rx(q) ~ A®. With this choice adding the
cutoff term AS)[x] to the action in Eq. (5) results in giving an artificial mass ~ A
to all modes with ¢ < A, while leaving unaffected the modes with g > A.

Subsequently one defines the scale-dependent effective action I'x[¢] via
Tald] = ~WalJ] + [ d'zJ(z)é(z) — ASxlg] ™

The modification of the standard Legendre transform by subtracting the term ASy[¢]
assures that [3]

Tagv[¢] = Slé] - (8)
One now investigates the variation of I's[¢] upon an infinitesimal change of the

scale A. Differentiation of Eq. (7) and algebraic manipulations lead to the following
equation [5]:
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where (in the present context) the trace sums over momenta:
d%
Tr=f oo (10)

and the inverse propagator I'"’[¢] is given by the second functional derivative of
Laldl:

TP(¢)(q1, 02) = %(—5:% : (11)

Equation (9) is recognized in literature as the Wetterich equation. It describes the
flow of the effective action I'[¢] upon reducing the IR cutoff scale A, and interpolates
between the bare action (the "microscopic action”) S[¢] at A = Ayy and the full
effective action (the free energy) I'[¢] at A = 0. This equation is the starting point
for all of the analysis of the sequence of publications that the present habilitation
comprises. A few remarks are in place before we proceed.

e An exact solution to Eq. (9) implies expressing the free energy in terms of the
parameters of S[¢] and therefore yields the partition function as given by Eq. (1).
Reformulating the basic problem of statistical physics as a functional differential
equation opens a way for very different approximation strategies as compared to
those applied within the traditional formulation via a path integral.



e Even though Eq. (9) was first presented in Ref. [5], a very similar formulation
of the problem (up to a Legendre transform) dates back to the 1970s and is
known as Wilson-Polchinski equation. It considers the flow of Wjy[J] rather
than T's[¢] and led to a number of formal results. It however completely failed
in practical calculations whenever the anomalous scaling of the propagator had
to be considered, The reasons for this may be thought of as technical.

e In an approximate solution to Eq. (9), the quantity T's[¢] does not need to be
parametrized by a finite number of couplings. Quite contrary, a standard ap-
proximation strategy (the derivative expansion) computes the flow of an infinite
number of parameters, This makes the present approach by far more powerful
as compared to the perturbative RG constructions. On the other hand, one may
make contact with the perturbative RG structures by imposing an appropriate
truncation of Eq. (9).

e The most delicate point of any practical calculation based on Eq. (9) is the
parametrization of I'y[¢]. Even though typically no small parameter can be
devised to expand in, a number of systematic procedures have been developed
(see below). There is also no easy way of calculating the errors arising due to
truncation, but the accuracy may be estimated by gauging the sensitivity of the
results to the choice of the cutoff function R, (q).

The results summarized in Section 2 were obtained relying on two approximation
schemes briefly discusses below.

1.2.1 Derivative expansion

The truncation of Eq. (9) known as derivative expansion exploits the symmetry of
the studied model and classifies the invariants by the number of derivatives. For the
simple case of a real scalar field ¢ and Z, symmetry, it amounts to the following
expansion

Calgl = [ ' [Un(o) + 520009 + .| (12)

where p = %(;52, and the neglected terms involve invariants with more than two
derivatives, At this approximation level, Eq. (9) casts onto a closed set of two
nonlinear partial differential equations for the local effective potential Ux(p) and the
field-dependent, Z-factor. These equations are susceptible to numerical analysis. We
explicitly write down the flow equation for U/(p)

d -1
570N = 5 [ o T [2a(e)a® + Ba(0) + Ua(o) + 20U50)] . (19)

The lowest (zeroth) order in the derivative expansion neglects the flow of Z(p) what-
soever; Eq, (13) is then closed.

A suitable transformation of variables brings Eq. (13) to a scale-invariant form, which
allows for existence of fixed points. This way one makes contact with the standard
formulations of Wilsonian RG, which involve momentum-shell integration followed
by the variables’ rescaling. '



For the simplest case of the Ising universality class in d = 3, the derivative expansion
has been pushed to the order 3° and the critical indices obtained this way are in
excellent agreement with Monte-Carlo simulations. It is also worth noting that the
approach very accurately reproduces the exactly known values in d = 2, where the
perturbative RG fails.

1.2.2 Vertex expansion

By taking subsequent derivatives of Eq. (9), one derives the flow equations for the
1-paurtic]le—i2rreducib]le vertex functions. For example, acting on Eq. (9) with the op-
erator wa—qz— leads to a flow equation for the inverse propagator ['®). This equation

involves the vertices T'® and I'®), In general, an exact flow equation for the n-th
vertex function involves I'™+D and I'**2), This hierarchy of flow equations has a
simple interpretation in terms o Feynman diagrams, where the terms contributing
to the flow of T(™ involve (exclusively) 1-loop, 1-particle-irreducible diagrams with
n external legs. One may now devise truncations of this hierarchy, where sufficiently
high order vertices are neglected. This approach is complementary to the derivative
expansion in that it allows for an accurate calculation of the momentum dependen-
cies, These are crucial, for example, in treating the problem of competing instabilities
in interacting Fermi systems.

The derivative expansion is a powerful computational tool. It however inevitably
leads to the problem of numerical integration of non-linear partial differential equa-
tions. In many cases one may simplify the problem by expanding the eftective po-
tential Up(¢) in powers of the field ¢. Effectively, this combines derivative expansion
with the vertex expansion and projects the flow of the potential onto flow of the
masses and a finite number of interaction couplings. In the simplest case of the
scalar ¢* model, this leads to a coupled set of two ordinary differential equations for
the mass and the interaction coupling. If necessary, one may also compute the flow
of the Z-factor by another suitable projection. Note that the flow equations obtained
this way still involve terms of arbitrary order in the mass and interaction parameters
and may therefore be thought of as non-perturbative. This reduction of complexity
simplifies numerical computations, but also leads to analytical insights. The price to
pay is the reduced accuracy of the obtained numerical values. One should also keep
in mind that the existance of a well-behaved field expansion of U(¢) is not always
guaranteed, as discussed in Section 2.

2 Summary of key results

The present habilitation comprises 10 publications centered around applications of
the functional RG (in the 1PI formulation) to systems involving a first- or second-
order phase transition, amenable to a description in terms of a (bosonic) order-
parameter action, The publications [H1-H3] and [H5-H7] refer to interacting Fermi
systems displaying a quantum critical point. Publication [H4] addresses quantum



criticality of a magnetic system of the quantum Ising model type. In the papers
[H8-H9] we study interface unbinding transitions of classical [H8] and quantum [H9]
nature. In [H10] we calculate Casimir forces for the O(N) models with periodic
boundary conditions, varying dimensionality between d = 2 and d = 3. The present
summary is divided into three topical sections.

2.1 Quantum criticality in itinerant Fermi systems

Interacting Fermi systems can exhibit different types of symmetry-breaking leading
to various types of ordering (for example magnetic, superconducting, nematic, or
of the charge-density-wave type). The relevant order parameter is usually a com-
posite bosonic quantity, bilinear in the original fermionic variables. Considering the
ground-state (at temperature 7 = 0), the transition between different phases may
be tuned by varying chemical composition, pressure, or other types of a non-thermal
control parameter [8]. One should recognize at the outset that the fermionic excita-
tions above the Fermi surface are massless at 7' = 0 and therefore the system hosts
generically soft modes. If the transition at T = 0 is continuous, strong scattering
between these fermionic modes and the soft order-parameter fluctuations gives rise
to unusual (non Fermi liquid) behavior in the vicinity of the quantum critical point,
in the so-called quantum-critical regime spanning into finite 7" above the quantum
critical point. In the recent years quantum criticality has become one of the leading
paradigms in the quantum many-body theory, In addition to providing a fascinating
arena for theoretical and experimental investigations of exotic quantum matter, it
is also of fundamental importance due to its relevance to high-temperature super-
conductors, where soft magnetic fluctuations play a crucial role in inducing effective
attraction between electrons, leading to the formation of Cooper pairs.

The standard approach to quantum criticality in itinerant Fermi system is known as
Hertz-Millis theory [9, 10]. Within this approach one introduces an order-parameter
field ¢ via a Hubbard-Stratonovich transformation. This decouples the original de-
grees of freedom at the cost of introducing an extra functional integral in the partition
function. The original fermionic degrees of freedom can then be integrated out. This
leads to an exact representation of the partition function as a functional integral over
the order-parameter field. In the subsequent approximation the order-parameter ac-
tion is expanded (usually to quartic order) and only dominant momentum q an fre-
quency w dependencies in the propagator are kept. Such dependencies are neglected
whatsoever in the interaction vertices. The effect of damping of the order-parameter
fluctuations by the soft fermionic bath occurs via the dependence of the propagator
on the Matsubara frequencies. The obtained action takes the form,

1 |y
Sl61 = 3 ] 00 (Zorloels + 2a7) 6o Ul (19

where wy, are the (bosonic) Matsubara frequencies, ¢ = (q,wy), # is the dynamical



critical exponent, and [, =T, [ (%ir‘)%. The quantity

Mﬂ=lﬁ%ﬁ/ﬂmw¢wﬁﬂ (15)

(with 7 denoting the imaginary time), and the bare effective potential is expanded
as:

U(9) = agd® + asg* + ... . (16)

In the original paper by Hertz [9] the action defined by Eq. (14-16) was subject to a
renormalization procedure. The analysis by Hertz may be viewed as largely incorrect
at T' > 0 and the work by Millis [10] delivers a correction. The motivation for our
study contained in Ref. [H1] was related to a number of approximations made in the
analysis by Millis, We provided a refinement to Ref. [10] in the respects listed below:

e The Millis procedure neglects the renormalization of the interaction coupling
(except for terms coming from rescaling of the variables). It therefore does not
capture the RG Wilson-Fisher fixed point, governing critical behavior at 7" > 0.
In diagrammatic language, it only takes account of the mass renormalization via
the tadpole contribution.

e The Millis analysis is restricted to the disordered phase, and the shape of the
phase boundary at T > 0 is in fact identified with the Ginzburg line (the bound-
ary of the critical region).

e The Millis analysis neglects the anomalous dimension, which may in principle
give a correction to the universal power laws derived in the vicinity of the quan-
tum critical point.

Our study performed in Ref. [H1] is an improvement of the Millis theory in all
these respects. As compared to Ref. [10], it departs from a completely different RG
formulation, taking the Wetterich equation (9) as a starting point. It relies on the
vertex expansion built on top of the derivative expansion, and treats quantum and
classical fluctuations on equal footing. It also takes into account the flow of the
Z-factor and the accompanying anomalous dimension 1. The approach is valid also
in the phase with broken (discreet) symmetry. The derived RG flow equations are
solved numerically and this allows for an accurate computation of the transition line
(at T' > 0) of the model defined by the action (14) and comparison to the Ginzburg
line. It also provided a flexible framework for the extensions and generalizations
contained in the following sequence of papers.

In the publication [H2| the framework of Ref. [H1] was extended by including a
term of the order ¢%. We then investigated the possibility of changing the order of
a quantum phase transition by order-parameter fluctuations. Indeed, as turns out,
the renormalization of the quartic coupling a4 due to non-zero hexatic coupling ae
creates (in particular for two-dimensional systems) a sizable tendency of increasing
the value of a4 and may lead to changing its sign from negative to positive (but
never the other way round). This suggests that quantum phase transitions, which
are first order at mean field level, may be of second order in a more complete theory
taking the fluctuations into account. We also addressed the fine-tuned situation,



where a line of thermal phase transitions of second order terminates at 7' = 0 with a
quantum tricritical point; or the system is in a state close to such a scenario and both
quantum critical and quantum tricritical scaling are observed, There are indications
that a number of realistic compounds is indeed not far (in the parameter space) to
this scenario [11]. Relying on scaling theory, we finally provided a classification of
all the possible values of the shift exponent for quantum multicriticality.

The publication [H3] is a detour in the series devoted to itinerant Fermi systems. It
applies the framework of Ref. [H1] to the effective theory describing the low energy
physics of the two-dimensional quantum Ising model in a transverse magnetic field
and in the vicinity of the quantum critical point. It demonstrates the power and
convenience of the approach developed in Ref. [H1] in a case, where the low-energy
physics is governed by non-Gaussian fixed points both at 7' =0 and at T > 0. The
system shows scaling behavior characteristic to the 2-dimensional, 3-dimensional,
and 5-dimensional (mean field) classical Ising model, and the crossover between
the different scaling regimes may be obtained either by varying the thermodynamic
parameters (temperature and the transverse magnetic field), or as a function of the
cutoff scale A. These crossovers might be much harder to obtain within the more
conventional perturbative RG constructions.

The publications [H1-H3] take a ¢* (or ¢°) -type action as the starting point for the
RG analysis. In Ref. [H4] we address a specific microscopic Hamiltonian (the so-
called f-model), displaying an electronic-nematic phase, where the symmetry of the
two-dimensional Fermi surface becomes reduced with respect to the symmetry of the
lattice. Transitions of this type are established in the compound Sr;RuO7 [12], but
are also discussed for example in the context of superconducting cuprates [13]. As
turns out, the procedure of deriving the Hertz action leads in this system to the form
given in Eq. (14) with 2 = 3 and yields a robustly first-order transition to the nematic
phase at sufficiently low T, However, contrary to the assumptions underlying the
Hertz-Millis type approach, the effective potential cannot be expanded in powers of
the order-parameter field. Namely, an expansion of U/(¢) around one of the minima
is not able to capture the other ones. For example, when the expansion around
¢ = 0 is enforced, one obtains all the interaction couplings ag4, as, ... negative. On
the other hand, the potential U(¢$) behaves as ¢? at large ¢. These facts invalidate
the vertex expansion and enforce keeping the full functional dependence U(¢) in the
RG study. The 1PI scheme of fRG is a tool perfectly suited to address this problem.
The performed computation employed the derivative expansion adapted to the form
of Eq. (14). We took the flow of the Z-factor into account in a way analogous to the
procedure of Ref. [H1]. As a conclusion we obtained that for a range of parameters,
the transition is driven second-order by including the order-parameter fluctuations.
The publication [H5] is an extension of Ref. [H2]. Upon linearization of the flow
equations around the Gaussian fixed point at 7' = O we were able to solve the flow
equations analytically. We studied crossover behavior between quantum critical and
tricritical behavior with main focus on the quantum critical region in dimensionality
d > 2, The work provided a more complete analytical understanding of the results
of Ref. [H2], in particular of the conclusion that order-parameter fluctuations can

10



turn first-order phase transitions continuous, but not vice-versa.

In Ref. [H6] we revisited the model studied in [H4| and investigated the possibility of
completely annihilating the order occurring within mean-field description by order-
parameter fluctuations. Such phenomena are well-known to occur in two-dimensional
systems exhibiting continuous symmetry-breaking (for example the Heisenberg model),
by the Mermin-Wagner theorem [14] but the system under interest here displays only
breaking of a discrete symmetry. We have established that such a possibility indeed
occurs for a certain range of microscopic parameters. Interestingly, scaling typical
to quantum criticality may still be observed at sufficiently high temperatures even
if there is no ordering at 7 = 0, In addition, we studied the (fine-tuned) scenario,
where there is no order at T > 0, but the system hosts a quantum critical point,
In standard Landau theory language this corresponds to choosing the parameters so
that the ¢? coefficient is not proportional to § — J. (§ being the control parameter,
and &, its critical value), but to (§ — d.)%.

Ref. [H7] is another refinement of the Hertz-Millis theory, We focused on the case
of two-dimensional systems with the aim of solving the flow equations analytically
and comparing the Ginzburg 7¢(6) and transition 7,(d) lines. As a conclusion we
obtained that the region with strong both thermal and quantum fluctuations occupies
a sizable region of the phase diagram and approximating 7,(J) with T¢(d) is not
always justified. This fact was already recognized in Ref. [H1], but the contribution
[H7] delivered a more complete analytical understanding of this fact.

2.2 Interface unbinding transitions

The field of interfacial phase transitions is a well-established branch of classical
condensed-matter physics. The RG theory of these phenomena was developed years
ago, and it is well-recognized that the RG phenomenology is quite distinct from
that relevant to bulk criticality [15]. In particular, there is no possibility of treating
the flowing local interfacial interaction potential by a parametrization with just the
mass and the quartic coupling (or any other finite set of flowing couplings). In the
cases, where mean-field theory is not a sufficient description, one has to resort to
a functional RG treatment. On the other hand, the problems encountered by the
early functional RG formulations are irrelevant here, since the anomalous dimension
is identically zero. The present habilitation makes two contributions to the theory
of interfacial phase transitions (Refs. [H8] and [H9]), approaching these phenomena
from the point of view of the 1PI framework.

In Ref. [H8] we revisited the functional renormalization group theory of classical
interface unbinding transitions [16], and showed how it can be recovered applying
the leading-order derivative expansion, The virtue of the proposed approach is the
clarity of all the approximations (contrasting it to the previous contributions). Subse-
quently, we investigated the sensitivity of the results to the cutoff scheme (the choice
of the cutoff function Rx(q)). We showed that the key parameter w of a standard ap-
proximate linearized treatment of wetting transitions (the linearized functional RG
[17]) is not a strictly well-defined quantity for dimensionalitites d < 3, meaning that
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it does depend on the choice of Ra(g). Importantly, this dependence ceased at the
physical dimension d = 3, which also happens to be the upper bound on the allowed
values of the upper critical dimension. The study showed that in the physical case
d = 3 the capillary parameter w is an absolutely robustly defined quantity (unlike
the case of d < 3).

In Ref. [H9] we considered interfacial phenomena accompanying bulk quantum phase
transitions in the presence of surface fields. By extending a general argument due
to Cahn [18], we argued that interface unbinding transitions generically accompany
quantum critical phenomena, Importantly, the boundary transitions may occur (and
be of second order) also if the bulk transitions are discontinuous. This part of the
analysis is valid in spatial dimensionality d > 2. We subsequently generalized the
linear RG theory of classical interface unbinding transitions, accounting for quantum
effects, extracted the relevant scaling regimes in the interfacial phase diagram, and
computed the critical singularities. The latter part of the analysis applies for d =
3, and sufficiently short-ranged intermolecular interactions. From the theoretical
point of view this is one of the most interesting cases, where exotic nonuniversal
critical singularities occur, and where the interfacial correlation length may exhibit
either power-law divergence or an essential singularity depending on the value of the
capillary parameter w.

2.3 Casimir forces

The last contribution to the habilitation (Ref. [H10]) contains a calculation of crit-
ical Casimir amplitudes for the O(NN) models with periodic boundary conditions,
focusing on the cases of the number of order-parameter components N = 1,2 and
continuously varying spatial dimensionality d between 2 and 3. According to the
author’s knowledge, this is the first application of functional renormalization group
methodology to this problem. The proposed fRG truncation is an adaptation of the
1st order derivative expansion to the case of a system finite in one direction. For the
Ising universality class in d = 2, the method accurately reproduced the exact results.
In d = 3 one may compare the obtained numbers with Monte-Carlo simulations as
well as earlier perturbative RG calculations. It turns out that (both for N =1 and
N = 2) the obtained Casimir amplitudes come out almost halfway between the best
estimates of perturbative RG and the Monte Carlo results.
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5. Discussion of the other scientific achievements

In course of my master studies, I analyzed the filling transition in a non-symmetric
wedge [P. Jakubczyk and M. Napiérkowski, Phys. Rev, E 66, 041107 (2002)].

The three papers published in the years 2004-2005 were the core of my Ph.D. thesis.
These are: P. Jakubczyk and M. Napiérkowski, Physica A 334, 173 (2004); P. Jakubczyk
and M. Napioérkowski, J. Phys.: Cond. Matter 16, 6917 (2004); and P. Jakubezyk and
M. Napi6rkowski, Phys. Rev. E 72, 011603 (2005). They were all concerned with
the influence of chemical impurities and substrate curvature on adsorption phenomena.
The presence of impurities breaks translational invariance along the substrate and gives
rise to line tension (and/or point tension) whose properties were the main topic of the
Ph.D. thesis of mine. The substrate curvature modifies the structure of the capillary-
wave Hamiltonian and may be considered as an additional (relevant) scaling field for
interfacial phase transitions. Parts of the analysis remained in the framework of Landau
theory, the other parts employed effective capillary-wave type models solved in mean-
field approximation.

After my Ph.D. we extended the analysis of the impurity impact on adsorption focusing
on the case of two-dimensional systems. These turn out to be susceptible to exact
analytical treatment via transfer-matrix methods. One important result is that (in
d = 2), for certain parameter ranges, the point tension is not a well-defined quantity,
meaning that (due to thermal fluctuations) it does not converge to a finite value in
the thermodynamic limit where both the system and the substrate impurity become
macroscopically large; but instead shows a logarithmic divergence. Another interesting
result was a calculation of the scaling shapes of the adsorbed layer, which turn out to
exhibit highly universal properties. The analysis is published in the two contributions:
P. Jakubczyk, M. Napiérkowski, and A. O. Parry, Phys. Rev. E 74, 031608 (2006) and
P. Jakubczyk and M. Napiérkowski, J. Phys. A: Math, Theor. 40, 2263 (2007).

In the publication H. Yamase and P. Jakubczyk, Phys. Rev. B 82, 155119 (2010) we
analyzed a specific system featuring a transition to a state with spontaneously broken
symmetry of the Fermi surface. Of our particular focus was its response to the non-
ordering fields (more specifically - magnetic fields), i.e. fields which do not couple
directly to the order parameter. Within the analyzed model, we have found a jump of the
longitudinal susceptibility at the second-order transition to the state with reduced Fermi
surface symmetry. The magnitude of this jump diverges at the tricritical point. We
discussed the implications of these results to a specific compound hosting an electronic
nematic phase.

In the last two papers published in 2013 [M. Napiérkowski, P. Jakubczyk, and K. Nowak,
J. Stat. Mech. 06015 (2013); and P. Jakubczyk and M. Napiérkowski J. Stat. Mech.
10019 (2013)] we analyze the properties of the d-dimensional imperfect Bose gas, i.e.
a gas of interacting bosons in the Kac scaling limit. The analysis can be performed
exactly. By means of calculating the critical exponents at Bose-Einstein condensation,
we have identified the universality class of the system to be the same as for the classical
spherical model. We also analyzed the scaling function for the Casimir forces varying
dimensionality. The scaling function takes a trivial (constant) shape above d = 4. We
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also analyzed the phase diagram in the vicinity of the quantum critical point, and found
the scaling regimes in full agreement with renormalization-group predictions in d > 2.
For d = 2 we have found that the correlation length displays an essential singularity in
the limit 7" — 0 at sufficiently large chemical potential.
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