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Description of my contribution to these works is included in the List of scientific achievements
(Appendix 5).

4.3 Detailed description of the achievement

Ultracold atomic systems are now a well established field at the interface of atomic and con-
densed matter physics [1]. Cooling ensembles of atoms all the way to the quantum degeneracy
opens a number of unique opportunities for fundamental studies as well as potential applications.
When thermal fluctuations are suppressed, collective quantum effects not only become observ-
able, but often lead to qualitatively new phenomena. Atomic systems are now also considered as
a promising platform for implementations of quantum technologies such as metrology, quantum
information processing and quantum simulations [2]. This, however, requires very precise micro-
scopic understanding of realistic experimental systems, which is challenging due to increasing
complexity in currently developed experimental setups. A noticeable example are systems in
which particles interact strongly over long distances due to the presence of free charges (ions)
or having a dipole moment (e.g. lanthanide atoms). The presented series of articles explores
different aspects of few-body physics needed to achieve this goal and make atomic systems useful
for applications in the future. Specifically, papers [H10,H6] focus on increasing the accuracy of
Feshbach resonance spectroscopy utilizing tight optical traps, which is relevant in particular for
lanthanide atoms that feature extremely dense Feshbach spectra hard to resolve in traditional
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three-body loss measurements. Article [H9] investigates the role of the interplay between dipolar
and short-range interaction among magnetic atoms in the formation of the so-called quantum
droplets. Then in works [H7,H8] a new scheme for measuring static magnetic fields with un-
precedented precision and spatial resolution by means of Feshbach resonances is proposed. The
next papers are focused on hybrid ion-atom systems. Firstly, works [H2,H3,H5] are concerned
with the basic collisional properties of an ion moving in an ultracold gas, with a particular em-
phasis on transport and inelastic collisions. Article [H1] is dedicated to the many-body ground
state of an ion placed in a degenerate bosonic gas. Finally, article [H4] studies the possibility
for quantum simulation of realistic quantum materials with strong electron-phonon interaction
using a hybrid ion-atom setup.

Before a more detailed description of the original results constituting the series, the following
section provides a brief overview of the field which serves as a starting point for the subsequent
discussion.

4.4 Introduction to ultracold atomic systems

From the point of view of a theoretical physicist, the research aimed at the properties of utracold
quantum matter started already in 1920s, in particular with the prediction that noninteracting
bosons can undergo a phase transition to a condensed state (Bose-Einstein condensate, BEC)
with macroscopic occupation of the lowest lying eigenstate at finite temperature [3]. However,
the emergence of collective quantum effects at low temperatures has been demonstrated experi-
mentally already in 1911 with the discovery of superconductivity in solid mercury in the group of
Heike Kammerlingh Onnes, although microscopic understanding of this phenomenon was lacking
at that time [4]. The possible connections between superconductivity and Bose-Einstein conden-
sation have triggered intense research which lead to the celebrated pairing model introduced by
Bardeen, Cooper and Schieffer (BCS) [5]. Importantly, theoretical models of solid materials are
extremely hard to verify in experiments due to limited access to the system and the necessity to
rely on a limited set of available measurements which are often not directly connected to micro-
scopic quantities. Real materials are also hard to manipulate and are characterized by very fast
(subpicosecond) timescales. For these reasons, introducing pure and controllable atomic systems
with better optical access as a complementary experimental platform can be very beneficial.

The development of laser technology completely revolutionised the research in quantum
physics at several levels, bringing a huge number of breakthroughs in multiple fields beyond
the scope of this short note. Crucially, it also enabled precise spectroscopy of atomic lines [6]
and then optical trapping and cooling of atoms in the gas phase [7, 8]. This lead to the idea
that atomic gases could be cooled to quantum degeneracy and realize the BEC phase. In
1978, Thomas Greytak and Daniel Kleppner from MIT began a 20-year endeavour towards
this goal using atomic hydrogen. Realization of atomic BECs with alkali atoms turned out
to be technically less challenging and condensates of sodium (group of Carl Wieman and Eric
Cornell) and rubidium (group of Wolfgang Ketterle) were demonstrated in 1995 [9, 10], with
hydrogen following in 1998 [11]. Since then, several more atomic species have been condensed,
and degenerate Fermi gases have been produced as well. In these experiments, it was crucial to
get detailed understanding of the atomic structure, interaction with electromagnetic fields and
collisional properties via spectroscopy and theoretical calculations.

Alkali atoms (first group in the periodic table) have a considerably simple internal structure
which allowed not only to design very efficient cooling protocols, but also to characterize their
interactions with high accuracy. Recently, new systems involving other types of atoms [12], as
well as ions [13] and molecules [14] with rich internal structure have drawn a lot of attention,
offering a broad range of new possibilities but being harder to deal with both in experiment
and theory. Every new systems comes with a unique set of challenges in terms of cooling and
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trapping, interaction control, measurement protocols and scalability.
The fact that ultracold atomic systems are not just a peculiarity, but rather a vital research

field can be attributed to unparalleled level of control achievable in these systems. Nowadays,
practically all of the system parameters can be manipulated in real time, including the shape of
the trapping potential, the number of particles, and the strength and sign of the effective inter-
particle interactions. Moreover, they can be easily accessed optically, allowing for reconstruction
of both the density and momentum distributions. This immediately brings to mind the idea of
a quantum simulator often attributed to Richard Feynmann [15]. Having a versatile platform,
one could imagine assembling quantum systems described with almost arbitrarily chosen Hamil-
tonians and studying both their ground state and dynamic properties. This would potentially
allow for understanding complex quantum systems which are hard to tackle analytically and
prohibitively expensive for classical computer simulations. A notable early example can be the
realization of the Mott insulator to superfluid phase transition observed with rubidium atoms
trapped in an optical lattice, which can be accurately described using Bose-Hubbard model [16].
Furthermore, realization of long-lived entangled many-body states would be beneficial for appli-
cations such as quantum-enhanced metrology [17].

4.5 Feshbach resonances in tight anharmonic traps

Feshbach (also called Fano-Feshbach) resonances are one of the most essential tools in ultracold
atomic systems. They allow not only for controlling the interactions between the atoms, but
also producing weakly bound molecules which can then be efficiently transferred to the ground
state using Raman transitions [18]. The underlying principle of Feshbach resonances is quite
general, as they have been originally predicted in nuclear physics [19]. Let us consider two
separated atoms prepared in a well defined internal state such as a hyperfine level |F,mF 〉
with F denoting the total (electronic + nuclear) spin. The system can be described by the
state vector |F1, F2,mF1,mF2〉. At small separation a more suitable basis is the molecular
one |I, J,mI ,mJ〉, where I is the nuclear and J total electronic spin. Short-range interactions
give rise to a difference between the molecular potentials depending on their symmetry, which
effectively provides a coupling between the channels in the asymptotic free atom picture. This
becomes especially important if there is a bound state in the energetically closed hyperfine
channel with energy Ec−Ebnd (threshold energy of the closed channel minus the binding energy)
similar to the energy in the initial state Eo+Ekin (threshold energy of the open channel plus the
kinetic energy). Within a semiclassical picture the atoms will then approach each other, acquire
some bound state character and create a long-lived resonance state before they separate again,
leading to a large scattering phase shift. Crucially, the relative energy between the bound state
and the threshold can be tuned by varying external magnetic field thanks to the differential
Zeeman shift between different hyperfine levels. This also means that sweeping the magnetic
field across the resonance can lead to creation of weakly bound molecules.

For collisions involving short-range interactions at very low energies a single partial wave is
relevant, as the centrifugal barrier is much higher than the kinetic energy of the particles. It is
then convenient to introduce the scattering length defined for s-wave interactions as

a(k) = −tan δ(k)

k
, (1)

where δ(k) is the scattering phase shift and the kinetic energy of the relative motion is E =
~2k2/2µ with µ being the reduced mass. The interaction between neutral atoms can then be
described by the pseudopotential V (r) = a(k → 0)δ(r) ∂∂r (r·) with the last part being necessary
to regularize the wave function at short distance.. Close to the resonance the scattering length
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at zero energy is described by a simple formula

a(B) = abg

(
1− ∆

B −Bres

)
, (2)

with abg being the background scattering length in the entrance channel away from the resonance,
∆ denoting the resonance width and Bres its position. It is then in principle possible to tune
the scattering length to arbitrary values by simply changing the magnetic field. An important
quantity characterizing the resonance is its pole strength sres = abg∆δµ with δµ being the
magnetic moment difference between the channel states. Large sres corresponds to open-channel-
dominated resonance in which the occupation of the molecular state is low, making them more
universal (less sensitive to the potential details).

Detection of Feshbach resonances is often performed by scanning the magnetic field and
looking at the number of atoms lost from the trap as well as their thermalization rate. The
dominant loss channel are three-body losses resulting from quick relaxation to deeply bound
molecular states which releases a lot of kinetic energy. At the resonance the two-body complexes
become long-lived, enhancing the probability of three-body events. However, this method has
several limitations, such as low resolution, low efficiency of molecule production and the com-
plicated nature of the three-body collision processes which inhibits the understanding of loss
spectra. Much better precision can be reached if the atoms are initially trapped in pairs in a
tight external trap, e.g. using an optical lattice or a tweezer. This eliminates all three-body
effects and provides higher initial two-particle overlap due to confinement, which enhances the
probability for reaching the molecular state [20, 21, 22]. The prerequisites for understanding the
energy level structure of two trapped particles were provided in the seminal work of Busch et
al. [23] who solved the problem of a harmonic trap and contact interaction. Various extensions of
this model have been done since then, involving anisotropic confining potential and corrections
to the contact interaction. Here we describe a multichannel calculation needed to understand
the case of several overlapping resonances [H10]. Then, we consider an anharmonic double-well
potential and discuss the additional opportunities arising from the coupling to molecular states
in an excited center of mass mode [H6].

The calculation is performed using an effective model in which the closed channels are un-
coupled after a pre-diagonalization. The Hamiltonian of the system reads

H = |o〉 〈o|
(
p2

2µ
+
P 2

2M
+ V (r,R)

)
+

+
∑
i

|χi〉 〈χi|
(
P 2

2M
+ Ṽ (R)

)
+
∑
i

(|χi〉 〈o|Wi + h.c.),

(3)

where |o〉 labels the open channel, |χi〉 denotes the closed molecular channels, µ is the reduced
mass of the pair, M is the total mass, p describes the relative momentum and P the center
of mass momentum. Furthermore, Wi(r) = giδ(r) describes the couplings and V , Ṽ denote
the trapping potential which may differ in general due to polarizability change. The coupling
strength g can be linked to the individual resonance parameters by comparing the molecular
energy in the limit of vanishing trap frequency to the free space case. The problem can be solved
by decomposing the wave function into trap eigenstates ψn and ΦN

|Ψ〉 = |o〉
∑
n

cnψn(r,R) +
∑
i

|χi〉
∑
p

aipΦp(R), (4)

and subsequent renormalization of the self-consistent equation for the eigenenergies. This allows
to solve a wide class of problems including the case of many channels as well as an anisotropic
harmonic trap semi-analytically. It turns out that closely spaced, overlapping bound states
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Figure 1: Two resonances in a slightly anisotropic trap (η = 1.1) with widths ∆1 = 2.5G and
∆2 = 0.5G, separated from each other by 0.3G. Left: ω = 250Hz. Right: ω = 5kHz. The
blue dashed lines show the first two levels for the case in which there is only a single resonance
present. From [H10].

have a number of interesting properties distinguishing them from the single resonance case. An
illustrative example is provided in Figure 1, which shows two resonances separated by 0.3G
for two different trapping frequencies. When the confining potential is weak, the resonances are
clearly separated. As the trap gets stronger, the two molecular states get mixed with each other,
and the bound state energy is shifted due to the presence of the second resonance. This has
immediate practical implications for molecule production schemes, allowing for optimization of
the trap frequency and the magnetic field ramp speed to achieve maximum fidelity. Otherwise,
the process may be spoiled by populating multiple molecular states which will not be compatible
with the subsequent laser pulse.

The treatment outlined above can also be applied to anharmonic traps after some careful
adjustments. It is of particular interest to investigate the case of a double well trapping potential,
naturally related to the optical lattice in which tunnelling between adjacent sites is allowed. In
order to mimick the lattice potential V (z) = VL cos2 kLz with lattice wavector kL, one can use
a model potential of the form

V (z) = VL

(
(zkL)2/a+

4

1 + (zkL)2/b+ (zkL)4/c

)
, (5)

with parameters a, b, c fixed such that the first few terms in the Taylor expansion of the
potential agree with the original one. In such a double well potential, the trap eigenstates
come in almost degenerate pairs of even and odd symmetry and can be combined into states
localized in either of the wells. Note that the potential now couples the center of mass and
relative motion of the particles. As a result, many more states can be coupled with each other,
resulting in processes such as creation of a motionally excited molecular state. This is visible in
the energy diagram as anticrossings between the states with different number of center of mass
excitations. Such features are detectable in experiment, causing extremely sharp loss peaks [20].
The crucial observation of work [H6] is that the positions of these new narrow resonances depend
on the sres parameter, meaning that one can detect not only the resonance position but also
characterize its pole strength. The dependence of the narrow resonance positions on sres can be
understood as a result of effective range corrections to the formula (2). Low energy expansion
of the scattering phase shift reads k cot δ(k) = − 1

a + 1
2reffk

2 + . . . with the effective range given
by reff = − ~2

µabg∆δµ(1− abg
a(B))2 [24]. Clearly, as the effective range depends on the inverse of sres,
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Figure 2: Left: crossings of the molecular levels with the first few trap states for a closed-
channel-dominated Feshbach resonance. Right: The case of a wide (open-channel-dominated)
resonance. From [H6].

it will lead to differences in the couplings for excited states which have finite energy. This also
means that the effects will be more pronounced for tight traps in which the zero point motion
~ω is larger. An exemplary energy spectrum for a narrow resonance is shown in Figure 2. Here
the contribution of the molecular level is very large, inducing strong anticrossings which would
be observed in experiment as a dense loss spectrum.

The formalism presented in this section is highly general and applicable to the case of tight
trapping potentials such as optical tweezers which are the new emerging system for controlled
production and coherent manipulation of cold molecules.

4.6 Dipolar scattering beyond the Born approximation

Recently developed experimental platforms based on ultracold lanthanide atoms such as erbium
and dysprosium revolutionized the field, allowing to investigate the role of long-range interac-
tions in determining the gas properties. These atomic species feature an open electronic shell,
giving rise to high magnetic moment and consequently strong dipolar interactions [12]. Complex
internal structure of these atoms, including high spin and anisotropic van der Waals couplings,
leads to extremely high density of Feshbach resonances, representing an additional challenge
both for theory and experiments. Even in the limit of weak interactions, the properties of
a dilute dipolar Bose gas are highly affected by the long-range and anisotropic nature of the
dipole-dipole interaction term. For example, the Bogoliubov excitation spectrum can acquire
unstable modes and cause the gas to collapse [25]. Even more striking effects where observed
in 2016 in the group of prof. Tilman Pfau, when stability of the dysprosium condensate has
been investigated. Instead of collapsing, the gas formed a set of long-lived finite-sized droplets
with relatively high density [26]. It is noteworthy that at the time there was no such theoretical
prediction and the experimental group made this discovery rather spontaneously. This effect
was then attributed to beyond-mean-field corrections to the equation of state, which induce ad-
ditional repulsion required to stabilize the system [27]. The functional form of these corrections
for a homogeneous dipolar gas is analogous to the Lee-Huang-Yang term known for contact
interactions and can be calculated in a straightforward fashion [28]. However, multiple effects
not taken into account in the simplified theoretical models can impact the stability boundary
and the droplet properties. One aspect of the problem is the effective potential used in the
calculations. The usual mean-field treatment relies here on the low energy scattering amplitude
f(θ) which may depend on the relative angle between the dipole moment orientation and the
interparticle axis θ. In the case of dipolar scattering it is required to include many partial waves
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in its calculation. In principle, the Born approximation fB(θ) = −2µ
~2

1
4π

∫
d3r eiqrV (r) can be

used for this purpose [29], leading at vanishing momentum q to a simple formula

fB(θ) = −a−RddP2(cos θ) , (6)

where a is the s-wave scattering length of the full potential (taking into account the corrections
from the dipolar interaction), P2 is the Legendre polynomial and the dipolar interaction strength
is described in terms of characteristic length Rdd = 2µd2/3~2 with d being the dipole moment.
One can also define the corresponding characteristic energy Edd = ~2/(2µR2

dd).
However, for lanthanide atoms the validity of the Born approximation can be limited due

to the competition between short- and long-range interactions, especially in the vicinity of res-
onances which are ubiquitous in these systems. Furthermore, although the Born approximation
for a pure dipolar potential becomes exact at zero energy, one can expect corrections to arise
once Ekin ∼ Edd. These arguments motivate a numerical study of the scattering amplitude at
realistic experimental conditions which has been performed in [H9]. In the calculations, a model
potential consisting of isotropic van der Waals interaction and a dipolar part were combined.
The scattering length could be varied by imposing different short-range boundary conditions on
the wave function, mimicking the physics of an open channel dominated Feshbach resonance.

The calculations revealed that the numerically calculated scattering amplitude can be de-
scribed with a formula which has the same form as in Eq. (6), but with modified dipolar length
parameter add instead of Rdd. At moderate scattering length values this effective dipole length
is a few percent larger than the standard one, depending on the collision energy. Approaching
a scattering resonance leads to a significant deviation from the Born approximation predictions
and strong reduction of the effective add. This can be explained by reckoning that close to
the resonance the scattering is dominated by the extended quasibound state in the isotropic
s-wave channel, reducing the anisotropy of the total scattering amplitude. Figure 3 shows the
dependence of the effective dipolar length on the ratio Rdd/a = εdd.
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Dy2 (10 nK)

Born approximation
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a d
d
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ddB
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n

Figure 3: Effective dipolar length as a func-
tion of εdd for dysprosium atoms at 10nK (blue
straight line) and at 100nK (red dashed line)
collision energy, as well as for Dy2 (dot-dashed
magenta line). Dotted black line shows the Born
approximation result add/Rdd = 1. From [H9].

The simple correction to the effective po-
tential suggested here allowed to slightly im-
prove the agreement between the experiment
and theory in predicting the stability bound-
ary of the quantum droplets [30]. The treat-
ment of the droplet employed in [H9] made
use of the standard extended Gross-Pitaevskii
functional which utilizes the analytically de-
rived beyond mean field correction for a ho-
mogeneous gas, neglecting the finite size of
the droplet, and a simple gaussian variational
ansatz. The validity of these approximations
is naturally quite restricted.

4.7 Magnetometry with ultracold
collisions

In section 4.5 it has been demonstrated that
strong confinement can increase the achievable
precision and magnetic field resolution due to
elimination of three-body events and increased
two-body wavefunction overlap. This allows
for tuning interparticle interactions with high
accuracy. Works [H7,H8] analyze a reverse problem - can one use the information obtained from
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scattering measurements to deduce the value of the magnetic field, and how competitive would
such a sensor be? One should note at this point that magnetometry techniques based on cold
atomic vapors taking advantage e.g. of Faraday rotation are already established, but interactions
in theses systems are negligible. As it turns out, a direct scattering length measurement based
on the many-body dynamics of an ultracold gas or three-body losses would be rather inefficient,
require long operation times and cannot provide satisfactory resolution. However, restricting
to the case of pairs of particles in a tight external trap allows for significant improvement, as
described below.

The sensor idea is based on reduced dimensional scattering taking place in tubes, which
can be created by two pairs of laser standing waves. In the center of every waveguide there is
a static impurity on which the incident atoms will scatter. For low enough kinetic energy, in
1D geometry the atom has only two possibilities after the collision: it can be transmitted or
reflected, as excitations of transverse oscillator modes are not allowed. This also means that
in quasi-1D there are only two partial wave analogs: the even and odd wave, with respective
scattering amplitudes denoted as f (±) reflecting the symmetry of the state. The natural quantity
to measure is then the transmission amplitude which describes the part of the flux that goes
through the waveguide, defined as

T (p) =
∣∣∣1 + f (+) + f (−)

∣∣∣2 , (7)

with p denoting the 1D wavenumber. The outcome of the collision can be monitored experi-
mentally e.g. by field ionization or absorption imaging, and the sensitivity to magnetic field is
naturally provided by the Feshbach resonance. Additionally, the separation between the tubes,
which for optical lattices can be of the order of 500nm, gives rise to high spatial resolution.
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Figure 4: The s-wave scattering length, p-wave
volume and d-wave length for an exemplary Fes-
hbach resonance with 0.1G width and high back-
ground scattering length. From [H7].

The basic formalism for theoretical de-
scription of scattering in quasi-1D geometry
has been provided by Maxim Olshanii [31].
The problem can be dealt with by solving
the three-dimensional stationary Schrödinger
equation involving the interaction and con-
finement with the proper boundary condi-
tions. The interaction can be described by
a set of pseudopotentials which contain the
information about the 3D scattering phase
shifts in all partial waves. Crucially, the ex-
ternal trap impacts the collision by shifting
the position of the resonance to finite values
of the 3D scattering length, a phenomenon
which is called confinement-induced resonance
(CIR). Furthermore, all even 3D partial waves
` = 0, 2, . . . lead to emergence of resonances
in the even 1D scattering amplitude, while
odd angular momenta induce resonances in
the odd wave due to symmetry. As an illus-
tration, figure 4 shows the examplary magnetic field dependence of the 3D scattering lengths
corresponding to the first few partial waves for an exemplary Feshbach resonance characterized
by the width ∆ = 0.1G. The resulting transmission profiles are then shown in Figure 5. Here we
use the unit of length corresponding to the characteristic van der Waals distance ā, defined as
the mean scattering length of the −C6/r

6 potential after averaging over the short-range phase.
Let us now discuss the achievable precision of the sensor. Intuitively, it is beneficial to work

in the proximity of a resonance, as then the dependence of transmission on magnetic field is
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Figure 5: Transmission coefficient as a function of magnetic field for the same s-wave resonance
as in Fig. 4, for p = 0.01ā−1 (black solid line) and p = 0.001ā−1 (blue dash-dotted line). The
narrow resonances caused by higher partial wave scattering are not visible, but are shown in the
lower panel for p = 0.01ā−1. The dashed (black) line gives the s-wave result, while the straight
lines include higher partial waves, i.e. p-wave on the left (red solid line) and d-wave on the right
(green solid line). From [H7].
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the strongest. This can easily be made formal by using parameter estimation theory [32, 33].
The minimum attainable uncertainty of the estimated field value is by definition given by the
Cramer-Rao bound

∆B ≥ 1√
N

1√
F
, (8)

where N is the number of atoms injected into the tube. Here the scaling N−1/2 is merely a
statistical factor (shot noise). The real figure of merit is given by the Fisher information F that
is defined as

F =
∑
s=±1

1

p(s|B)

(
∂p(s|B)

∂B

)2

. (9)

Here, p(+1|B) ≡ T (B) is the transmission probability, and p(−1|B) ≡ 1−T (B) is the probability
of reflecting the atom in the collision. It quickly follows that

F =
1

T (B)[1− T (B)]

(
dT (B)

dB

)2

. (10)

The formula (10) implies that the lowest uncertainty is indeed reached when the derivative of
the transmission coefficient is the largest. The optimization of other parameters turns out to be
nontrivial and depend on the nature of the resonance. Depending on the value of the background
scattering length, the precision has a different dependence on the collision energy and it can take
the highest values either at the CIR or at the unit transmission peak, as shown in Figure 6.
This can be explained by extracting the leading order behavior of Eq. (10) at low energy. One
finds that ∆B always scales linearly with the resonance width ∆. However, at the CIR a low
background scattering length and a certain finite p is preferred, while at the unit transmission
peak a high abg and a very low energy gives better results. The dependence on the background
scattering length is not surprising, as one can expect that a jump in transmission should be
preferable; consequently, e.g. from high values at low background to zero at the CIR.
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Figure 6: Estimation precision ∆B as a func-
tion of momentum for measuring at the CIR
position (dashed lines) and the unit transmis-
sion peak (solid lines) for abg = 9.7ā (red) and
abg = 0.2ā (blue). From [H8].

Additionally, due to the structure of the op-
tical lattice one can study the transmission in
different tubes and obtain information about
the spatial distribution of the field with the
resolution given by the tube spacing, which is
equal to half the laser wavelength, typically
532nm. For the field gradient estimation one
can generalize the previous results by intro-
ducing a random variable ξ = {ξ1, . . . , ξM} de-
scribing the outcome of separate collisions tak-
ing place inM tubes. Let us also express slowly
varying magnetic field in the plane of our in-
terest as

B(ξi) = B0 +Bxxi +Byyi , (11)

and we are interested in estimating all three
parameters in this expression. Multiparameter
estimation theory provides then an analogue
of the Cramer-Rao bound involving the Fisher
information matrix

C >
1

N
F−1, (12)
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whose elements are given by

Fi,j =
∑
ξ

1

p(ξ|γ)

∂p(ξ|γ)

∂γi

∂p(ξ|γ)

∂γj
. (13)

Figure 7 shows the minimal attainable uncertainty ∆Bx for the estimation of the magnetic
field gradient along the x direction. The optimal operating point is achieved when B0 ≈ ∆ and
Bx = 0, and the sensor works best for small gradients. Interestingly, the precision ∆Bx oscillates
as a function of the magnetic field B0. The period of this wavy behaviour is decreasing as the
gradient increases. This phenomenon has an intuitive explanation. If the gradient is zero and
the sensor is working around its optimal operating point, all the tubes contribute with a small
uncertainty. When the gradient is small, the local field at some of the waveguides departs from
optimal conditions and the uncertainty of estimation grows. As the field strength B0 is varied,
the local field at some of the tube positions can incidentally approach the optimal point again.
As a result, both ∆B0 and ∆Bx do not reach the optimal point at finite gradient, but instead
exhibit periodic behavior.
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Figure 7: Gradient estimation uncertainty ∆Bx
as a function of B0−Bres for fixed Bx. The black
vertical line presents B0−Bres = ∆. The param-
eters used in the calculation were ∆ = 0.15G,
transverse oscillator width d = 20ā, abg = 9.76ā
(similar to Cs atoms) and p = 10−4ā−1. From
[H7].

In the sensor implementation one would
need to battle a number of potential error
sources. One limiting factor is the finite width
of the longitudinal momentum distribution.
In addition, one has to consider variation of
the resonance position due to finite energy
corrections. Furthermore, the uncertainty of
the estimated magnetic field strength depends
on the efficiency of the detector, denoted by
0 6 η 6 1.If the probability of detecting
the transmitted (reflected) atom is given by
ηP (±1|B), the Fisher information simply re-
duces to F (I) = ηF , where F is the Fisher
information for the perfect detectors. If the
experimental setup only allows for monitoring
the transmitted atoms, the Fisher information
is instead given by F (II) = η(T ′(B))2/T (1 −
ηT (B)).

Finally, it is worth considering whether
one can improve the performance of the sensor
by utilizing a different measurement than just
transmission. Surprisingly, the answer to this
question is negative, as it is possible to show that the proposed scheme saturates the absolute
bound taking into account all possible measurements. This follows from the structure of the
scattering wave function in quasi-1D geometry. After the collision the particle is in a superpo-
sition of being transmitted or reflected with respective probability amplitudes. The modulus
and phase of these amplitudes depend on the magnetic field. Our measurement scheme is only
sensitive to the modulus square of the amplitudes. However, the phases of the amplitudes are
equal and form a common phase factor. As a consequence, in our situation, the full information
about the magnetic field is already contained in the moduli.

The detection scheme proposed here in principle allows for reaching subnanotesla, or about
100 pT/Hz1/2 sensitivity at submicrometer resolution working with static magnetic fields. This
quite unique combination is possible thanks to the high purity and controlability of atomic
systems.
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4.8 Collisional dynamics of an ion immersed in a cold bosonic gas

A further intriguing system in which the details of interparticle interactions can become impor-
tant involves mixtures of cold atoms and ions. In this case the leading term in the interaction
potential stems from the polarization of the atom by the charge of the ion and has 1/r4 depen-
dence. Such potential has a well defined scattering length and approaches the s-wave limit at
sufficiently low energies. However, this limit is extremely challenging to reach in experiment and
instead one needs to take at least several partial waves into account. Here it is useful to introduce
the characteristic interaction distance R? = (2µC4/~2)1/2 and the corresponding energy scale
E? = ~2/(2µ(R?)2) where µ is the reduced mass. This energy is typically in the nK regime,
and the R? parameter can easily reach few thousands of Bohr radii and become comparable to
the typical interparticle distance in the gas. Finally, corrections to the s-wave phase shift for
the polarization potential are significant and feature terms which go beyond the effective range
treatment, which has widely studied consequences especially in the context of electron-atom
collisions [34]. A comprehensive review of the emerging field of cold hybrid ion-atom systems
has been provided in [13].

The problem of a single ion immersed into a gas of ultracold bosons can be considered
on various levels. One basic question concerns the transport properties resulting from elastic
collisions with the surrounding atoms. However, inelastic events leading to charge transfer are
also possible. Further relevant processes inculde radiative association of a molecular product as
well three-body recombination. If a molecule is created, it can undergo dissociation as well as
a secondary inelastic collision changing its rovibrational state.The complexity of the problem in
the lab can be further increased by the presence of electromagnetic fields such as the trapping
lasers which lead to additional processes, as well as stray electric fields which accelerate the ion.
In a remarkable experiment [H2,H3], the group lead by Florian Meinert in Stuttgart has been
able to create an ion from a cold Rb gas and monitor its collisional dynamics to some extent,
obtaining valuable data.

After creation of the ion from the ultracold gas of rubidium atoms using a pulsed field-
ionization process, it was dragged through the BEC by using very stable and weak electric
field of a few mV/cm. After some waiting time, the ion was extracted from the gas by a
strong electric field pulse and accelerated towards a detector. The ion arrival time allowed to
estimate the distance that the ion traveled through the gas and deduce its drift velocity 〈vi〉
and consequently its mobility µi = ∂〈vi〉/∂E as a function of the applied weak field E. The
results were then compared with a numerical simulation aiming to reproduce the observations
without any free parameters. In the numerics, the ion motion has been modeled in a Monte-Carlo
fashion, where the ion randomly scatters from the atoms with the energy-dependent collision
rate. Each collision leads to a new ion trajectory with the scattering angle which is chosen from
the appropriate distribution. This allows to include the finite size and inhomogeneous density
profile of the gas.

The measured mobility value µexp
i = (47 ± 16) × 103cm2/(Vs) turns out to be close to the

numerical simulation outcome µnum
i = (33 ± 3) × 103cm2/(Vs), but systematically larger. As

this is an initial study, both the experimental accuracy (e.g. stray field control) and theoretical
assumptions for the model can be improved further. For instance, in the model the impact of
inelastic processes and their density dependence has been completely disregarded. As we show
in the next section, production of molecules due to three-body events also plays an important
role in the ion dynamics.

The second set of measurements, described in [H3], focused on detection of the possible
outcomes of inelastic processes. The ion detector could distinguish Rb+ from RB+

2 ions by
time of flight mass spectrometry, and indeed in a number of events the molecular ion has been
detected, arriving at the detector at much larger times. This can only be due to three-body

13



Figure 8: Measured (top row) and simulated (bottom row) distributions of the ion time of flight
to the detector ttof as a function of the transport time t for two electric field values. The color
encodes the ion signal, while the black circles show the mean values. The red diamonds describe
ballistic ion dynamics at vanishing atomic density. From [H2].

recombination events in which the ion captures an atom from the gas and forms a molecule. A
unique experimental insight into the molecular products has been obtained by exposing them
to an additional electric field pulse Eex, which could dissociate them if their binding energy
would be sufficiently low. The fraction of detected molecules thus provides information about
the population of molecules with binding energies larger than the critical value. This allowed to
reveal the collisional dynamics of the molecule after its creation, as different results were observed
as a function of time. Namely, longer waiting times resulted in higher population of deeply bound
states. This can be interpreted as follows: initially, the molecule is created in a rather loosely
bound state. Subsequently, it undergoes secondary collisions with the neutral atoms which can
be inelastic and change the rovibrational quantum state of the molecules. Incorporating the
possibility of inelastic processes in the numerical simulation showed reasonable agreement with
the experimental data.

Vibrationally inelastic collisions of homonuclear molecular ions with their parent atoms have
been the subject of the work [H5], on which the analysis presented in [H3] is partially based. The
three-body ion-atom-atom problem is in principle challenging to treat strictly. However, it is
possible to take advantage from the long range properties of the ion-atom interaction to simplify
it, which should work especially well at low collision energies. It is convenient to introduce
the Jacobi coordinates and denote the relative position vector between the center of mass of
the molecule and the atom by R, and the internal coordinates of the molecular ion as r. The
center of mass motion is naturally eliminated. Furthermore, at large distances the system can
by asymptotically described by the molecular ion in a rovibrational state φvj(r), where v and j
label the vibrational and rotational quantum number of the molecule, respectively. In this basis
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one can now calculate the potential matrix

W JM
vj,v′j′(R) =

(
2µ?

~2
Evj +

`(`+ 1)

R2

)
δvv′δjj′ +

2µ?

~2
VM
vj,v′j′(R) , (14)

with the matrix element

VM
vj,v′j′(R) = 2π

∫
φv′j′(r)Yj′M (γ, 0)V (R, r, γ)φvj(r)YjM (γ, 0) sin(γ)dγdr (15)

Figure 9: (a) Ionic and molecular signal as a
function of the transport time. (b) Fraction
of the detected molecules as a function of the
dissociating field strength. (c) Fraction of the
molecules which survive the dissociating field η
as a function of the critical binding energy for
two different evolution times t = 6µs (blue dia-
monds) and t = 21µs (red squares). The insets
show the numerically calculated population dis-
tribution of the vibrational bound states for the
two cases. From [H3].

containing the interaction between the free
atom and the molecule. It then turns out that
the diagonal potentials follow the same R−4

power law as the ion-atom interaction with mi-
nor short-range corrections. This suggests that
the dynamics of the three-body complex should
be at least partially universal, i.e. indepen-
dent of the higher order terms. In a similar
manner, the coupling terms which are respon-
sible for inelastic processes also turn out to
follow the 1/R4 dependence with an effective
coupling strength depending on the molecular
states involved. Only for the weakly bound
states, which are spatially extended, the poten-
tial curves can deviate from this behavior, and
the details of the effective interaction which de-
termine the exact locations e.g. of the wave
function nodes can become important.

As the interchannel couplings calculated us-
ing the above method are much weaker than
the diagonal terms, it is warranted to use the
distorted wave Born approximation (DWBA)
to estimate the reactive collision rates instead
of solving the problem in full. Within DWBA
one makes use of the exact solution of the diag-
onal part of the problem and treats the inelas-
tic processes perturbatively [35]. The result of
the calculation is the distribution of molecular
products after the collision. The obtained dis-
tributions for two different initial states ares
shown in Fig. 10. In both cases small inter-
nal energy transfer is preferred. The collision
rates and product distributions calculated this
way were used as an input for the numerical
simulation of the experiment shown in Figure 9.

4.9 Ionic polaron in a degenerate Bose gas

The previous section focused on the diffusive motion of the ion in a gas driven by two-body
collisions. However, it is well known that the ground state of an impurity placed in a cold envi-
ronment can have a many-body nature. The particle may become dressed with the elementary
excitations of the medium, forming a polaron which can be characterized e.g. by a change in
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Figure 10: (a) Distribution of product states for vanishing kinetic energy after the inelastic
collision for the 5th vibrational state (v = 5). (b) Same, but for the most weakly bound state
(v = 1). From [H5].

the effective mass [36]. This problem is very appealing to a theoretician, as it can be seen as
a building block for condensed matter systems and a testbed for different models. Since the
first experimental observations [37, 38], the research on polaron physics using ultracold atoms is
flourishing [39, 40]. It is then natural to ask whether charged particles can lead to new effects.
As already noted, the ion-atom interaction is in principle short-ranged, so in a zero-temperature
ultradilute gas the charged polaron would not differ from the neutral one. However, in typical
experiments the competition of length and energy scales describing the interaction and the gas
becomes important.

Let us first briefly consider the mean-field picture [41, 42, 43]. A single atom can form a two-
body bound state with the ion, which would be roughly of the size of R?. An additional atom
from the gas can also populate this bound state. Due to bosonic statistics, this only increases
the interaction energy a little bit, and the binding energy is much greater. It is thus favorable
to populate the molecular state with many more bosons, resulting in a cluster consisting of
thousands of atoms trapped by the polarization potential. Such many-body state would have a
very large effective mass and thus its diffusive motion would be much slower. However, the gas
density in the proximity of the ion would greatly increase, so one can suspect that the mean field
theory would no longer be applicable. Precise description of such a strongly correlated state is
necessarily restricted to numerical studies. The calculations in the work [H1] were performed
using variational and diffusion Monte Carlo methods which were benchmarked on short-range
interacting systems and carefully adapted to the ion-atom case. In order to ensure convergence
of the calculations, a model interaction potential regularized at short distances has been used,
retaining the power-law long-range tail and allowing to control the number of available two-body
bound states.

The crucial results of the study [H1] can be summarized as follows. If the ion-atom potential
supports a bound state, the ground state of the system indeed corresponds to a large number
of atoms bound to the ion. However, due to the density increase and boson-boson repulsion
the critical number of atoms which can become bound Nc is much smaller than the mean field
prediction. This number is in fact of the order of 100 and only weakly depends on the scattering
length, which shows the important role of the universal long-range potential tail. The excess
atoms remain in the gas phase. This is illustrated in Figure 11 with the two-body correlation
functions. Naturally, the ion-atom correlation exhibits a large peak at short distances. The
atom-atom correlation function exhibits the same behavior as the atoms tend to group around
the ion and so remain also close to each other. This may also be interpreted in terms of impurity-
induced interactions in the medium. If the number of bosons is less than critical, all of them are
bound and at large interatomic distances the correlation drops to zero. Above Nc the atom-atom
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Figure 11: Left: Atom-atom (solid lines) and atom-ion (dashed lines) two-body correlation
function for N = 500 (blue) and N = 50 (red). The two-body scattering length is chosen to be
equal to R?. The green line is the correlation function of the bosonic gas in absence of the ion.
Right: schematic picture indicating the different regimes the system can reach depending on the
scattering length and the number of bound states. From [H1].

correlation converges to a constant smaller than unity, which reflects the reduced gas density as
a fraction of atoms occupies the many-body bound state.

If a two-body bound state is not present, the many-body bound state cannot be formed
as well. In this case the system turns out to be well described by the conventional attractive
polaron theory, where the ion is dressed by the phonons and forms a quasiparticle with large
residue, but small effective mass. Note that for the same negative scattering length but in the
presence of a bound state the system will again form the mesoscopic molecular state. These
two distinct regimes should give rise to different timescales in the impurity dynamics observed
in experiment.

4.10 Quantum simulations with hybrid ion-atom systems

Ultracold atomic systems are often considered to be perfect candidates for the purpose of quan-
tum simulations. The basic idea is to prepare a highly controllable and scalable system which
would be able to realize complex many-body phenomena. In this way one would be able to
study the properties of complex systems which are hardly accessible in experiments and cannot
be efficiently simulated with a classical computer. This is especially promising in the context
of out-of-equilibrium dynamics, but even ground state properties in the presence of compet-
ing processes and strong interactions can represent a challenge for theoretical understanding.
One notable example here involves the interplay of strong electron-electron interactions and
electron-phonon coupling observed in certain materials. As both processes naturally emerge in
condensed matter systems, they have been a subject of intense theoretical studies for a long
time [44, 45, 46]. It has been proposed that their competition can lead to a superconducting
phase [47]. One can picture this by introducing lattice polarons, which are electrons dressed by
phonons due to the strong coupling. The effective interaction between the polarons gives rise
to bound states (bipolarons) which can have low effective mass and thus be mobile. Low mass
indicates high condensation temperature and a possible collective quantum state. However, the
theoretical treatment of such models including the details of the material structure is extremely
challenging. Experimental efforts are also limited in that regard, as realistic material samples
cannot be easily controlled, their dynamics is fast on optical scales and the measurement tech-
niques are naturally limited to certain quantities such as conductance. Quantum simulation
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utilizing an artificial system with well controlled properties and broad access to both local and
global observables can thus become particularly useful in this context.

An ion crystal overlapping spatially with an atomic cloud naturally resembles a solid state
material, with the atoms playing the role of electrons [48]. The ion-atom interaction provides a
periodic potential for the atoms with a corresponding band structure. While microscopic details
are different, the effective Hamiltonian describing the two systems can be made similar, with
additionally controllable mass ratio and the energy scales involved in the problem. Furthermore,
a trapped ion crystal can undergo a structural phase transition, e.g. a linear crystal can be
destabliized by changing the effective confinement strength and enter a zigzag phase [49]. This
phase transition can be controlled by using an atomic cloud which deconfines the ions due to the
attractive potential. A natural question to ask is if it is also possible to realize a scenario in which
the coupling to crystal phonons would become important. This was the motivation of the study
performed in [H4], in which a linear crystal of ions directly overlapping with fermionic atoms
has been considered. The system can be divided into three parts representing the ion chain, the
atoms moving in the effective potential and their interaction with the phonons. Due to the fact
that Coulomb interaction between the ions is strong and the ions are assumed to be heavier than
the atoms, a reasonable assumption is to make use of the Born-Oppenheimer approximation in
which the phonon structure is unperturbed by the atoms. For typical experimental parameters,
the ions can be treated as classical distinguishable particles. In the first step, one can then
minimize the classical energy functional with respect to the ion positions in order to obtain the
lowest energy equilibrium configuration. The functional describes the interaction potential of
the ion trap and the Coulomb repulsion, and their interplay can give rise to various geometries.
Here, a stable linear configuration is assumed which can already give rise to interesting physics.

In order to find the phonon spectrum for the general case one can make use of the convenient
method provided in [50]. In brief, one expands the Hamiltonian up to the second order around
the equilibrium configuration. Then each ion can be associated with its local harmonic oscillator

frequency defined as Ωj =
√

Vjj
M , where Vij = ∂2V

∂(δRi)∂(δRj) is the second derivative of the total
potential energy calculated at equilibrium and M denotes the mass of the ion, while δRj is the
small displacement of the j-th ion from its equilibrium position. In the next step one introduces
local ladder operators corresponding to these local oscillators and rewrites the Hamiltonian.
The latter acquires quadratic form and can be diagonalized using a generalized Bogoliubov
transformation, leading to the canonical phonon mode structure

Ĥion =
∑
m

~ωmb̂†mb̂m (16)

with ωm being the energy of the m-th collective mode, and b̂m, b̂
†
m denoting the phonon creation

and annihilation operators that fulfill the usual bosonic commutation relations.
The atomic band structure is determined by the interaction with the static ion chain. Al-

though the ion-atom interaction has a rather long-range character Va−i(r) = −C4/r4 with the
characteristic range R? being of the order of few thousand Bohr radii, here the typical length
scales of the lattice are much larger than the interaction range and it is sufficient to make use
of the one-dimensional pseudopotential approximation

Va−i(x) = geδ(x) + goδ′(x)∂± (17)

with coefficients ge, go describing the interaction in the even and odd partial waves (one-
dimensional analogues of the three-dimensional case). The action of the operator on the right
of Eq. (17) on a test function is defined as 2 ∂̂±ψ(x) = [ψ′(0+) + ψ′(0−)] with ψ′(0±) =
limx→0± ψ

′(x), where the apex ′ denotes the spatial derivative. Usually the even part of the
interaction is expected to dominate. The resulting lattice potential Vlat(x) =

∑
Va−i(x−R(i)

0 )

18



gives rise to a band structure which can be calculated numerically. In addition to this, the
atoms interact with each other via van der Waals forces which have local character described
by a pseudopotential similar to (17). One can then switch to the basis consisting of maximally
localized Wannier states in which the atomic part of the Hamiltonian takes the familiar form of
the fermionic Hubbard model.

The crucial element for the simulation of polaron models is the coupling of the atoms to
the phonons which results from the ion-atom interaction beyond the static ion approximation.
Following the condensed matter theory textbooks, one can expand the atom-ion interaction to
the first nonvanishing order with respect to the ions’ equilibrium positions. in the same way
as the ionic Hamiltonian, obtaining the atom-phonon interaction Va−ph(x) as a correction to
Vlat(x). The atom-phonon coupling is then by definition given as

Ĥa−ph =

∫
drρ̂(r)Va−ph(r) (18)

with ρ̂(r) denoting the atomic density operator. After some algebraic transformations, the total
Hamiltonian of the system can be written as

Ĥ = −
∑
ij

Jij ĉ
†
iσ ĉjσ +

∑
i

Un̂i↑n̂i↓ +
∑
ijσσ′

Vijn̂iσn̂jσ′+

+
∑
m

ωmb̂
†
mb̂m +

∑
ijσ

Miln̂iσx̂l ,
(19)

with x̂l = âl + â†l . Note the presence of the two types of phonon operators â, b̂ connected
with each other via hataj =

∑
m (umj − vmj )b̂m and the uj , vj parameters being diagonalization

coefficients. The operators â have local character, in contrast to the collective modes described
with b̂. The atom-phonon coupling coefficient written in terms of local operators and Wannier
states reads

Mnj =

√
~

2MNΩj

1√
N

∑
k

α(k)eikRnj |k|Ve−i(k) , (20)

and can have local (onsite) or finite range character.
It is now convenient to perform the generalized Lang-Firsov transformationH = eSHe−S [51,

52] defined by the generator
Ŝ = i

∑
i,j

λijn̂i(âj − â†j) , (21)

with λ being an arbitrary number. This transformation dresses the atomic movement with
lattice distortions. These new quasiparticles are called polarons. It is possible to choose λ
such that the atom-phonon coupling term vanishes, and instead phonon-mediated interactions
between the polarons emerge. The tunneling term becomes strongly suppressed, indicating that
polarons typically have low mobility. The exemplary effective interaction is shown in Figure 12.
As it turns out, for the chosen set of parameters the interactions are nonlocal and the particles
attract each other weakly on long length scales. This is due to the fact that in this particular
case the effective interaction is mediated mainly by the lowest phonon mode of the ionic lattice
and reflects its shape.It is also possible to realize local effective attraction that would merely
renormalize the onsite atomic repulsion. The system is thus suitable for quantum simulation
of extended Hubbard-Holstein model. Experimentally available control knobs can allow for
reaching different regimes. This is especially relevant as numerical methods for studying the
phase diagram and the out-of-equilibrium dynamics of such models turn out to be challenging.

4.11 Summary
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Figure 12: The effective interaction between the
polarons after the Lang-Firsov transformation
for the atom-ion even scattering length ae =
0.008R? and the ion spacing d = 15R?. From
[H4].

The works forming the cycle of publications
described above bring insight into fundamen-
tal collisional properties of cold atoms and
ions, in particular in the presence of an exter-
nal confining potential. Building on this ba-
sis, new protocols for precision measurements,
magnetometry, and quantum simulations have
been introduced. Microscopic understanding
of few-body physics in these systems is crucial
for developing efficient theoretical models for
the many-body dynamics.

In the coming years, I plan to extend the
results obtained for ion-atom systems, espe-
cially by going beyond two-body effects. This
includes three-body recombination and the
role of strong many-body correlations in trans-
port. The other promising direction is to
explore applications of cold atomic systems
in quantum technologies, especially quantum
simulations. Emerging experimental plat-
forms such as optical tweezer setups which are
particularly exciting in that regard will require
including the role of strong optical confine-
ment with much higher precision than current
theoretical proposals. In general, the interplay
between strong interactions and geometrical
constraints strongly connects the AMO and
condensed matter systems. I aim to explore
these links, looking for suitable atomic systems for quantum simulations of various nonequilib-
rium phenomena as well as adapting the few-body methods developed for atoms and molecules
to the physics of quasiparticles such as excitons and exciton-polaritons.

5 Presentation of significant scientific activity conducted at more
than one institution

The research described in the previous sections has been conducted mainly during postdoc-
toral research stays at the University of Stuttgart and Forschungszentrum Jülich in Germany,
in collaboration with the experimental group in Stuttgart as well as with renowned scientists
from various international institutions. Part of this research [H4] has been initiated during an
extended visit at the University of Harvard. Other research projects not included in the main
scientific achievement which also often result from international collaborations are listed below
in reverse chronological order.
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Feshbach resonances, Phys. Rev. A 92, 020702(R) (2015)

B.12 J. Jankunas, K. Jachymski, M. Hapka and A. Osterwalder, Observation of orbiting reso-
nances in the NH3+He(3S1) Penning ionization, Journ. Chem. Phys. 142, 164305 (2015)

B.13 Z. Idziaszek, K. Jachymski and P. S. Julienne, Reactive collisions in confined geometries,
New Journ. Phys. 17, 035007 (2015)

B.14 A. Simoni, S. Srinivasan, J. M. Launay, Z. Idziaszek, K. Jachymski, P. S. Julienne, Polar
molecule reactive collisions in quasi-1D systems, New Journ. Phys. 17, 013020 (2015)

B.15 K. Jachymski, M. Krych, P. S. Julienne and Z. Idziaszek, Quantum defect model of a
reactive collision at finite temperature, Phys. Rev. A 90, 042705 (2014)

B.16 J. Jankunas, B. Bertsche, K. Jachymski, M. Hapka and A. Osterwalder, Dynamics of gas
phase Ne*-NH3 and Ne*-ND3 Penning ionization at low temperatures, J. Chem. Phys.
140, 244302 (2014)

B.17 K. Jachymski, Z. Idziaszek and T. Calarco, Fast quantum gate via Feshbach-Pauli blocking
in a nanoplasmonic trap, Phys. Rev. Lett. 112, 250502 (2014)

B.18 K. Jachymski and P. S. Julienne, Analytical model of overlapping Feshbach resonances,
Phys. Rev. A 88, 052701 (2013)

B.19 K. Jachymski, M. Krych, P. S. Julienne and Z. Idziaszek, Quantum theory of reactive
collisions for 1/rn potentials, Phys. Rev. Lett. 110, 213202 (2013)
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B.20 K. Jachymski, Z. Idziaszek, T. Calarco, Feshbach resonances in a nonseparable trap, Phys.
Rev. A 87, 042701 (2013)

B.21 K. Jachymski, Z. Idziaszek, Off-resonant light scattering from ultracold gases in optical
lattices, Eur. Phys. J. Special Topics 217, 85-90 (2013)

B.22 K. Jachymski, Z. Idziaszek, Light scattering from ultracold gases in disordered optical lat-
tices, Phys. Rev. A 86, 023607 (2012)

5.1 Description of other scientific achievements

Articles [B22,B21] contain the results of my Master thesis prepared under supervision of dr hab.
Zbigniew Idziaszek. The main goal of the project was to find a nondestructive way to detect
Anderson localization in disordered optical lattices. It has been shown that off-resonant light
scattering can be used for this purpose even at finite temperatures.

My PhD thesis, which was prepared within the International PhD studies framework, focused
on low energy collisions of atoms as well as molecules, in particular the properties of chemical
reactions in the ultracold regime. The main tool used in the studies has been the Multichannel
Quantum Defect Theory (MQDT), which allows for efficient and general description of scat-
tering. Works [B19,B15] study different aspects of inelastic processes for power-law interaction
potentials such as Wigner threshold laws and shape resonances. The results have been further
extended to include the presence of external confining potential which effectively reduces the di-
mensionality [B14,B13,B5]. Another important topic on which I have been working jointly with
prof. Paul Julienne are overlapping Feshbach resonances which appear in systems with multiple
closed channels, which is especially relevant for more complex atoms as well as atom-molecule
collisions. Their properties have been studied in [B18,B11]. These results created an opportu-
nity to collaborate with the experimental group of prof. Andreas Osterwalder on the topic of
Penning ionization of polyatomic molecules by metastable noble gas atoms in a range of collision
energies. The results of this joint project were published in works [B16,B12,B8,B7]. Further
experimental collaborations include work [B6] with the group of Johannes Hecker Denschlag on
reactive collisions of Rb2 molecules in a quasi-1D setup and with the group of Tilman Pfau on
Feshbach resonances in dysprosium [B10].

Furthermore, articles [B20,B4] study the basic properties of tightly confined systems and
the interplay between trap-induced shape Feshbach resonances. The results have been used to
develop a simple quantum gate protocol [B17] in which a Feshbach resonance prevents a pair of
fermionic atoms from populating certain states that would lead to decreased gate fidelity.

During my postdoctoral stay in Stuttgart as a Humboldt fellow I studied the few-body
properties of Rydberg polaritons which are quasiparticles composed of a photon and a Rydberg
excitation. Some of the results were published in [B9]. Furthermore, I became interested by the
concept of quantum droplets which are formed due to beyond mean-field effects. Works [B1,B3]
study the properties of dipolar droplets in the presence of an external confining potential such as
an optical lattice. The main objective has been to go beyond the commonly used local density
approximation which can only be applied if the trap length scales are much larger than the
condensate healing length.

The review paper [B2] is devoted to the physics of ion-atom hybrid systems which are dis-
cussed in detail in the previous section. As this paper does not contain new scientific results, it
has been left out of the main scientific achievement.
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6 Teaching, organizational and popularization activity

Teaching experience

The applicant has so far supervised three students: one Bachelor student in Warsaw, one in
Stuttgart and one Master student in Cologne. The teaching experience of the applicant includes

• 2019 tutorials for Quantum Information Processing lecture (University of Cologne, in En-
glish)

• 2018 co-supervisor of the Hauptseminar ”Quantum gases and liquids” (University of Stuttgart,
in English)

• 2016/17 lecture on Advanced Quantum Mechanics (University of Stuttgart, in English,
jointly with prof. Maria Daghofer)

• 2016 co-supervisor of the Hauptseminar “Ultracold quantum gases” (University of Stuttgart,
in English)

• 2015/16 tutorials for Advanced Quantum Mechanics (University of Stuttgart, in English)

• 2014/15 tutorials for Mathematical Analysis (University of Warsaw, in Polish)

• 2014/15 tutorials for Algebra (University of Warsaw, in Polish)

• 2012/13 tutorials for Quantum Mechanics and Quantum Chemistry (University of Warsaw,
in Polish)

• 2011/12 tutorials for Differential and Integral Calculus (University of Warsaw, in Polish)

Popularization

In 2019 the applicant gave a popular lecture for high school students in Technical University
High School in Łódź on the bascis of quantum mechanics and emerging quantum technologies.
In 2020 the applicant gave an online seminar for the SKN “Nanorurki”.
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