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Brief description and author contribution

[H1] Spin dynamics of the block orbital-selective Mott phase,
J. Herbrych, N. Kaushal, A. Nocera, G. Alvarez, A. Moreo, and E. Dagotto,
Nat. Commun. 9, 3736 (2018)
This work presents a theoretical prediction for the dynamical spin structure factor S(q, ω)
within a block orbital-selective Mott phase (OSMP), i.e., in the system of ferromagnetic
spin “islands” which are antiferromagnetically coupled along the legs, ↑↑↓↓. In agree-
ment with inelastic neutron scattering (INS) experiments on the iron-based compounds,
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two dominant features are found: low-energy dispersive and high-energy dispersionless
modes. The former represents the spin-wave-like dynamics of the block ferromagnetic
islands, while the latter is attributed to a novel type of local on-site spin excitations con-
trolled by the Hund coupling.

Author contribution: I initiated the research project. I co-developed the density matrix renormal-
ization group code and performed all the numerical simulations. I provided the interpretation of
the research results, e.g., I identified the q > π/2 mode as a high-energy momentum-independent
excitation. I designed the toy model for the acoustic and optical excitations. I have provided
the Hund exchange analysis of the optical mode. Finally, I wrote most of the manuscript text.
I estimate my contribution to this article to be ∼ 70%.

[H2] Novel Magnetic Block States in Low-Dimensional Iron-Based Superconductors,
J. Herbrych, J. Heverhagen, N. D. Patel, G. Alvarez, M. Daghofer, A. Moreo, and
E. Dagotto,
Phys. Rev. Lett. 123, 027203 (2019)
The analysis presented in this work shows that the electron doping of the OSMP induces
a whole class of novel block states beyond the previously reported ↑↑↓↓ pattern with
ordering wavevector π/2. Furthermore, the effective model of the multiorbital system
within OSMP is presented, the so-called generalized Kondo-Heisenberg model.

Author contribution: I initiated the research project. I adapted the code and performed all of the nu-
merical simulations. I provided the interpretation of the research results, e.g., I performed the anal-
ysis of the static spin structure factor. I developed and tested the hypothesis for the “stabilization
of the Fermi instability”, i.e., that the magnetic ordering follows the electronic density. I derived
and tested the effective Hamiltonian, i.e., the generalized Kondo-Heisenberg model. I wrote most
of the manuscript text. I estimate my contribution to this article to be ∼ 70%.

[H3] Block-spiral magnetism: An exotic type of frustrated order,
J. Herbrych, J. Heverhagen, G. Alvarez, M. Daghofer, A. Moreo, and E. Dagotto,
Proc. Natl. Acad. Sci. USA 117, 16226 (2020)
It is shown that the competing energy scales of the seemingly nonfrustrated OSMP within
the low-dimensional multiorbital Hubbard model can originate a “block–chiral mag-
netism”, i.e., a state with rigidly rotating spin–magnetic islands. By examining the be-
havior of the electronic degrees of freedom, parity-breaking quasiparticles are revealed.

Author contribution: I initiated the research project. I adapted the code and performed all of the nu-
merical simulations. I provided the interpretation of the research results, e.g., I performed a de-
tailed analysis of spin-spin correlation function and chirality correlation function. I build and
tested the hypothesis for the block-spiral magnetic ordering via the dimer correlation function.
I identified the parity breaking quasiparticles. I presented the phenomenological arguments for
the effective spin Hamiltonian. I wrote most of the manuscript text. I estimate my contribution to
this article to be ∼ 70%.

[H4] Block orbital-selective Mott insulators: a spin excitation analysis,
J. Herbrych, G. Alvarez, A. Moreo, and E. Dagotto,
Phys. Rev. B 102, 115134 (2020)
A comprehensive study of the spin excitations - measured by the dynamical spin struc-
ture factor S(q, ω) - of the block-magnetic state within low-dimensional orbital-selective
Mott insulators is presented.

Author contribution: I initiated the research project. I adapted the code and performed all of
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the numerical simulations. I provided the interpretation of the research results, e.g., I performed
a detailed analysis of the spin spectra. I identified unique features of the block and block-spiral
ordering, relevant for neutron scattering experimentalists. I co-developed the phenomenological
effective spin model for the block magnetism. I wrote most of the manuscript text. I estimate my
contribution to this article to be ∼ 70%.

[H5] Interaction-induced topological phase transition and Majorana edge states in low-
dimensional orbital-selective Mott insulators,
J. Herbrych, M. Środa, G. Alvarez, M. Mierzejewski, and E. Dagotto,
Nat. Commun. 12, 2955 (2021)
This work shows that the Coulomb electron-electron interaction can drive a topologically
trivial canonical superconductor with orbital degrees of freedom into the topologically
nontrivial state. Namely, it’s shown that above a critical value of the Hubbard interaction,
the system simultaneously develops spiral spin order, a highly unusual triplet amplitude
in superconductivity, and zero-energy Majorana modes at the edges of the system.

Author contribution: I initiated the research project. I adapted the code and performed all of
the numerical simulations. I provided the interpretation of the research results, e.g., performed
the analysis of the single-particle spectral function and local density-of-states. I build and tested
the hypothesis that topological phase transition is driven by the magnetic properties of the system.
I developed the arguments for the presence of the zero-energy Majorana modes (e.g., the behavior of
the entanglement entropy, the emergence of the triplet superconducting order parameter, the emer-
gence of weight in the local density-of-states). I wrote most of the manuscript text. I estimate my
contribution to this article to be ∼ 70%.

[H6] Quantum magnetism of iron-based ladders: blocks, spirals, and spin flux,
M. Środa, E. Dagotto, and J. Herbrych,
Phys. Rev. B 104, 045128 (2021)
Theoretical analysis of magnetic states of the multiorbital Hubbard ladder in the OSMP
is presented, i.e., detailed doping vs. interaction magnetic phase diagram is analyzed.
The presented analysis indicates that multiorbital models of iron-based systems com-
bine phenomena known from cuprates (AFM tendencies) with those found in mangan-
ites (phase separation) and iron pnictides (block magnetism).

Author contribution: This project was done with my PhD student (I’m the co-supervisor). I ini-
tiated the research project. I provided the interpretation of the research results, e.g., I provided
the analytical tools necessary for the analysis. I build the hypothesis that more than one Fermi vec-
tor is contributing to the magnetic properties of the system. I co-described the magnetic phases.
I contributed to the writing of the manuscript. I estimate my contribution to this article to be
∼ 40%.
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2.3 Description

Introduction

Past experience in Cu-based high-temperature (high-Tc) superconductors (SC) showed
that the analysis of the low-dimensional systems, such as chains and ladders, can pro-
vide useful information to better contrast theory with the experiments [1–3]. Further-
more, recent advances in cold-atoms in optical lattices [4–11] and also solid-state pump-
and-probe experiments challenge our understanding of the out-of-equilibrium situations.
As a consequence, accurate results in systems with reduced dimensionality are still of
great importance. One reason is that theoretical many-body calculations based on model
Hamiltonians can be accurately performed in one dimension (1D), particularly numeri-
cally. In this respect, the wave-function-based methods, i.e., exact diagonalization (ED),
Lanczos-based algorithms, and density-matrix renormalization group (DMRG) method,
allow for unbiased calculations of static and dynamic quantities.

The analysis mentioned above is overwhelmingly done within two paradigmatic mod-
els: the single-band Hubbard or Heisenberg Hamiltonians, on various lattices. This stems
from the fact that cuprates’ normal state (at ambient pressure or at half-electronic-filling)
can be described by insulating Mott physics and can be related to its quantum mag-
netic fluctuations [12, 13]. The inelastic neutron scattering (INS) measurements are cru-
cial for the study of the latter. This powerful experimental technique provides detailed
information on momentum- and energy-resolved spin excitations. The importance of
INS studies was best illustrated in the early days of high-Tc superconductors [13, 14].
Shortly after discovering the copper-oxide compounds, it became evident that the stan-
dard BCS (Bardeen–Cooper–Schrieffer) theory of electron-phonon coupling does not ex-
plain the experimental findings. Simultaneously, the INS results showed that supercon-
ductivity appears in close proximity to the antiferromagnetic (AFM) ordering of S =
1/2 Cu2+ moments, providing robust evidence that the new pairing mechanism may
be based on spin fluctuations [3]. The latter can be accurately described by the Hub-
bard model (interacting spinful fermions on a lattice) or, under certain conditions, by
the Heisenberg model of interacting spins.

This view has been challenged by the discovery of iron-based (Fe-based) high-Tc su-
perconductors [15–17]. In contrast to the Cu-based materials, which in a normal state
are AFM insulators, the Fe-based superconductors are typically “bad metals”. Despite
this fundamental difference in the parent compounds, the phase diagrams (pressure or
electronic filling dependence of Tc) of these materials are qualitatively similar [18–20].
Within the single-band Hubbard phenomenology, large Coulomb interaction U is needed
to open an energy gap at the Fermi level. The same interactions also lead to a large mag-
netic moment S2 = S(S + 1), and AFM ordering observed in Cu-based materials. As
a consequence, the metallic state of Fe-based materials questioned the role of magnetic
fluctuations (or electronic correlations in general) in the high-Tc superconductivity.

To understand the origin of this paradox, one has to focus on the important difference
between Cu and Fe itself, both of which belong to the transition metals. Bulk Cu has filled
3d orbitals and one electron on 4s band (yielding the charge density close to one electron
per site in such materials). On the contrary, bulk Fe has a filled 4s band and 6 electrons
on five 3d orbitals. Consequently, cuprates have a single Fermi surface (FS), which can
be accurately described by the single-band Hubbard model. The iron-based compounds
have a complicated FS with electron and hole pockets, originating in the five 3d orbitals.
This important conceptual difference has to be taken into account during the modeling
of Fe-based materials.
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The physics of iron superconductors (and materials based on compounds from the pnic-
togen group) have to be described [17, 21] employing the multiorbital Hubbard model,
involving not only the standard Hubbard repulsion but also the Hund coupling. The for-
mer describes the interaction of electrons at the same site (orbital), while the latter ac-
counts for Hund’s rule: every orbital in a sublevel is singly occupied before any orbital is
doubly occupied. Simultaneously, electrons in singly occupied orbitals have the same
spin projection and maximize the total spin (the total magnetic moment per site S2).
The generic - SU(2) symmetric - multiorbital Hubbard model is given by:

H = − ∑
γ,γ′,`,σ

tγγ′
(

c†
γ,`,σcγ′,`+1,σ + H.c.

)
+ ∑

`,γ
∆γ nγ,`

+ U ∑
γ,`

nγ,`,↑nγ,`,↓ + (U − 5JH/2) ∑
γ<γ′,`

nγ,`nγ′,`

− 2JH ∑
γ<γ′,`

Sγ,` · Sγ′,` + JH ∑
γ<γ′,`

(
P†

γ,`Pγ′,` + H.c.
)

, (1)

where c†
γ,`,σ creates an electron with spin projection σ = {↑, ↓} at site ` = {1, . . . , L}

of orbital γ = {0, . . . , Γ− 1}, with Γ as a number of active orbitals. tγγ′ and ∆γ denotes
a hopping amplitude matrix and the crystal-field splitting in orbital space γ, respectively.
The local (γ, `) orbital-resolved particle density is nγ,` = ∑σ nγ,`,σ, Sγ,` is the local spin,
and Pγ,` = cγ,`,↑cγ,`,↓ is the pair-hopping operator. U is the repulsive Hubbard interac-
tion, while JH is the Hund exchange. In the works described here, to reduce the number
of parameters in the model, JH/U = 1/4 will be fixed, a value widely used when mod-
eling iron superconductors. Finally, the global filling is given by n = N/L, where N is
the number of electrons and L is the system size.

The competition between spin, electronic, and orbital degrees of freedom in the above
model can lead to novel exotic phases not present in the single-band Hubbard Hamilto-
nian. A prominent example of a phenomenon unique to multiorbital systems is the so-
called orbital-selective Mott phase (OSMP) [22, 23] (see the phase diagram presented in
Fig. 1). In general, the single-band Hubbard model in high dimension exhibits a single
metal-insulator transition (the Mott-Hubbard transition) as a function of the interaction
U (in 1D, the electronic gap has an activated behavior for any finite U). This is in strik-
ing contrast to multi-band systems, where competing interactions can lead to the selec-
tive localization of electrons on some orbitals - in the same sense as electrons localize
within the single-band picture in the large-U limit. Such insulating bands coexist with
the metallic band (or bands) with itinerant electrons. It is argued [16] that this unique
metal-insulator mixture could be responsible for the bad-metallic behavior of the parent
compounds of iron-based superconductors.

It is by now evident that in strongly-correlated systems, both Cu- and Fe-based, high-
Tc superconductivity is closely connected to a strongly-correlated bad-metal state and/or
a nearby AFM order. As such, considerable effort has been devoted to understanding
the electron correlation effects and the associated magnetism. In this context, the mag-
netic properties of the multiorbital system have been much less explored. This stems
from a few facts: (i) iron-based superconductivity is much younger than its cuprate coun-
terpart. (ii) In the single-band Hubbard model, the magnetic moments are not yet fully
developed in small U conducting (metallic) phase. As a consequence, in the naive analy-
sis of the bad-metallic state of iron-based materials, the magnetic properties were (often
mistakenly) treated as a secondary contribution to overall physics. (iii) Lack of reliable
methods that can unbiasedly treat the many-body systems, especially the ones with large
Hilbert space.
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FIGURE 1: Schematic phase diagram of the generic multiorbital Hubbard
model. At small U �W (with W as the kinetic energy bandwidth), the sys-
tem is a metal. At large U � W, the system is in a Mott insulating state.
For the intermediate value of interaction strength U and robust value of
Hund exchange JH, the system is in the orbital-selective Mott phase with
at least one orbital Mott localized. The schematic shapes of the density-of-
states in a given phase are also shown. Figure taken from Ref. [H4].

The common goal of the publications submitted as the “scientific achievement” [H1-
H6] is to describe the magnetism and transport properties of low-dimensional multi-
orbital systems, especially in the orbital-selective Mott phase (OSMP). The latter was
argued - via angle-resolved photoemission spectroscopy - to be relevant for various two-
dimensional iron-based compounds from the 122 family (AFe2X2; A-alkali metals, X-
chalcogenides), e.g., (K,Rb)xFe2Se2 [24] and KFe2As2 [25], or in iron-chalcogenides and
oxychalcogenides like FeTe1−xSex [26] and La2O2Fe2O(Se,S)2 [27]. Furthermore, the low-
dimensional materials from the 123 family (quasi-1D ladders AFe2X3) exhibit interplay
between local moments and delocalized electrons, e.g., BaFe2S3 and BaFe2Se3 [23,28–32].
Importantly, the latter can also support the superconducting state [33–37], similarly as it
occurs in Cu-based ladders.

Experimental investigations of the magnetic properties of the 123 ladders reported
two distinctive magnetic phases. INS on (Ba,K)Fe2S3 and (Cs,Rb)Fe2Se3 identified [28,
38–40] ferromagnetic (FM) ordering along the rungs and AFM along the legs, that is,
canonical (π, 0) order. On the other hand, it was shown [41] that the BaFe2Se3 compound
exhibits exotic spin arrangement of AFM-coupled FM “islands” along the legs, namely
↑↑↓↓, the so-called block magnetic ordering [(π/2, 0) ordering]. The same conclusion
was also reached on the basis of neutron [42–44] or X-ray diffraction [44], and muon spin
relaxation [44]. Similar magnetic structures were identified in two dimensions in the pres-
ence of

√
5×
√

5 ordered vacancies (K,Rb)Fe2Se2 [45–48], in compounds from the family
of 245 iron-based SC (K,Rb)2Fe4Se5 [49, 50], and also iron-chalcogenides Fe(Se,Te) [51,
52]. Finally, recent first-principles calculations predicted that the block-magnetism may
also be relevant for the one-dimensional iron-selenide compound Na2FeSe2 [53], iron-
oxychalcogenide Ce2O2FeSe2 [54], as well as in yet-to-be synthesized iron-based ladder
tellurides [55, 56].

The exact-diagonalization of many-body multiorbital systems (1) is destined to fail
due to the exponential growth of the Hilbert space of the model: dim(H) = 4ΓL with Γ
the number of active orbitals and L the number of sites in the system. To study the physics
of such systems, one must rely on some form of approximations. For example, the full
five-orbital Hubbard model was investigated via the mean-field Hartree-Fock analysis [57–
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59], revealing a complex filling-Hund/Hubbard interaction magnetic phase diagram with
many competing phases. Many of such phases were also confirmed by density functional
theory [36, 37, 55, 56, 59–61]. Moreover, the electronic properties of the multiorbital Hub-
bard model were extensively investigated via the dynamical mean-field theory [16,22,62].

The aforementioned theoretical approaches are limited because they cannot properly
incorporate the effects of quantum fluctuations over long distances. This issue is particu-
larly important for the low-dimensional systems (e.g., relevant for 123 family of Fe-based
ladders), where it is well known that quantum fluctuations must be treated accurately,
thereby requiring the full many-body calculations. In order to facilitate the latter, an al-
ternative route has to be taken, such as decreasing the number of considered orbitals. For
instance, it was shown [21] that the three-orbital Hubbard model could accurately de-
scribe the physics of iron-based materials. In the latter, the eg orbitals (dx2−y2 and dz2) are
far enough from the Fermi level to be neglected, rendering only the t2g orbitals (dxy, dxz,
dyz) active. Accordingly, one has to decrease the number of considered electrons. The oc-
tahedral splitting present in the iron ladders of the 123 family leads to the so-called high-
spin state (maximal spin projection) with 2 electrons in the eg orbitals. Consequently, 4
electrons on three t2g orbitals seem to be the minimal model to describe the iron-based
systems. Nevertheless, despite these approximations, accurate many-body simulations
of three-orbital systems are mostly restricted to the chain geometry and static quantities,
with ladders and dynamical quantities (frequency/energy-dependent) being largely out
of reach.

As already discussed, the multiorbital Hubbard model requires a considerable nu-
merical effort to be accurately described. The results discussed in the following were ob-
tained using the zero-temperature T = 0 density matrix renormalization group (DMRG)
method with a single-center site approach [63–66]. The dynamical correlation functions
were calculated using the dynamical-DMRG method [67–69], evaluated directly in terms
of frequency via the Krylov decomposition [69, 70]. Furthermore, all results were ob-
tained for the generic values of kinetic parameters of the model (1), i.e., coexisting wide
and narrow energy bands in U → 0 limit (as suggested by the DFT calculations for 123
materials [21, 71] ). For the three- Γ = 3 and two-orbital Γ = 2 Hubbard model, the
hopping amplitude matrix was given by

tγγ′ =

−0.50 0.00 0.10
0.00 −0.50 0.10
0.10 0.10 −0.15

 , tγγ′ =

(−0.50 0.00
0.00 −0.15

)
, (2)

and the crystal-field splitting ∆0 = −0.1, ∆1 = 0.0, ∆2 = 0.8 and ∆0 = 0.0, ∆1 = 0.8,
respectively.

Static spin properties

The magnetic properties of quantum systems are usually investigated via the static struc-
ture factor S(q), i.e., by the Fourier transform of real-space spin-spin correlation function

S(q) =
1
L ∑

`,m
e−ıq(`−m)〈S` · Sm〉 , (3)

with L as the system size (the 1D chain of L sites) and wavevector (momentum) q = 2πm/L
with m = 0, . . . , L− 1. Note that S` = ∑γ Sγ,` represents the total on-site spin. For
the canonical AFM ordering, the maximum of the structure factor S(q) is at qmax = π
wavevector (for FM ordering it is at qmax = 0). The analysis of the 1D three-orbital Hub-
bard model within OSMP has shown [71] that already for moderate interaction strength
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U ∼ JH ∼W (where W is a kinetic energy of the system) - and electronic filling n = 4/3 -
the system develops the block-magnetic ordering (the ↑↑↓↓↑↑↓↓ spin arrangement) with
qmax = π/2. Interestingly, this result was later confirmed [41] by the INS spectrum of
the BaFe2Se3 powder.

Within the aforementioned setup, one of the orbitals is fully localized with n2 = 1, and
two others are itinerant with n0 ' n1 ' 1.5 (yielding 4 electrons in total). In Ref. [H2],
we further simplify the model by neglecting one of the itinerant orbitals (together with
decreasing the overall filling by 1.5 electrons per site). The premise for the two-orbital
model relies on the fact that dyz- and dxz-orbitals are often close to being degenerate in
AFe2X3 materials. Such a result is consistent with crystal-field theory predictions for, e.g.,
BaFe2Se3 [41]. The octahedral splitting in the latter (ligands being pulled from the central
atom in the unit cell) can give rise to two approximately degenerated bands and one
higher in energy orbital. The 1D model used in the analysis of magnetism of iron chains
and ladders [21,71] indeed captures such behavior, as evident from, e.g., equal occupation
of two out of three of the orbitals. Interestingly, the analysis of the two-orbital model, i.e.,
the dependence of occupations on the interaction U and filling n, presented in Ref. [H2]
reveals an effective Hamiltonian of the OSMP.

In Ref. [H2], it was argued that the two-orbital Hubbard model with electron density
above half-filling always exhibits OSMP due to the crystal field splitting ∆1 = 0.8 [eV] (as
suggested by the DFT considerations of the 123 family of iron-based materials). As a con-
sequence, in a broad range of the electronic filling 2 < n < 3, the system has one localized
band with n1 = 1 and one itinerant (metallic) orbital with fractional filling 1 < n0 < 2
(with n = n0 + n1). Note that for U > W and at n = 2 (half-filling), the system is in
the Mott state with AFM ordering and S2 = S(S + 1) = 2. On the other hand, at n = 3,
the system is a mixture of the Mott insulator with n1 = 1 and band insulator with n0 = 2,
with AFM ordering and S2 = 3/4. For intermediate 2 < n < 3, the S2 is also maximized
to a value dependent on the specific choice of n. The saturated S2, single electron occu-
pation of n1, vanishing charge fluctuations δn2

γ = 〈n2
γ〉 − 〈nγ〉2 on γ = 1 orbital, flat mo-

mentum distribution function n(q) of γ = 1, and the gap in the orbital resolved spectral
function A(q, ω) of γ = 1 electrons (see also discussion later on) indicate that the system
is in the orbital-selective phase. Furthermore, the aforementioned behavior of the local-
ized orbital γ = 1 indicates that doublons and holons don’t contribute to the low-energy
physics and can be traced out by standard Schrieffer-Wolff transformation [72] [restricted
to γ = 1 orbital of (1)]. As a consequence, in Ref. [H2] it was shown that the effective
model of the OSMP can be written in the form of generalized Kondo-Heisenberg (gKH)
Hamiltonian

HK = − t00 ∑
`,σ

(
c†

0,`,σc0,`+1,σ + H.c.
)
+ U ∑

`

n0,`,↑n0,`,↓

+ K ∑
`

S1,` · S1,`+1 − 2JH ∑
`

S0,` · S1,` . (4)

The first two terms of the model describe the mobile electrons of the itinerant γ = 0
band. The third term describes the behavior of the spins S1,` of the localized γ = 1
electrons with spin exchange given by K = 4t2

11/U. Finally, the last term is the Hund
coupling between spins at different orbitals. Note that the electronic filling of the effective
Hamiltonian is either nK = n− 1 or nK = 3− n, due to the particle-hole symmetry of (4).

The accuracy of HK was tested on various static and dynamical quantities: (i) in
Ref. [H2] the static structure factor S(q) was compared with the results obtained with
the help of the full two-orbital Hamiltonian. (ii) In Ref. [H3], the single-particle spectral
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function A(q, ω) was also compared with the latter. (iii) In Ref. [H4], the dynamical struc-
ture factor S(q, ω) was compared with the two-orbital and three-orbital results obtained
in Ref. [H1]. Perfect agreement with the effective Hamiltonian has been found for all
considered quantities. Furthermore, because of the restricted (smaller) Hilbert space of
(4), more accurate results could be reached.

In Fig. 2(a) a direct comparison of the static structure factor S(q) between (1) with Γ =
2 and (4) for U/W = 1 is presented (with W = 2.1 [eV]). As expected, for n = 2 (nK = 1),
the system exhibits AFM ordering with qmax = π, i.e., ↑↓↑↓ alternating correlations [also
presented in the top panel of Fig. 2(a)]. Upon electron doping, for n = 2.5 (nK = 0.5)
the qmax = π/2 block magnetism ↑↑↓↓↑↑↓↓ is stabilized. Note that these results agree
with the three-orbital consideration [71], due to the orbital degeneracy in that model
(n = n0 + n1 + n2 = 1.5+ 1.5+ 1). In addition, in Ref. [H2] new types of block magnetism
have been revealed. For electronic filling n = 2.66 (nK = 0.33), the qmax = π/3 ordering
of ↑↑↑↓↓↓↑↑↑↓↓↓-form can be found. Finally, due to the larger system sizes L numerically
available for (4), the block-magnetism of four spins with qmax = π/4 at nK = 0.25 was
found.

The tendencies for block formation within OSMP can be understood from the limits
of the gKH model (4):

(i) for t00 � (U , JH): the system is in the paramagnetic (PM) state, with short-range
features in S(q) at q = 2kF (the so-called Fermi instability), where kF is a Fermi
vector given by the electronic filling 2kF = πnK (for the chain lattice geometry in
U → 0 limit),

(ii) for JH � (t00 , U): the itinerant electrons form local triplets with localized spins
(due to the FM Hund exchange),

(iii) for JH ∼ t00 � U: increasing mobility of the electrons leads to a double-exchange
FM ordering known from the Kondo-like modes [73],

(iv) for JH ∼ U ∼ W: the Hubbard interaction U promotes AFM ordering, and the lat-
ter competes with FM ordering due to the double exchange mechanism. Conse-
quently, the system minimizes its energy by forming FM islands that are AFM cou-
pled. In other words: the interaction U “stabilizes Fermi instability” and promotes
qmax = 2kF as a quasi-long-range order.

Note that the exotic block-magnetic patterns found in chains and ladders (described in
Ref. [H2] and Ref. [H5], respectively) are not static as would be the case for a combina-
tion of domain walls or a spin density wave, but exhibit significant quantum fluctuations
with local 〈Sz

`〉 = 0. For example, in the case of the block pattern ↑↑↓↓, Lanczos diago-
nalization studies presented in Ref. [H1] confirm that the many-body ground-state is in
at least 50% of the singlet form

| ↑↑↓↓〉 − | ↓↓↑↑〉 .

Accordingly, individual magnetic blocks should be considered as regions with strong FM
correlations, as opposed to domains with finite magnetization.

The generalized Kondo-Heisenberg model allowed for a detailed analysis of S(q) for
various parameters. Fig. 2(b) depicts one of the main findings of Ref. [H2], i.e., interaction
U - filling n magnetic phase diagram of the OSMP in 1D. At U < W, the ground-state is
a paramagnetic metal. For U & W the system enters OSMP with coexisting metallic and
Mott-insulating bands. For sufficiently large values of interaction U � W the system
is in a FM state for all fillings [consistent with JH � t00 prediction of point (iii) above].
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FIGURE 2: (a) Static structure factor S(q) for various fillings n at
fixed U = W, for two-orbital Hubbard (lines) and generalized Kondo-
Heisenberg (points) models. Real-space correlation functions 〈S` · SL/2〉
and sketches of the spin alignment are also presented at the top. (b) Inter-
action U vs. filling n magnetic phase diagram of the generalized Kondo-
Heisenberg model. The dashed-shaded area represents the region where
the mapping is not valid. Figure taken from Ref. [H2].

When U ∼ O(W), namely when all energy scales compete, the system is in the block-
magnetic state. Depending on the filling of the itinerant band nK, the spins form various
sizes of AFM-coupled FM spin islands. That is, we have explicitly checked that qmax(n)
follows the 2kF obtained as the maximum of dn(q)/dq, i.e., by the inflection point of
the momentum distribution function. Interestingly, this prediction is also valid for the
three-orbital Hubbard model and also for the ladder geometry (as discussed later on and
in Ref. [H5]).

The initial investigation presented in Ref. [H2] identified an incommensurate order
between block and FM phase (see Fig. 2b). More detailed analysis of this region in
Ref. [H3] revealed another exotic magnetic ordering. Additional information about the
magnetic properties can be obtained from the so-called chirality correlation function
κ̃d(|`−m|) = 〈κd

` · κd
m〉, where

κd
` = S` × S`+d . (5)

It is evident that the above expectation is always zero for AFM, FM, and block ordering
since the spins are always parallel or antiparallel.
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FIGURE 3: (a) Dependence of the chiral correlation function 〈κd
` · κd

m〉
(κd

` = S` × S`+d) on distance d between spins. Results were calculated us-
ing the generalized Kondo-Heisenberg model with nK = 0.5 and U/W =
2.0. Panel (b): same as (a) but for nK = 0.33 and U/W = 1.2. In both pan-
els: arrows represent schematics of the block order for given filling. Figure
taken from Ref. [H3].

Interestingly, in the region (initially) marked as incommensurate, the 〈κd
` · κd

m〉 corre-
lation has finite value and strongly depends on the choice of distance d, as evident from
the results presented in Fig. 3. The former indicates that the spins have a spiral ordering,
with some angle of rotation θ. Furthermore, the spatial structure of 〈κ1

` · κ1
m〉 displays

a clear zig-zag-like pattern for the nearest-neighbour (d = 1) spins. To better investigate
the spiral internal structure, Fig. 3 depicts the dependence of the chirality correlation on
the distance d. Specifically, for nK = 0.5 (nK = 0.33) the correlation function oscillates
every two (three) sites. Interestingly, these patterns change their nature when the next–
nearest neighbour (d = 2) chirality is considered: (i) the values of these chiralities increase
〈κ2

` · κ2
m〉 > 〈κ1

` · κ1
m〉, and (ii) for the case of nK = 0.5 the κ-correlation is now a smooth

function of distance, while nK = 0.33 still exhibits some three-site oscillations. Investigat-
ing the next-next–nearest neighbour case, d = 3, provides additional information. While
for the nK = 0.5 filling the d = 3 correlations are smaller than d = 1 and d = 2, for
nK = 0.33 they are larger and (as for d = 2 at nK = 0.5) they are now a smooth function
of distance.

This seemingly erratic behavior of 〈κd
` · κd

m〉 correlations varying d cannot be simply
explained by a mere uniform change of the pitch angle θ of the spiral magnetic order. To
better explain this behavior, let us focus on the dimer correlation defined [74] as

Dπ/2 =
2
L

3L/4

∑
`=L/4

(−1)`−1〈S` · S`+1〉 . (6)
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FIGURE 4: Phase diagram varying the interaction U/W. Presented are: (i)
maximum of the static spin structure factor qmax (squares), (ii) nearest–
(d = 1) and next–nearest (d = 2) neighbour chirality κ̃d

L/3 (open and
filled circles, respectively), and (iii) dimer correlation Dπ/2 (diamonds).
Results were calculated using the generalized Kondo-Heisenberg model
for nK = 0.5. Figure taken from Ref. [H3].

The above quantity compares the number of FM and AFM bonds in the bulk system. For
true FM or AFM ordered states, each nearest–neighbour bond has the same sign: posi-
tive for FM ↑↑ and negative for AFM ↑↓. Consequently, Dπ/2 = 0. On the other hand, in
the π/2-block state ↑↑↓↓ the FM and AFM bonds alter in a staggered fashion rendering
Dπ/2 6= 0. Fig. 4 depicts the interaction U dependence of Dπ/2 for nK = 0.5. Further-
more, in the same figure, the wavevector qmax for which the static structure factor S(q)
is maximized, and the value of the κ̃d

L/3 correlator for d = 1 and d = 2 is shown. Start-
ing in the paramagnet at small U, both Dπ/2 and κ̃d

L/3 vanish, with qmax = π depicting
the usual short-range staggered correlations of weak-U physics. In the opposite limit of
the strong interaction, U �W, Dπ/2 = κ̃d

L/3 = 0 as well, the consequence of a simple FM
state with qmax = 0. In the most exciting case of competing interaction U ∼W, the dimer
correlation Dπ/2 acquires a finite value maximized at U 'W. The latter reflects a perfect
π/2-block magnetic state. Interestingly, one can observe a continuous transition of Dπ/2
between the block and FM phases in the region where a finite chirality κ̃d

L/3 6= 0 was
found and where qmax takes incommensurate values.

Based on the above results, Ref. [H3] presents a coherent picture explaining the nature
of the magnetic state between the block and FM phases. Consider first filling nK = 0.5. At
U ' W the ground-state is a block–magnetic phase, where two-site FM islands (blocks)
are AFM coupled. Increasing the interaction U, the spins start to rotate w.r.t. each
other, inducing finite 〈κd

` · κd
m〉 correlations. Remarkably, during the rotation, the over-

all FM-islands nature of the state is preserved, yielding a finite Dπ/2 6= 0 all the way to
the FM state at U � W. Such an unexpected scenario is also encoded in the inequalities
κ̃2

L/3 > κ̃1
L/3 and κ̃2

L/3 > κ̃3
L/3 observed in Fig. 3(a). This is qualitatively different from

a standard spiral state, where the spin rotates from site-to-site. For the case discussed in
Ref. [H3], the spiral is made out of individual blocks, and it is the entire block that rotates
from block-to-block (see Fig. 5). This new spiral state is stabilized without any apparent
frustration, the common avenue to generate spiral arrangements in, e.g., multiferroics.
The same arguments can be used for π/3 blocks ↑↑↑↓↓↓ and d = 3 chirality correlation.

Works Ref. [H2] and Ref. [H3] discussed the magnetic properties of the orbital-selective
Mott insulators on the chain geometry. Since the 123 family of iron-based materials are
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FIGURE 5: Schematic representation of spirals within the orbital-selective
Mott phase. Top to Bottom: (a) standard spiral magnetic structure with
site-to-site spins rotation and (b,c) block–spirals of two and three sites, re-
spectively.

quasi-1D (they are ladders with significant inter-chain hopping exchange), Ref. [H6] con-
tains a comprehensive analysis of the magnetic phases within the OSMP of multiorbital
Hubbard ladders. The results are summarized in Fig. 6. As already discussed, the shape
and size of the block-magnetism is related to the electronic density via the Fermi vec-
tor. Since the ladders can (in principle) have more than one Fermi point, one can expect
a more complicated phase diagram. For two-leg ladder geometry, a symmetrical and anti-
symmetrical energy bands are allowed, resulting from a symmetrical or antisymmetrical
linear combination of the wave function on the rungs of the ladder (in the one-particle
basis). At large fillings, nK & 1.6, where the antibonding band is fully filled and only
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FIGURE 6: Schematic U-nK magnetic phase diagram of the generalized
Kondo-Heisenberg ladder. The vertical lines within the phase-separation
regime mark special fillings nK = 1.17, 1.25, where perfect block orders are
recovered. Figure taken from Ref. [H6].
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the bonding band carries the Fermi wavevectors, the system develops perfect blocks of
↑↑↓↓
↑↑↓↓ -form at U ∼ W. Increasing the strength of the interaction U leads to the uniform
rotation of the blocks, i.e., to the formation of the exotic block-spiral phase (similarly as
it was the case on the chain geometry). In the opposite limit, close to half-filling nK ∼ 1,
the two Fermi wavevectors present in two bands drive the system towards phase sepa-
ration with (predominantly) π, π/2, and π/3 blocks. Finally, when nK ∼ 1.5, the ladder
system develops a quantum spin flux originating in the competing energy scales inher-
ent to the OSMP. This phase can be naively viewed as staggered spin currents circulating
within 2× 2 plaquettes (however, no plaquette carries net current due to its quantum na-
ture). In summary, the analysis presented in Ref. [H6] indicates that the magnetic phase
diagram of iron ladders is dominated by tendencies to form magnetic blocks of vari-
ous shapes and sizes. Furthermore, the phase diagram contains the phases known from
cuprates (AFM tendencies) with those found in manganites (phase separation) and iron
pnictides (block magnetism).

Dynamical spin properties

Up to now, we have discussed the zero-temperature static properties of the multiorbital
Hubbard model and the effective model of the OSMP, i.e., the ground-state magnetic or-
dering. It is also instructive to focus on the momentum-resolved excitations. The INS
experiment on the BaFe2Se3 ladder [41] (exhibiting the block ↑↑↓↓ magnetism) revealed
the existence of low-energy acoustic and high-energy optical modes separated by an en-
ergy gap. Similar findings were obtained for BaFe2S3 [40], and RbFe2Se3 [39], albeit
the plain canonical (π, 0) ordering was identified in those compounds. Since the measure-
ments were performed on the powder samples, no detailed information on the momen-
tum dependence within the Brillouin zone was given (due to the spherical momentum
averaging).

Ref. [H1] presents the first (to the authors’ knowledge) numerical study of the dy-
namical spin structure factor (SSF) S(q, ω) of a multiorbital Hubbard model. The zero-
temperature spin dynamics can be obtained from the dynamical correlation function

S(q, ω) = − 1
Lπ

L

∑
`=1

e−iq(`−L/2) Im 〈GS|S̃`
1

ω+ − H + ε0
S̃L/2|GS〉 , (7)

where ω+ = ω + iη with η as a broadening, and |GS〉 as the ground-state with energy
ε0. In the above equation S̃` = ∑γ S`,γ is the total spin on-site ` for the total S(q, ω), or
S̃` = S`,γ for the orbital resolved dynamical spectra Sγγ′(q, ω).

Fig. 7 contains one of the main results of Ref. [H1]: the frequency-momentum de-
pendence of the dynamical SSF in the block-OSMP phase (i.e., at U/W = 0.8 with W =
2.45 [eV]) within three-orbital Γ = 3 Hubbard model (1). Panel (a) depicts the total SSF,
S(q, ω), while panel (b) shows only the contribution from the localized orbital, S22(q, ω).
Several conclusions can be obtained directly from the presented results: (i) A robust
contribution to the total SSF arises from the localized orbital. Moreover, all the quali-
tative features of S(q, ω) are already present in S22(q, ω). In fact, S(q, ω) and S22(q, ω)
become almost indistinguishable if normalized by the local magnetic moment squared
(i.e., S2 = 3/4 for the S = 1/2 localized electron, and S2 = 2 for the total moment for the
three-orbital system). (ii) The energy range for the spin dynamics is much smaller when
compared with the energy bandwidth W = 2.45 [eV] of the Hamiltonian. (iii) Clearly,
the dynamical SSF has two distinct modes: a low-frequency, ω . ωc = 0.08 [eV], disper-
sive (acoustic) band and a high-frequency, ω ∼ 0.11 [eV], dispersionless (optical) band.
The latter mode resembles the previously reported high-energy features of BaFe2Se3 [41]
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FIGURE 7: (a) Total dynamical spin structure factor S(q, ω), and (b) of
the localized orbital, S22(q, ω). The results were obtained on the three-
orbital Hubbard model for n = 4/3. Figure taken from Ref. [H1].

(with 2× 2 FM blocks), and BaFe2S3 [40] or RbFe2Se3 [39] (with (π, 0) order, which can
be viewed as 2× 1 FM blocks). The different types of blocks in the INS investigations,
and the similarity of the results between neutrons and model calculations, suggest that
the results of Ref. [H1] apply to a wide variety of iron chalcogenides. The arguments pre-
sented in Ref. [H1] and also in Ref. [H4] indicate that the low-energy mode is dominated
by the spin excitations between the magnetic blocks (with the blocks acting as a rigid
unit) spanning in momentum space between zero and the propagation wavevector qmax
of the magnetic unit cell (of the block). On the other hand, the optical mode is attributed
to local excitations inside the block (or even within one site) controlled by the on-site
Hund exchange.

Motivated by the results presented above, with the main contribution to the SSF aris-
ing from the localized orbital, one can express the eigenstates in terms of the basis states
of localized orbital | · 〉γ=2. Since in the OSMP the electrons are localized with occupation
nγ=2 = 1 [71], in the low-energy portion of the spectrum the basis states with empty and
doubly occupied orbital γ = 2 should not be present [as argued in Ref. [H2] via the effec-
tive model (4)]. Within such a representation, the ground-state of the block-OSMP phase
can be identified as a superposition of | ↑↑↓↓〉γ=2 and | ↓↓↑↑〉γ=2 states which constitutes
∼ 50% of the true ground-state. One can improve further the qualitative description by
investigating a simple toy model. Let us consider two FM coupled S = 1/2 spins as one
S = 1 object, i.e., |1〉 = | ↑↑〉γ=2, |−1〉 = | ↓↓〉γ=2, and |0〉 = 1/

√
2(| ↑↓〉γ=2 + | ↑↓〉γ=2).

In this setup, a 4-site S = 1/2 system reduces to two antiferromagnetically coupled S = 1
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FIGURE 8: Spin configuration in the localized orbital (γ = 2) of the (a)
ground-state |GS〉 (singlet) and (b) excited state |A〉 (triplet) contributing
to the acoustic mode within three-orbital Hubbard model. (c) Schematic
representation of the particle configuration of all orbitals of the |GS〉 and
optical triplet |O〉. Circles represent pairs of antiferromagnetically aligned
spins that break Hund’s rule. Figure taken from Ref. [H1].

spins. The ground-state of the latter is simply

|GS〉γ=2 = ca|0〉|0〉 − cb

(
|1〉|−1〉 − |−1〉|1〉

)
, (8)

where ca = cb = 1/
√

3 [see Fig. 8(a) for a schematic representation]. Note that the above
state, in agreement with numerics, is a singlet. The last two terms of Eq. (8) correspond
to the “perfect” block order, i.e., | ↑↑↓↓〉γ=2 and | ↓↓↑↑〉γ=2, while the first term depicts
the x–y component of the block order,

|0〉|0〉 = 1
2

(
| ↑↓↑↓〉γ=2 + | ↓↑↓↑〉γ=2 + | ↑↓↓↑〉γ=2 + | ↓↑↑↓〉γ=2

)
. (9)

Lanczos investigation of the L = 4 site Γ = 3 system (1) indicates that the state (8) has
coefficients equal to c2

a ' 1/6 and c2
b ' 1/4, which yields now a better overlap, ∼ 70%,

with the true ground-state. Finally, the first excited state - contributing to the acoustic
mode - can be identified as a triplet of the form

|A〉γ=2 = cA(| ↑↑↓↓〉γ=2 + | ↓↓↑↑〉γ=2) , (10)

where c2
A ' 4/9 [see Fig. 8(b)]. The toy model also captures this large overlap of |A〉γ=2

with the full solution since |1〉|−1〉 − |−1〉|1〉 is one of the first excitations in our two-site
S = 1 problem.

To properly understand the optical mode, it is not enough to focus solely on the local-
ized orbital. Instead, one has to focus on the full three-orbital representation of the state.
Lanczos analysis presented in Ref. [H1] indicates that the high-energy mode arises from
a state of the form

|O〉γ=2 ' 1/2(| ↓↑↑↓〉γ=2 + | ↑↓↓↑〉γ=2) . (11)
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FIGURE 9: (a-f) Hubbard U and (g-l) Hund exchange JH dependence
of the dynamical spin structure factor S(q, ω), calculated for general-
ized Kondo-Heisenberg model for nK = 0.5. Panels (a-f) show results
for U/W = 0.6, . . . , 1.4 and JH/U = 0.25, while panels (g-l) for JH =
0.1, . . . , 0.35 and U/W = 1. The white line in panels (f) and (l) in-
dicate the ωO(q) = 0.051 + 0.005| sin(2q)| dispersion. Figure taken from
Ref. [H4].

A detailed analysis of the remaining “metallic” orbitals γ = 0, 1 indicates that: (i) the |GS〉
and the |A〉 states obey Hund’s rule: spins in different orbitals of the same site are ferro-
magnetically aligned [see Fig. 8(a)]. (ii) However, the |O〉 states, Fig. 8(c), do not fulfill
this rule since part of the spins are antiferromagnetically aligned. As a consequence,
the main difference in energy between the |GS〉 and |O〉 arises from the local (on-site)
Hund exchange portion of the electronic interaction.

Similarly as in the case of static properties, the effective Hamiltonian of the OSMP,
i.e., the generalized Kondo-Heisenberg model (4), allows for a more detailed analysis of
the dynamical spin structure factor S(q, ω). The results of Ref. [H4] contain a compre-
hensive study - interaction U and Hund exchange JH dependence - of the spin dynamics
within OSMP. The main findings are summarized in Fig. 9. Note that, at weak interac-
tion, U → 0, the gKH model does not accurately describe multiorbital physics because of
the assumption of having spin localization in one of the orbitals. Ref. [H2] indicates that
the mapping is valid for U/W & 0.5.

At small U, the system is in the paramagnetic state and the dynamical spin structure
factor S(q, ω) resembles the U → 0 result of the single-band Hubbard model at given
filling nK. Increasing the interaction U and entering the block-phase at U ∼ W, the spin
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spectrum changes drastically [see Figs. 9(a-d)]. Firstly, the spectral weight of the low-
energy dispersive mode shifts from the wavevectors range π/2 < q < π to the re-
gion around q ' π/2 (for general filling the spectral weight accumulates at q ' 2kF).
This weight transfer reflects the emergence of the block-magnetic order ↑↑↓↓ at propa-
gation wavevector qmax = 2kF. Consequently, in the block-OSMP, the low-energy short-
wavelength q > π/2 spin excitations are highly suppressed. This indicates that at low
energy the spin excitations within the magnetic unit cell (within the magnetic island) can-
not occur, and the spectrum is thus dominated by excitations between different blocks.

The second characteristic feature upon increasing the interaction U is the high-frequency,
seemingly momentum-independent, optical mode. As shown in Fig. 9(c-d), for U ∼ Uc '
0.8W - concurrently to the shift of the weight previously described - the dispersion ω(q)
of the spin excitations is heavily modified in the short-wavelength limit. Namely, increas-
ing the interaction up to U ∼ Uc increases and flattens the ω(π/2 < q < π) features.
It is interesting to note that the results of the static structure factor S(q) presented in
Ref. [H2] indicate that the system enters the block-OSMP at U ' Uc. For U > Uc the flat
band “detaches” from the dispersive portion of ω(q) and creates a novel momentum-
independent mode ωO. Increasing the interaction strength U/W further leads to the in-
crease of the frequency where this optical mode is observed [see Figs. 9(d-f)]. At the same
time, the energy span of the acoustic mode ωA(q) decreases. The latter qualitatively re-
sembles the usual behavior of spin superexchange in the Mott limit, i.e., J ∝ 1/U.

Interestingly, in the block OSMP, the dispersive mode ωA(q) is weakly dependent on
JH, opposite to the behavior of the optical mode, as shown in Fig. 9(g-l). Such behavior is
consistent with the analysis given in Ref. [H1], i.e., that the localized spin excitations ωO
are predominantly controlled by the local Hund exchange JH. Finally, Ref. [H4] shows
that for large JH the optical band develops a narrow sine-like dispersion. This is depicted
in Fig. 9(f) (for U = 1.4 W and JH = 0.25 U) and in Fig. 9(l) (U = W and JH = 0.35 U).
Although the energy range of the acoustic mode changes (due to varying U), it is clear
that the optical bands behave similarly for both parameter sets. The latter can be de-
scribed with a simple fit ωO(q) = ω0 + J̃O sin(q/2), with ω0 as the frequency offset and
J̃O = 0.005 [eV] providing a very small dispersion. This indicates that the excitations
contributing to the optical mode can propagate within the magnetic unit cell (within
a magnetic island) for large values of the Hund exchange.

Electronic properties

Another interesting aspect is the electron excitations within the OSMP. Since the latter
is in an overall metallic state, one can expect a finite weight at the Fermi level εF in
the density-of-states (DOS). In Ref. [H3] and Ref. [H5], we have addressed this issue, i.e.,
we studied the effect of block and block-spiral magnetism on the single-particle spectral
function A(q, ω) = Ae(q, ω) + Ah(q, ω). The latter is defined as

Ae(q, ω) = − 1
Lπ ∑

`

e−iq(`−L/2) Im〈GS|c†
γ,`

1
ω+ − H + ε0

cγ,L/2|GS〉 , (12)

Ah(q, ω) = − 1
Lπ ∑

`

e−iq(`−L/2) Im〈GS|cγ,`
1

ω+ + H − ε0
c†

γ,L/2|GS〉 , (13)

where cγ,` = cγ,`,↑ + cγ,`,↓. Ae(q, ω) [Ah(q, ω)] represents retarded (electron photoe-
mission) and advanced (hole inverse–photoemission) part of the spectrum, respectively.
The density-of-states can be calculated as DOS(ω) = 1/(πL)∑q A(q, ω) and similarly for
the electron and hole parts. Note that A(q, ω) is directly relevant for the angle-resolved
photoemission spectroscopy.
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FIGURE 10: Spectral function A(q, ω) of (a) block-phase (nK = 1.5 , U/W =
1.0) and (b) block-spiral-phase (nK = 1.5 , U/W = 2.0) as calculated for
the generalized Kondo-Heisenberg model. (c,d) The same results obtained
with the two-orbital Hubbard model: (c) block-phase (n = 2.5 , U/W =
1.0) and (d) block-spiral-phase (n = 2.5 , U/W = 2.0). Horizontal (vertical)
lines depict the Fermi level εF (Fermi wavevector kF), while (i)PES stands
for (inverse-) photoemission spectroscopy. Right panels: density-of-states
DOS(ω) = 1/(πL)∑q A(q, ω). Figure taken from Ref. [H3].

As already discussed, a distinctive feature of the OSMP is the coexistence of local-
ized electrons (spins in an insulating band) and itinerant electrons (a metallic band). In
the block-magnetic phase at U ' W it was previously shown [31] – for the three-orbital
Hubbard model – that the density-of-states (DOS) at the Fermi level εF is reduced, indi-
cating a pseudogap-like behavior. Ref. [H3] provides the analysis of A(q, ω) and DOS(ω)
for the two-orbital Hubbard model (1) and the gKH model (4), see Fig. 10. Such a compar-
ison can also serve as a nontrivial test of the strength of our OSMP effective Hamiltonian.
Specifically, the results presented in Fig. 10 indicate that the behavior of the gKH model,
Fig. 10(a,b), perfectly matches the γ = 0 itinerant orbital of the full two-orbital Hubbard
result presented in Fig. 10(c,d). Furthermore, the flat in momentum space bands of γ = 1
orbital are in agreement with Mott electron localization. Finally, the spectral gap in γ = 1
orbital further supports the arguments for the gKH effective model. Also, it is important
to note that although the system is overall metallic in nature, the band structure is vastly
different from the simple cosine-like result of U → 0. The distinctive features in A(q, ω)
at the Fermi vector kF, and a large renormalization of the overall band structure at higher
energies indicate a complex interplay between various degrees of freedom and energy
scales.

When the interaction U increases and the systems enter the block-spiral region, the
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single-particle spectral function A(q, ω) changes drastically. In Fig. 10(b) we show rep-
resentative results for the pitch angle θ/π ' 0.3 block-spiral state at U/W = 2 and
nK = 1.5. Two conclusions are directly evident from the presented results: (i) the pseu-
dogap at εF is closed, but some additional gaps at higher energies opened. (ii) A(q, ω) in
the vicinity of the Fermi level, ω ∼ εF, develops two bands, intersecting at the q = 0 and
q = π points, with the maximum at q ' θ/2. The analysis presented in Ref. [H3] showed
that the bands represent two quasiparticles: left- and right-movers reflecting the two pos-
sible rotations of the spirals. It is obvious from the above results that the quasiparticles
break the parity symmetry, i.e., going from q → −q momentum changes the quasipar-
ticle character, as expected for a spiral state. Somewhat surprisingly, A(q, ω) does not
show any gap as would typically be associated with the finite dimerization Dπ/2 that
we observe. However, it should be noted that for quantum localized S = 1/2 spins
the quarter-filling (nK = 1.5) implies a filling of 2/5 of the lower Kondo band (due to the
energy difference between local Kondo singlets and triplets). The dimerization gap ex-
pected at π/2 would thus open away from the Fermi level and would not confer substan-
tial energy gain to the electrons. Thus, it was concluded that the quantum fluctuations
of the localized and itinerant spins are strong enough to suppress the dimerization gap.
The above conclusions can also be reached from results obtained with the full two-orbital
Hubbard model [see Figs. 10(d)].

The parity-breaking quasiparticles discussed in Ref. [H3] resemble the ones found
in the single-orbital Hubbard model with spin-orbit coupling (SOC) [75]. Such a parti-
cle dispersion is an essential ingredient, together with the SC gap, in some of the can-
didate setups [76, 77] for the Majorana zero-energy modes (MZM). However, the large
spin-orbit coupling required to split the doubly-degenerated bands due to the electronic
spins renders such a setup hard to engineer. In Ref. [H5], we have shown that the many
competing energy scales induced by the correlation effects present in superconducting
multiorbital systems lead to a topological phase transition and the appearance of MZM.
Unlike the other proposed MZM candidate setups, our scheme does not require frozen
classical magnetic moments or, equivalently, FM ordering in the presence of the Rashba
spin-orbit coupling [78]. All ingredients necessary to host Majorana modes appear as
a consequence of the quantum effects induced by the electron-electron interaction within
the OSMP (as described above and in Ref. [H3]).

To show that an OSMP-like system can support MZM in Ref. [H5] we have studied

HSC = HK + ∆SC ∑
`

(
c†
`,↑c

†
`,↓ + H.c.

)
, (14)

where ∆SC is an on-site singlet SC pairing amplitude. The latter can be induced by
the proximity effect with a BCS superconductor, or it could be an intrinsic property of
the iron superconductors under pressure or doping. It is important to note that the co-
existence of SC and nontrivial magnetic properties is mostly impossible in single-orbital
systems. Here, the OSMP provides a unique platform in which this constraint is lifted by,
on the one hand, spatially separating such phenomena and, on the other hand, strongly
correlating them with each other.

Figure 11 shows the effect of ∆SC/W ' 0.5 on the single-particle spectral function
A(q, ω) for the two crucial phases in our study, the block- and block-spiral magnetic
orders (U/W = 1 and U/W = 2, respectively). As expected, in both cases, a finite su-
perconducting gap opens at the Fermi level εF (∼ 0.5 [eV] for U/W = 1 and ∼ 0.1 [eV]
for U/W = 2). Remarkably, an additional prominent feature appears in the block-spiral
phase: a sharply localized mode inside the gap at εF, displayed in Fig. 11(b). Such an in-
gap mode is a characteristic feature of a topological state, namely, the bulk of the system
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exhibits gapped behavior. Figure taken from Ref. [H5].

is gapped, whereas the edge of the system contains the in-gap modes. To confirm this
picture, in Fig. 11(c), we present high-resolution frequency data of the real-space local
density-of-states (LDOS) near the Fermi energy εF. As expected, for a topologically non-
trivial phase, the zero-energy modes are indeed confined to the system’s edges. It is
important to note that this phenomenon is absent for the weaker interaction U/W = 1.
Furthermore, one cannot deduce this behavior from the U → ∞ or JH → ∞ limits, where
the system has predominantly collinear AFM or FM ordering, leading again to a trivial
superconducting behavior. However, at moderate U the competing energy scales present
in the OSMP lead to the topological phase transition controlled by the electron-electron
interaction.

Let’s discuss the phase diagram of MZM. Fig. 12 depicts the Hubbard U interaction
dependence of the edge-LDOS (` = 1) in the vicinity of the Fermi level, ω ∼ εF. It is evi-
dent from the presented results that the edge-LDOS acquires a finite value quite abruptly
for U > UT

c ' 1.5. The same figure depicts the chirality correlation function 〈κ1
L/2 · κ1

`〉.
One can observe a sudden appearance of the chirality correlation exactly at UT

c , a behav-
ior similar to that of the edge LDOS. Interestingly, in the system without the pairing field
(discussed above and in Ref. [H3]), at a similar value of U ' 1.6 the block-spiral phase
is stabilized with rigidly rotating FM islands. Furthermore, since the MZMs at the edges
of the system are mutually correlated in a finite system, one should detect the sudden
increase of the entanglement. The latter can be measured by the von Neumann entangle-
ment entropy SvN(`) = −Trρ` ln ρ` (here ρ` is a reduced density matrix of the subsystem
of the size `). Results presented in Fig. 12 for the system divided into two halves, ` = L/2,
indeed indicate that this is the case.

The above results indicate that the system undergoes a topological phase transition
upon increasing the strength of the Hubbard interaction U within the OSMP with SC pair-
ing field. The transition is driven by the change in the magnetic properties of the system,
namely by inducing a finite chirality visible in the 〈κ1

` · κ1
m〉 correlation function. Further-

more, the results presented in Ref. [H5] are consistent with the appearance of the MZM
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at the topological transition. It should be noted that the presence of MZM implies uncon-
ventional triplet superconductivity [77]. The latter is an emergent phenomenon that we
also found in our setup. In Fig. 12, we present nonlocal singlet and triplet superconduct-
ing amplitudes in the function of the interaction U. That is, we present singlet ∆S and
triplet ∆T amplitudes, respectively, defined as

∆S =
3L/4

∑
`=L/4

|∆S,`| , ∆T =
3L/4

∑
`=L/4

(
|∆T0,`|+

∣∣∆T↓,`
∣∣+ ∣∣∆T↓,`

∣∣) , (15)

with

∆S,` =
〈

c†
`,↑c

†
`+1,↓ − c†

`,↓c
†
`+1,↑

〉
, ∆T0,` =

〈
c†
`,↑c

†
`+1,↓ + c†

`,↓c
†
`+1,↑

〉
,

∆T↑,` =
〈

c†
`,↑c

†
`+1,↑

〉
, ∆T↓,` =

〈
c†
`,↓c

†
`+1,↓

〉
. (16)

In view of the above results, the following rationale could explain the origin of topo-
logical properties within iron-based materials [79–83]: the competing energy scales present
in multiorbital compounds, induced by changes in the Hubbard interaction due to chem-
ical substitution or pressure, lead to exotic magnetic spin textures. Together with the su-
perconducting tendencies, the latter lead to a topologically nontrivial phases exhibiting
the MZM.

Conclusions

To summarize, the orbital-selective Mott phase is an emergent phenomenon of strongly-
correlated systems with multiorbital Fermi surface, i.e., it originates from the competition
between spin, electron, and orbital degrees of freedom. Series of publications [H1-H6]
revealed novel phenomena significantly different from the one observed in cuprates (de-
scribed by single orbital Hubbard model).
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The most prominent feature of the OSMP is the tendency to form a magnetic blocks
of various shapes and sizes, depending on filling and lattice geometry. The observed
spin structures are related to the Fermi vector 2kF of the metallic electron bands, but
spin blocks are much more sharply defined than they would be in the mere sinusoidal
structure arising from a weak-coupling Fermi-surface instability. The strongly correlated
nature of the localized spins, due to its narrow bandwidth, enhances the 2kF instability
in a manner only possible in the OSMP regime.

The excitations within OSMP also reveal features unique to the multiorbital systems.
The analysis presented above indicates that the spin spectra exhibit two modes: (i) the
acoustic mode associated with the dynamics of spin blocks and (ii) the optical band which
arises from the on-site inter-orbital spin fluctuations controlled by the Hund exchange
coupling. Furthermore, the OSMP displays exotic behavior in the electronic degrees of
freedom due to the coexistence of metallic and insulating bands. As shown above, the
electron-electron interactions drive the system into the state with parity breaking quasi-
particles and even to a nontrivial topological state with Majorana modes.

The effective model of the OSMP described above, i.e., the generalized Kondo-Heisenberg
model, allows for a more detailed study of such physics. Also, the results described here
provide motivation and theoretical guidance for crystal growers and experimentalists to
discover new iron-based chain and ladder compounds that may display the highly un-
usual properties reported above.

Bibliography

[1] E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).

[2] E. Dagotto and T. M. Rice, Science 271, 618 (1996).

[3] D. J. Scalapino, Rev. Mod. Phys. 84, 1383 (2012).

[4] R. Jördens, N. Strohmaier, K. Günter, H. Moritz, and T. Esslinger, Nature 455, 204
(2008).

[5] U. Schneider, L. Hackermüller, S. Will, Th. Best, I. Bloch, T. A. Costi, R. W. Helmes,
D. Rasch, and A. Rosch, Science 322, 1520 (2008).

[6] J. V. Porto, Science 340, 1297 (2013).

[7] R. A. Hart, P. M. Duarte, T.-L. Yang, X. Liu, T. Paiva, E. Khatami, R. T. Scalettar, N.
Trivedi, D. A. Huse, and R. G. Hulet, Nature 519, 211 (2015).

[8] P. T. Brown, D. Mitra, E. Guardado-Sanchez, R. Nourafkan, A. Reymbaut, C.-D.
Hébert, S. Bergeron, A.-M. S. Tremblay, J. Kokalj, D. A. Huse, P. Schauß, and W.
S. Bakr, Science 363, 379 (2019).

[9] J. Koepsell, J. Vijayan, P. Sompet, F. Grusdt, T. A. Hilker, E. Demler, G. Salomon, I.
Bloch, and C. Gross, Nature 572, 358 (2019).

[10] P. T. Brown, E. Guardado-Sanchez, B. M. Spar, E. W. Huang, T. P. Devereaux, and W.
S. Bakr, Nat. Phys. 16, 26 (2019).

[11] J. Vijayan, P. Sompet, G. Salomon, J. Koepsell, S. Hirthe, A. Bohrdt, F. Grusdt, I.
Bloch, and C. Gross, Science 367, 186 (2020).

[12] P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78, 17 (2006).

[13] J. M. Tranquada, G. Xu, and I. A. Zaliznyak, J. Magn. Magn. Mater 350, 148 (2014).



BIBLIOGRAPHY 26

[14] J. M. Tranquada, Handbook of High-Temperature Superconductivity: Neutron Scattering
Studies of Antiferromagnetic Correlations in Cuprates, Springer New York (2007).

[15] G. R. Stewart, Rev. Mod. Phys. 83, 1589 (2011).

[16] A. Georges, L.d. Medici, and J. Mravlje, Annu. Rev. Condens. Matter Phys. 4, 137
(2013).

[17] R. M. Fernandes and A. V. Chubukov, Rep. Prog. Phys. 80, 014503 (2017).

[18] M. Uehara, T. Nagata, J. Akimitsu, H. Takahashi, N. Mori, and K. Kinoshita, J. Phys.
Soc. Jpn. 65, 2764 (1996).

[19] D. N. Basov and A. V. Chubukov, Nat. Phys. 7, 272 (2011).

[20] M. J. P. Gingras and P. A. McClarty, Rep. Prog. Phys. 77, 056501 (2014).

[21] M. Daghofer, A. Nicholson, A. Moreo, and E. Dagotto, Phys. Rev. B 81, 014511 (2010).

[22] L. de’ Medici, S. R. Hassan, M. Capone, and X. Dai, Phys. Rev. Lett. 102, 126401
(2009).

[23] J. M. Caron, J. R. Neilson, D. C. Miller, K. Arpino, A. Llobet, and T. M. McQueen,
Phys. Rev. B 85, 180405(R) (2012).

[24] M. Yi, D. H. Lu, R. Yu, S. C. Riggs, J.-H. Chu, B. Lv, Z. K. Liu, M. Lu, Y.-T. Cui, M.
Hashimoto, S.-K. Mo, Z. Hussain, C. W. Chu, I. R. Fisher, Q. Si, and Z.-X. Shen, Phys.
Rev. Lett. 110, 067003 (2013).

[25] F. Hardy, A. E. Bohmer, D. Aoki, P. Burger, T. Wolf, P. Schweiss, R. Heid, P. Adel-
mann, Y. X. Yao, G. Kotliar, J. Schmalian, C. Meingast, Phys. Rev. Lett. 111, 027002
(2013).

[26] M. Yi, Z.-K. Liu, Y. Zhang, R. Yu, J.-X. Zhu, J. J. Lee, R. G. Moore, F. T. Schmitt, W. Li,
S. C. Riggs, J.-H. Chu, B. Lv, J. Hu, M. Hashimoto, S.-K. Mo, Z. Hussain, Z.Q. Mao,
C. W. Chu, I. R. Fisher, Q. Si, Z.-X. Shen and D. H. Lu, Nat. Comm. 6, 7777 (2014).

[27] J.-X. Zhu, R. Yu, H. Wang, L. L. Zhao, M. D. Jones, J. Dai, E. Abrahams, E. Morosan,
M. Fang, and Q. Si, Phys. Rev. Lett. 104, 216405 (2010).

[28] S. Chi, Y. Uwatoko, H. Cao, Y. Hirata, K. Hashizume, T. Aoyama, and K. Ohgushi,
Phys. Rev. Lett. 117, 047003 (2016).

[29] K. Takubo, Y. Yokoyama, H. Wadati, S. Iwasaki, T. Mizokawa, T. Boyko, R. Sutarto,
F. He, K. Hashizume, S. Imaizumi, T. Aoyama, Y. Imai, and K. Ohgushi, Phys. Rev.
B 96, 115157 (2017).

[30] P. Materne, W. Bi, J. Zhao, M. Y. Hu, M. L. Amigó, S. Seiro, S. Aswartham, B. Büchner,
and E. E. Alp, Phys. Rev. B 99, 020505(R) (2019).

[31] N. D. Patel, A. Nocera, G. Alvarez, A. Moreo, S. Johnston, and E. Dagotto, Commun.
Phys. 2, 64 (2019).

[32] L. Craco and S. Leoni, Phys. Rev. B 101, 245133 (2020).

[33] T. Yamauchi, Y. Hirata, Y. Ueda, and K. Ohgushi, Phys. Rev. Lett. 115, 246402 (2015).



BIBLIOGRAPHY 27

[34] H. Takahashi, A. Sugimoto, Y. Nambu, T. Yamauchi, Y. Hirata, T. Kawakami, M.
Avdeev, K. Matsubayashi, F. Du, C. Kawashima, H. Soeda, S. Nakano, Y. Uwatoko,
Y. Ueda, T. J. Sato, and K. Ohgushi, Nat. Mat. 14, 1008 (2015).

[35] J. Ying, H. Lei, C. Petrovic, Y. Xiao, and V. V. Struzhkin, Phys. Rev. B 95, 241109(R)
(2017).

[36] Y. Zhang, L-F. Lin, J-J. Zhang, E. Dagotto, and S. Dong, Phys. Rev. B 95, 115154 (2017).

[37] Y. Zhang, L-F. Lin, J.-J. Zhang, E. Dagotto, and S. Dong, Phys. Rev. B 97, 045119
(2018).

[38] T. Hawai, Y. Nambu, K. Ohgushi, F. Du, Y. Hirata, M. Avdeev, Y. Uwatoko, Y. Sekine,
H. Fukazawa, J. Ma, S. Chi, Y. Ueda, H. Yoshizawa, and T. J. Sato, Phys. Rev. B 91,
184416 (2015).

[39] M. Wang, M. Yi, S. Jin, H. Jiang, Y. Song, H. Luo, A. D. Christianson, C. de la Cruz,
E. Bourret-Courchesne, D.-X. Yao, D. H. Lee, and R. J. Birgeneau, Phys. Rev. B 94,
041111(R) (2016).

[40] M. Wang, S. J. Jin, Ming Yi, Yu Song, H. C. Jiang, W. L. Zhang, H. L. Sun, H. Q.
Luo, A. D. Christianson, E. Bourret-Courchesne, D. H. Lee, Dao-Xin Yao, and R. J.
Birgeneau, Phys. Rev. B 95, 060502(R) (2017).

[41] M. Mourigal, S. Wu, M. B. Stone, J. R. Neilson, J. M. Caron, T. M. McQueen, and C.
L. Broholm, Phys. Rev. Lett. 115, 047401 (2015).

[42] J. M. Caron, J. R. Neilson, D. C. Miller, A. Llobet, and T. M. McQueen, Phys. Rev. B
84, 180409(R) (2011).

[43] Y. Nambu, K. Ohgushi, S. Suzuki, F. Du, M. Avdeev, Y. Uwatoko, K. Munakata, H.
Fukazawa, S. Chi, Y. Ueda, and T. J. Sato, Phys. Rev. B 85, 064413 (2012).

[44] S. Wu, J. Yin, T. Smart, A. Acharya, C. L. Bull, N. P. Funnell, T. R. Forrest, G. Simutis,
R. Khasanov, S. K. Lewin, M. Wang, B. A. Frandsen, R. Jeanloz, and R. J. Birgeneau,
Phys. Rev. B 100, 214511 (2019).

[45] M. Wang, C. Fang, D.-X. Yao, G. Tan, L. W. Harriger, Y. Song, T. Netherton, C. Zhang,
M. Wang, M. B. Stone, W. Tian, J. Hu, and P. Dai, Nat. Comm. 2, 580 (2011).

[46] B. Wei, H. Qing-Zhen, C. Gen-Fu, M. A. Green, W. Du-Ming, H. Jun-Bao, and Q.
Yi-Ming, Chin. Phys. Lett. 28, 086104 (2011).

[47] Y.-Z. You, H. Yao, and D.-H. Lee, Phys. Rev. B 84, 020406(R) (2011).

[48] R. Yu, P. Goswami, and Q. Si, Phys. Rev. B 84, 094451 (2011).

[49] J. Guo, S. Jin, G. Wang, S. Wang, K. Zhu, T. Zhou, M. He, and X. Chen Phys. Rev. B
82, 180520(R) (2010).

[50] F. Ye, S. Chi, Wei Bao, X. F. Wang, J. J. Ying, X. H. Chen, H. D. Wang, C. H. Dong, and
M. Fang, Phys. Rev. Lett. 107, 137003 (2011).

[51] J. K. Glasbrenner, I. I. Mazin, Harald O. Jeschke, P. J. Hirschfeld, R. M. Fernandes,
and R. Valentí , Nat. Phys. 11, 953 (2015).

[52] H. Ruiz, Y. Wang, B. Moritz, A. Baum, R. Hackl, and T. P. Devereaux, Phys. Rev. B
99, 125130 (2019).



BIBLIOGRAPHY 28

[53] B. Pandey, L.-F. Lin, R. Soni, N. Kaushal, J. Herbrych, G. Alvarez, and E. Dagotto,
Phys. Rev. B 102, 035149 (2020).

[54] L.-F. Lin, Y. Zhang, G. Alvarez, A. Moreo, and E. Dagotto, Phys. Rev. Lett. 127,
077204 (2021).

[55] Y. Zhang, L-F. Lin, A. Moreo, S. Dong, and E. Dagotto, Phys. Rev. B 100, 184419
(2019).

[56] Y. Zhang, L-F. Lin, A. Moreo, S. Dong, and E. Dagotto, Phys. Rev. B 101, 144417
(2020).

[57] Q. Luo, A. Nicholson, J. Riera, D.-X. Yao, A. Moreo, and E. Dagotto, Phys. Rev. B 84,
140506(R) (2011)

[58] Q. Luo and E. Dagotto, Phys. Rev. B 89, 045115 (2014).

[59] Q. Luo, A. Nicholson, J. Rincón, S. Liang, J. Riera, G. Alvarez, L. Wang, W. Ku, G. D.
Samolyuk, A. Moreo, and E. Dagotto, Phys. Rev. B 87, 024404 (2013).

[60] W.-G. Yin, C.-H. Lin, and W. Ku, Phys. Rev. B 86, 081106(R) (2012).

[61] S. Dong, J.-M. Liu, and E. Dagotto, Phys. Rev. Lett. 113, 187204 (2014).
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Other scientific and research achievements

3.1 JCR publication list

Total number of publications indexed in Journal Citation Reports: 37

• Annalen der Physik (2020 IF: 3.276) ×1

• Differential Equations and Dynamical Systems (2020 IF: 1.260) ×1

• Nature Communications (2020 IF: 14.920) ×2

• Physical Review A (2020 IF: 3.140) ×1

• Physical Review B (2020 IF: 4.036) ×25

• Physical Review E (2020 IF: 2.529) ×1

• Physical Review Letters (2020 IF: 9.161) ×4

• Physical Review Research (2020 IF: 0.740) ×1

• Proceedings of the National Academy of Sciences of the USA (2020 IF: 11.200) ×1

List of publications not included in the achievement described in Chapter 2:

A31 Magnetization dynamics fingerprints of an excitonic condensate t4
2g magnet

N. Kaushal, J. Herbrych, G. Alvarez, and E. Dagotto,
Phys. Rev. B 104, 235135 (2021).

A30 Coexistence of diffusive and ballistic transport in integrable quantum lattice models
P. Prelovšek, M. Mierzejewski, and J. Herbrych,
Phys. Rev. B 104, 115163 (2021).

A29 Diffusion in the Anderson model in higher dimensions,
P. Prelovšek and J. Herbrych,
Phys. Rev. B 103, L241107 (2021).

A28 Ballistic transport in integrable lattice models with degenerate spectra,
M. Mierzejewski, J. Herbrych, and P. Prelovšek,
Phys. Rev. B 103, 235115 (2021).

A27 Resistivity and its fluctuations in disordered many-body systems: from chains to planes,
M. Mierzejewski, M. Środa, J. Herbrych, and P. Prelovšek,
Phys. Rev. B 102, 161111(R) (2020).
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A26 Prediction of exotic magnetic states in the alkali metal quasi-one-dimensional iron selenide
compound Na2FeSe2,
B. Pandey, L.-F. Lin, R. Soni, N. Kaushal, J. Herbrych, G. Alvarez, and E. Dagotto,
Phys. Rev. B 102, 035149 (2020).

A25 Vanishing Wilson ratio as the hallmark of quantum spin-liquid models,
P. Prelovšek, K. Morita, T. Tohyama, and J. Herbrych,
Phys. Rev. Research 2, 023024 (2020).

A24 Inelastic neutron scattering study of the anisotropic S = 1 spin chain [Ni(HF2)(3-Clpyridine)4]BF4,
D. M. Pajerowski, J. L. Manson, J. Herbrych, J. Bendix, A. P. Podlesnyak, J. M. Cain,
and M. W. Meisel,
Phys. Rev. B 101, 094431 (2020).

A23 Charge-density-wave melting in the one-dimensional Holstein model,
J. Stolpp, J. Herbrych, F. Dorfner, E. Dagotto, and F. Heidrich-Meisner,
Phys. Rev. B 101, 035134 (2020).

A22 Magnetization and energy dynamics in spin ladders: Evidence of diffusion in time, fre-
quency, position, and momentum,
J. Richter, F. Jin, L. Knipschild, J. Herbrych, H. De Raedt, K. Michielsen, J. Gemmer,
and R. Steinigeweg,
Phys. Rev. B 99, 144422 (2019).

A21 Sudden removal of a static force in a disordered system: Induced dynamics, thermalization,
and transport,
J. Richter, J. Herbrych, and R. Steinigeweg,
Phys. Rev. B 98, 134302 (2018).

A20 Non-equilibrium mass transport in the Fermi-Hubbard model,
S. Scherg, T. Kohlert, J. Herbrych, J. Stolpp, P. Bordia, U. Schneider, F. Heidrich-
Meisner, I. Bloch, and M. Aidelsburger,
Phys. Rev. Lett. 121, 130402 (2018).

A19 Density-matrix renormalization group study of a three-orbital Hubbard model with spin-
orbit coupling in one dimension,
N. Kaushal, J. Herbrych, A. Nocera, G. Alvarez, A. Moreo, F. A. Reboredo, and E.
Dagotto,
Phys. Rev. B 96, 155111 (2017).

A18 Efficiency of fermionic quantum distillation,
J. Herbrych, A. E. Feiguin, E. Dagotto, and F. Heidrich-Meisner,
Phys. Rev. A 96, 033617 (2017).

A17 Possible bicollinear nematic state with monoclinic lattice distortions in iron telluride com-
pounds,
C. B. Bishop, J. Herbrych, E. Dagotto, and A. Moreo,
Phys. Rev. B 96, 035144 (2017).

A16 Self-consistent approach to many-body localization and subdiffusion,
P. Prelovšek and J. Herbrych,
Phys. Rev. B 96, 035130 (2017).

A15 Dynamics of locally coupled oscillators with next-nearest-neighbor interaction,
J. Herbrych, A. G. Chazirakis, N. Christakis, and J. J. P. Veerman,
Differ. Equ. & Dyn. Syst., 29, 487 (2021).
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A14 Density correlations and transport in models of many-body localization,
P. Prelovšek, M. Mierzejewski, O. Barišić, and J. Herbrych,
Ann. Phys. (Berlin) 529, 1600362 (2017).

A13 Interaction-induced weakening of localization in few-particle disordered Heisenberg chains,
D. Schmidtke, R. Steinigeweg, J. Herbrych, and J. Gemmer,
Phys. Rev. B 95, 134201 (2017).

A12 Effective realization of random magnetic fields in compounds with large single-ion anisotropy,
J. Herbrych and J. Kokalj,
Phys. Rev. B 95, 125129 (2017).

A11 Universal dynamics of density correlations at the transition to many-body localized state,
M. Mierzejewski, J. Herbrych, and P. Prelovšek,
Phys. Rev. B 94, 224207 (2016).

A10 Typicality approach to the optical conductivity in thermal and many-body localized phases,
R. Steinigeweg, J. Herbrych, F. Pollmann, and W. Brenig,
Phys. Rev. B 94, 180401(R) (2016).

A9 Light induced magnetization in a spin S = 1 easy-plane antiferromagnetic chain,
J. Herbrych and X. Zotos,
Phys. Rev. B 93, 134412 (2016).

A8 Heat conductivity of the Heisenberg spin-1/2 ladder: From weak to strong breaking of
integrability,
R. Steinigeweg, J. Herbrych, X. Zotos, and W. Brenig,
Phys. Rev. Lett. 116, 017202 (2016).

A7 Antiferromagnetic order in weakly coupled random spin chains,
J. Kokalj, J. Herbrych, A. Zheludev, and P. Prelovšek,
Phys. Rev. B 91, 155147 (2015).

A6 Effective S = 1/2 description of the S = 1 chain with strong easy plane anisotropy,
C. Psaroudaki, J. Herbrych, J. Karadamoglou, P. Prelovšek, X. Zotos, and N. Papan-
icolaou,
Phys. Rev. B 89, 224418 (2014).

Publications before obtaining the PhD title:

A5 Local spin relaxation within the random Heisenberg chain,
J. Herbrych, J. Kokalj, and P. Prelovšek,
Phys. Rev. Lett. 111, 147203 (2013).

A4 Eigenstate thermalization in isolated spin-chain systems,
R. Steinigeweg, J. Herbrych, and P. Prelovšek,
Phys. Rev. E 87, 012118 (2013).

A3 Spin hydrodynamics in the S = 1/2 anisotropic Heisenberg chain,
J. Herbrych, R. Steinigeweg, and P. Prelovšek,
Phys. Rev. B 86, 115106 (2012).

A2 Coexistence of anomalous and normal diffusion in integrable Mott insulators,
R. Steinigeweg, J. Herbrych, P. Prelovšek, and M. Mierzejewski,
Phys. Rev. B 85, 214409 (2012).
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A1 Finite-temperature Drude weight within the anisotropic Heisenberg chain,
J. Herbrych, P. Prelovšek, and X. Zotos,
Phys. Rev. B 84, 155125 (2011).

Brief description

Transport in low-dimensional quantum systems:
Ref. [A1-A9,A18,A20,A22-A24,A28,A30].
Transport in many-body systems of interacting fermions established several novel - en-
tirely quantum - aspects going well beyond usual weak-scattering or Boltzmann-type
approaches. Such behavior is especially pronounced in the system with reduced di-
mensionality (e.g., in 1D chains and quasi-1D ladders). Prominent fundamental models
and an experimentally relevant example of such a phenomenon are the one-dimensional
single-orbital Hubbard and antiferromagnetic Heisenberg models. In a series of publi-
cations, I investigated quantities related to the transport properties (e.g., via the linear
response theory) of various low-dimensional strongly-correlated systems, e.g., the dy-
namical optical conductivity σ(ω), the dynamical structure factor S(q, ω), or the diffu-
sion constant. Furthermore, I also investigated related questions in the non-equilibrium
setups, i.e., as the response of the system after the quench.

Many-body localization:
Ref. [A10-A14,A16,A21,A27,A29].
The phenomenon of many-body localization (MBL) deals with a challenging interplay of
the disorder and interaction in many-body quantum systems, opening also the funda-
mental questions on the statistical description of such systems. It is suggested by numer-
ous numerical studies that prototype 1D models on increasing disorder reveal the tran-
sition/crossover from an ergodic behavior to a localized regime characterized by several
criteria: change in level statistics and spectral properties, slow growth of entanglement
entropy, vanishing dc conductivities, and transport, nonergodic behavior of local corre-
lations and the absence of thermalization, the latter being also the experimental probe
in cold-atom systems. My work on this topic focuses on the properties of the dynamical
correlations within a “standard model of MBL”, i.e., 1D Heisenberg model of interacting
spins or, equivalently via Jordan-Wigner transformation 1D model of interacting spinless
fermions.

Study of multiorbital models:
Ref. [A17,A19,A26,A31].
My interest in the physics of multiorbital goes beyond the one described in Chapter 2 as
a “scientific achievement”. E.g., I studied the nematic order due to the monoclinic lattice
distortions found in two-dimensional iron telluride. Also, I got interested in the effect of
the spin-orbit coupling within the three-orbital Hubbard model, relevant for ruthenates
or iridates. Finally, via the combination of density functional theory and density-matrix
renormalization group calculations, I look for novel low-dimensional materials for which
block orbital-selective Mott phase is relevant.

3.2 Bibliometric information

• Published articles according to Web of Science: 37
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• Citation number according to Web of Science: 576 (490 without self-citations)

• Hirsch index according to Web of Science: 13

• Average citation per publication on the base of Web of Science: 15.57

• Total impact factor on the base of Web of Science: 241.596

3.3 Research projects

• Principal Investigator in OPUS 18 project entitled Magnetic properties of strongly-
correlated multiorbital systems founded by the National Science Centre (OPUS 18
2019/35/B/ST3/01207).
The project is carried out at the Faculty of Fundamental Problems of Technology of
Wrocław University of Science and Technology (2020-2022).
Awarded founds: 198 600 zł.

• Principal Investigator in Polish Returns project founded by the Polish National Agency
for Academic Exchange (PPN/PPO/2018/1/00035).
The project is carried out at the Faculty of Fundamental Problems of Technology of
Wrocław University of Science and Technology (2019-2022).
Awarded founds: 1 125 000 zł.

3.4 Participation in European programs

• Participation in Crete Center for Quantum Complexity and Nanotechnology project founded
by the EU Seventh Framework Programme (EU FP7 PEOPLE-ITN-2008 238475 ).
The project was carried out in 2013-2016 at the University of Crete (Heraklion,
Greece).
Project Leader: Prof. Dr. Xenophon Zotos.
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• Participation in Low-dimensional quantum magnets for thermal management project
founded by the EU Marie Sklodowska-Curie Action (EU FP7 PEOPLE-ITN-2008
238475).
The project was carried out in 2010-2013 at the Jožef Stefan Institute, Slovenia (Ljubl-
jana).
Project Leader: Prof. Dr. Peter Prelov̌sek.

3.5 Scientific talks

Oral presentations

• Nonequilibrium Quantum Workshop (Krvavec, Slovenia)
December 2021

• APS March Meeting 2021 (virtual meeting)
March 2021

• Nonequilibrium Quantum Workshop (Krvavec, Slovenia)
December 2019

• Electron Correlation in Superconductors and Nanostructures (Odesa, Ukraine)
October 2019

• International Workshop Korrelationstage (Dresden, Germany)
September 2019

• APS March Meeting 2019 (Boston, USA)
Marzec 2019

• 42nd International Conference of Theoretical Physics (Ustroń, Poland)
September 2018

• APS March Meeting 2018 (Los Angeles, USA)
March 2018

• Nonequilibrium Quantum Workshop (Krvavec, Slovenia)
December 2017

• International Workshop Korrelationstage (Dresden, Germany)
September 2017

• 40th International Conference of Theoretical Physics (Ustroń, Poland)
September 2016

• Quantum Magnets 2015 (Kolymbari, Greece)
September 2015

• Quantum Magnets 2013 (Kolymbari, Greece)
September 2013

• 36th International Conference of Theoretical Physics (Ustroń, Poland)
September 2012
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Poster presentation

• Quantum Spin Dynamics (Dresden, Germany)
September 2014

• Quantum Magnets 2013 (Kolymbari, Greece)
September 2013

• 36th International Conference of Theoretical Physics (Ustroń, Poland)
September 2012

• Dynamics and transport in quantum magnets, LOTHERM Summer School (Ljubl-
jana, Slovenia)
June 2011

• School on “Strongly correlated electronic systems, beyond Fermi liquid theory”
(Les Houches, France)
April 2011

Invited talks at the scientific institutions

• Polish Academy of Science - Institute of Physics (Warsaw, Poland)
March 2021, November 2021

• Jožef Stefan Institute (Ljubljana, Slovenia)
March 2014, March 2015, June 2016, September 2021

• Maria Curie-Skłodowska University Lublin (Lublin, Poland)
May 2021

• University of Warsaw (Warsaw, Poland)
November 2020

• Osnabrück University (Osnabrück, Germany)
September 2014, June 2015, June 2016, November 2020

• University of Göttingen (Göttingen, Germany)
July 2019

• Stuttgart University (Stuttgart, Germany)
June 2019

• Ludwig Maximilian University of Munich (Munich, Germany)
December 2017

• Wrocław University of Science and Technology (Wrocław, Poland)
December 2017

• Joint Institute for Advanced Materials (Knoxville, USA)
November 2017

• Technical University of Braunschweig (Braunschweig, Germany)
May 2014

3.6 Membership in scientific societies

• American Physical Society
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3.7 Refereeing in international journals

• Physical Review B (American Physical Society) - 4 reviews

• Physical Review Letters (American Physical Society) - 2 reviews

• Physical Review Research (American Physical Society) - 1 review

• New Journal of Physics (IOP Publishing) - 1 review

• Annalen der Physik (Wiley-VCH) - 1 review

3.8 Scientific collaborations

List of the most important scientific collaborations:

• Jožef Stefan Institute (Ljubljana, Slovenia)
Prof. Dr. Peter Prelovsek, Dr. Jure Kokajl, Dr. Jernej Mravlje

• University of Crete (Heraklion, Greece)
Prof. Dr. Xenophon Zotos

• University of Tennessee (Knoxville, USA)
Prof. Dr. Elbio Dagotto, Prof. Dr. Adriana Moreo

• Oak Ridge National Laboratory (Oak Ridge, USA)
Dr. Gonzalo Alvarez, Dr. Nitin Kaushal, Dr. Daniel Pajerowski

• Osnabrück University (Osnabrück, Germany)
Prof. Dr. Robin Steinigeweg

• University of Göttingen (Göttingen, Germany)
Prof. Dr. Fabian Heidrich-Meisner, Dr. Salvatore R. Manmana

• California Institute of Technology (Pasadena, USA)
Dr. Christina Psaroudaki

• University of British Columbia (Vancouver, Canada)
Dr. Alberto Nocera

• University of Warsaw (Warszawa, Poland)
Dr. hab. Krzysztof Wohlfeld

• Wrocław University of Science and Technology (Wrocław, Poland)
Prof. Dr. hab. Marcin Mierzejewski
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Didactic achievements and administrative activity

4.1 Didactic activity

2020/2021 Models of strongly correlated systems
Lecture for 3rd year of MSc studies (Polish language)
Wrocław University of Science and Technology (Wrocław, Poland)

2020/2021 Numerical methods for quantum systems
Laboratory for 1st year of MSc studies (Polish language)
Wrocław University of Science and Technology (Wrocław, Poland)

2020/2021 Statistical Physics
Laboratory for 1st year of MSc studies (English language)
Wrocław University of Science and Technology (Wrocław, Poland)

2019/2020 Models of strongly correlated systems
Lecture for 3rd year of MSc studies (Polish language)
Wrocław University of Science and Technology (Wrocław, Poland)

2019/2020 Numerical methods for quantum systems
Laboratory for 1st year of MSc studies (Polish language)
Wrocław University of Science and Technology (Wrocław, Poland)

4.2 Scientific supervision of students and PhD students

• Leader of the research group carrying out research within the Polish Returns project
founded by the Polish National Agency for Academic Exchange (one contractor)
and the Magnetic properties of strongly correlated multi-orbital systems project founded
by the National Science Center (two contractors).

• Secondary supervisor in one doctoral thesis. The topic of the dissertation: “Elec-
tronic and magnetic properties of low-dimensional strongly correlated multiorbital
systems”.

• Supervisor of 2 master’s theses.

• Supervisor of 2 diploma theses.

• Tutor of the individual course of study of 2 students.

4.3 Administrative activity

• Member of the faculty council of the Faculty of Fundamental Problems of Technol-
ogy of Wrocław University of Science and Technology.
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• Member of the didactic committee for “Quantum Engineering” studies at the Fac-
ulty of Fundamental Problems of Technology of Wrocław University of Science and
Technology.

• Supervisor of the scientific club “Nabla” at the Faculty of Fundamental Problems
of Technology of Wrocław University of Science and Technology (2020-2021).

• Participation in committees for master’s and diploma theses defense.
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