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In the above publications new geometric methods in Lagrangian and Hamiltonian for-
malisms of mechanics and field theories have been proposed. Following Tulczyjew ideas
of a variational calculus, we have constructed generalizations of the classical Tulczyjew
triple that can be used for a simple and consistent description of many different systems:
with or without constraints, with regular or singular Lagrangians, reduced with respect
to symmetries, etc.

The main advantage of our approach is the completeness of the theory. We do not
concentrate on the Euler-Lagrange equations as critical points of an action functional,
but we perform also nontrivial variations on the boundary, from where we get the infor-
mation about momenta. We construct phase spaces and phase dynamics. The systematic
approach to the Lagrangian formalism leads at the same time to a deeper understanding
of the Hamiltonian formalism for various types of systems.

In our works concerning analytical mechanics we develop new tools associated with the

concept of a Lie algebroid and its more general versions. Mathematical structures needed
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in the Lagrangian and Hamiltonian formulations of mechanics can be understood much
better in this framework. The most important objects in this picture turned out to be
double structures such as double vector bundles, double vector-affine bundles, and finally
double affine bundles. We believe that the concept of the affine duality can be used also
in a future work concerning a Lagrangian description of a field theory with Lagrangians
depending on jets of higher order.

Main results

1. THE TULCZYJEW TRIPLE IN ANALYTICAL MECHANICS

In analytical mechanics there are two commonly accepted formalisms: Lagrangian and
Hamiltonian [1]. In the Hamiltonian formalism we derive phase equations, i.e., differential
equations for curves in the space of momenta of our system. The Lagrangian formalism,
in the version introduced by Klein [19], is used to derive the Euler-Lagrange equations
without the use of the variational calculus by means of purely geometric tools such as
canonical structures on tangent and cotangent bundles.

Let @ denote the differential manifold of configurations of the system. If there are no
constraints, then the tangent bundle T(Q is the space of velocities, while the cotangent
bundle T*(Q is the space of momenta or the the phase space. The Hamiltonian formalism
is associated with the phase space, and the Lagrangian formalism with the velocity space.
In the following, 7o will denote the canonical projection 7o : TQ — @ that assigns the
point ¢ € @ to the vector v € T,Q, mg : T*Q — Q is the corresponding projection of
the cotangent bundle. The cotangent bundle is canonically a symplectic manifold. The
canonical symplectic form will be denoted by wg.

The Euler-Lagrange equation for a systems with a first-order Lagrangian, i.e., a La-
grangian being a function on the velocity space, is a second-order differential equation.
It can be represented as a subset in the space T?Q of tangent elements of the second
order. For practical reasons we often prefer to treat second-order differential equations
as first-order differential equations of certain type on the velocity space. From the point
of view of geometry it means that T2Q is embedded in the iterated tangent bundle TTQ).
Elements of T2(Q) are identified with those vectors v € TTQ which satisfy the condition
Trg(v) = Trg(v). Such vectors are called holonomic. We usually expect that the Euler-
Lagrange equation will be represented by a vector field on TQ with values in the space of
holonomic vectors.

The traditional understanding of the Lagrangian formalism in analytical mechanics is
the method of obtaining the Euler-Lagrange equation for a given Lagrangian by using
canonical structures of the tangent and cotangent bundle. Any function L : TQ) — R
defines a map A : TQ — T*Q given by the differential dL restricted to the fibre of 7. We
observe that vectors tangent to the fibre of 7 can be identified with elements of the fibre
itself, because every fibre is a vector space. When we restrict dL(v,) to vectors tangent
to the fibre at v,, we get an element of T7() that we denote with A(vg). The map A is
called the Legendre map or sometimes the Legendre transformation. For us, however, the
Legendre transformation will be the process of passing from the Lagrangian to the Hamil-
tonian formalism that is more complicated that defining just one map. The traditional
Lagrangian formalism can be used when the above Legendre map is a local diffeomor-
phism. In such a case we call the Lagrangian regular. The more comfortable situation is
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when \ is a global diffeomorphism, i.e., in the case of a hyperregular Lagrangian. Using
the map A, we define a 2-form

W, = /\*WQ.

If the Lagrangian is regular, then wy, is a symplectic form that can be used to obtain Hamil-
tonian vector fields from functions on TQ. For the function E(v) = (A(v),v) — L(v), we
get the vector field X which is the vector field representing the Euler-Lagrange equation.
One can check that Xy takes values in the space of holonomic vectors. It is usually done
by means of the vertical endomorphism S : TTQ — TTQ which assigns to any vector X,
tangent to TQ at v the vertical lift to the point v of the tangent projection T7g(X,). A
vector field X on T(Q represents a second-order differential equation if S(X(v)) = V(v),
where V(v) is the value of the Liouville (Euler) vector field at v, i.e., the vertical lift of v to
the point v. The vertical endomorphism S and the Liouville vector field V are canonical
elements of the structure of TQ. The traditional Lagrangian formalism works well only
for regular Lagrangians. Another disadvantage is that this cannot be easily generalized
to more advanced setting, as e.g. Lie algebroids. There are also serious complications in
the case of constraints.

By the Hamiltonian formalism we mean deriving the phase equation from a function
on the phase space called the Hamiltonian function. The phase equation is given by
the Hamiltonian vector field Xy obtained from H by means of the canonical symplectic
structure of T*@. In the case of a hyperregular Lagrangian, we can get the Hamiltonian
function from the energy function E by the composition with A\™': H(p) = E(A~*(p)).
In such a case one can show that \,Xg = Xpy. The traditional Lagrangian formulation
of mechanics is therefore equivalent to the Hamiltonian formulation if the Lagrangian
function is hyperregular.

It is difficult to use the above traditional theories in the case of a constrained system
or a system with a singular Lagrangian. Note that even such a simple mechanical system
as a free particle in the Minkowski space-time is described by a singular Lagrangian. We
obtain also serious difficulties trying to include external forces into the theory.

An alternative approach to Lagrangian and Hamiltonian mechanics was proposed by
W. M. Tulczyjew and published in a series of papers [27, 30, 31, 32, 33, 34, 35, 36, 37| and
the book [38]. The Tulczyjew formulation is elegant, simple, and very general. It can be
easily used for generalizations to the algebroid setting. All the concepts and constructions
used in the Tulczyjew formulation of mechanics come from the variational calculus, more
precisely from the variational calculus of statics. Similar constructions for dynamics and
field theories can also be used but they need a proper interpretation. In the following, we
present only those elements of the Tulczyjew theory which will be needed for our purposes.

Let us concentrate on the simplest case of autonomous analytical mechanics. The phase
space (the space of momenta) is the cotangent bundle T*@ of the configuration manifold
Q. The space of velocities T(Q is in this case called the space of infinitesimal configurations.
The content of both, the Lagrangian and Hamiltonian formalism, depends on obtaining
phase equations from a Lagrangian or a Hamiltonian. Phase equations are differential
equations for curves in the phase space. The most important tool is a certain diagram
called the Tulczyjew tripe. In this diagram one can find encoded the complete geometric
structure of the tangent and the cotangent bundle. In a simplified version, the diagram
reads as

(1) TT Q<2 TTQ 2. 770 .
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The right-hand side of the triple is related to the Lagrangian formalism. The map ag is
the map dual to the canonical involution kg : TTQ — TTQ which is an isomorphism of
the two different vector bundle structures, T7g and 71¢, existing in TTQ. Both spaces,
T*TQ and TT*Q, are double vector bundles that means that they have two ‘compatible’
vector bundle structures [28, 20, 14], just like TTQ. The map v is a morphism of double
vector bundles. Both spaces carry canonical symplectic structures. On T*T(Q we have
wrg as on any cotangent bundle. On TT*Q the symplectic structure is lifted from T*Q),
i.e., it is drwg. The map ay is additionally a symplectomorphism.

The left-hand side of the triple is related to the Hamiltonian formulation. The map g
comes from the canonical symplectic form wg, precisely, fg(v) = w(v,-). The map fq is
a diffeomorphism, a morphism of double vector bundles, and a symplectomorphism. The
Tulczyjew triple with all three double vector bundle structures reads as

2) TT*Q al TTQ g T*TQ

g TLV /
T*Q £ id T*Q id T7TQ T*Q T™Q
TQ \ TQ \ TQ
id TQ id TQ
7 \ y \
id Q id

A mechanical system is described by a first-order differential equation on the phase
space. The equation can be given by a vector field, but as well it can have an implicit
form, i.e., it can be given by a subset of TT*@Q not being the image of a vector field. Such a
subset will be called the phase dynamics and denoted D. In many cases, D is a Lagrangian
submanifold with respect to the symplectic structure dywy,. In the simplest case, if the
system is described by a Lagrangian L : TQ) — R and there are no constraints, the
phase dynamics is D = aél(dL(TQ)), i.e., it is an inverse image by a of the Lagrangian
submanifold N, = dL(TQ) generated in T*T(Q by the Lagrangian. One should stress that
it is not important here if the Lagrangian is regular or not.

The same dynamics can be generated in the Hamiltonian way as the inverse image by
Bgq of a certain Lagrangian submanifold Ny C T*T*Q. If D is not an image of a vector
field, then Np is not an image of a differential of any Hamiltonian. In such a case we
need a more complicated generating object than just one function on the phase space. It
can be a function on a submanifold or a family of functions (the so called Morse family).
There exists always a particular family of functions generating Ny, namely

Q

h:TQ %o TQ = R, h(p,v) = (p,v) — L(v).

Functions in the above family are parameterized by velocities. For some Lagrangians this
generating family can be simplified. In [41] one can find examples of physical systems
with singular Lagrangians for which the correct Hamiltonian description was found. The
dynamics D C TT*Q can be used for generating the Euler-Lagrange equation as well.
The Euler-Lagrange equations are here second-order equations for curves in the manifold
Q. The geometric representation of the Euler Lagrange equation is a subset E; C T2Q.



Denoting with T?7q the canonical projection T?7g : T2T*Q — T2Q, we can write
E; = T’no(PD),

where PD = TDNT?T*Q . The Lagrangian formulation of analytical mechanics proposed
by Tulczyjew is not only more general than the traditional one, but also more elegant and
simpler. It is based on well-defined geometrical ideas that come from variational calculus.
These ideas make it possible to construct several generalizations of the theory.

The main content of my postdoctoral thesis are constructions of the Tulczyjew triple
in situations more general than described above.

For instance, in paper (1) we construct the Tulczyjew triple for analytical mechan-
ics on algebroids, while in paper (2) we discuss the variational calculus associated with
that triple. Analyzing the variational approach, we find an appropriate definition and
description of systems with different types of constraints.

It happens in many situations in classical mechanics that the affine structures are
needed to achieve the frame-independence of the theory. This is the case e.g. of one
particle moving in the Newtonian space-time. In paper (2) we construct the affine version
of the Tulczyjew triple. For, we need an affine version of differential geometry where,
instead of functions on a manifold, sections of one-dimensional affine bundles are used.

In paper (5) we define a notion of a Dirac algebroid as a linear variant of a Dirac
structure. This concept is then used to construct the Tulezyjew triple that can be used in
description of a very broad class of systems. The point is that within the same formalism
we can describe unconstrained systems and systems with nonholonomic constraints.

The papers (4) and (6) are devoted to the construction of the Tulczyjew triple in field
theories. In (4) we present the simple case where fields are just mappings from R" to a
manifold M. In (6) we describe the general situation of fields being sections of an arbitrary
fibration. In the general case the affine framework is essential. The results contained in
papers (1)-(6) will be presented in a more detail.

2. LAGRANGIAN REDUCTIONS — MECHANICS ON ALGEBROIDS

In [46] Weinstein posed the problem of finding a formulation of analytical mechanics
(i.e., of deriving the Euler-Lagrange equations) in the case when Lagrangian is a func-
tion on a Lie algebroid. Such a formulation is needed because reductions with respect
to symmetries usually lead us out of the framework of the tangent bundle. This is a
Lagrangian version of the reduction of Hamiltonian systems that leads to non-symplectic
Poisson brackets. A widely known example of such a situation is the mechanics of a rigid
body. The configuration space of a rigid body is SO(3) group. Since the free Lagrangian
L : TSO(3) — R does not depend on the configuration, after a reduction we deal with a
system on the Lie algebra so0(3) of the group, a simple example of a Lie algebroid.

According to the traditional presentation, a Lie algebroid is a vector bundle 7 : E — M
equipped with a Lie bracket [-, -] on the space of its sections. There is also a vector bundle
morphism p : E — TM covering the identity on M, called the anchor, which satisfies

(X, fY] = fIX, Y]+ p(X)(f)Y

for all sections X, Y of the bundle 7 and any smooth function f on M. The canonical
example of a Lie algebroid is of course the tangent bundle TM with the Lie bracket of
vector fields and the identity map as the anchor. Another example is a Lie algebra g over
a one-point manifold with the constant map equal to zero as the anchor. The example
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known in the gauge theory is the so called Atiyah algebroid associated with the principal
fibration.

The problem posed by Weinstein (and to some extent by Liebermann [21]) was then
studied by many mathematicians and physicists. There are for example numerous papers
by Martinez [23, 24, 25], where an interesting version of Lagrangian mechanics on Lie
algebroids is proposed. This version is based on the Klein method and therefore it uses
more complicated geometrical structures. Instead of the original Lie algebroid and its
dual bundle, one has to use prolongations of both bundles. The reason is that the Klein
formalism uses the vertical endomorphism S which is not present on an arbitrary Lie
algebroid.

In the paper [15] one can find an alternative definition of a Lie algebroid and its genera-
lization called a general algebroid. This idea is based on the observation that the structure
of a Lie algebroid on a bundle E can be encoded in a particular double vector bundle
morphism ¢ : T*E — TE* over the identity on E*. The diagram for e reads

T*E d TE"
Y - N
Tz E ”/ T™
B id/ B /
M = M

In the above diagram the map p is the anchor map. It is well known that if there is a Lie
algebroid structure on a bundle 7 : E — M, then on the dual bundle 7 : E* — M there
is a uniquely defined linear Poisson structure A. Using the alternative definition of a Lie
algebroid, we obtain the Poisson structure composing ¢ with the canonical isomorphism
Rpg : T*E* — TE*. The composition is a map A = ¢ o Rp corresponding to A. Any
morphism e of double vector bundles T*E and TE* over the identity on E* is then
viewed as an algebroid structure on E. The algebroid is called skew-symmetric if the
corresponding A comes from a bivector field. If additionally the bivector field is Poisson,
we actually deal with a Lie algebroid. It means that in this new language an algebroid
structure is encoded not in a bracket of sections but in a double vector bundle morphism.
In the example of the tangent bundle TM this morphism is a};, and the corresponding
Poisson structure is the canonical one coming form the symplectic structure wy, or from
B,/ Both mappings were crucial for the Lagrangian and Hamiltonian formalisms in
the Tulezyjew’s approach. The paper (1) is devoted to the Lagrangian and Hamiltonian



formalisms on a general algebroid. The Tulczyjew triple we have obtained reads as

(3) T*E* g TE* 2 T°F
/ N AN
I 7 e /
NSNS N

A Lagrangian L : E — R generates the Lagrangian submanifold N;, of T*E. In uncon-
strained case the submanifold Ny, is an image of the differential of L, N = dL(E). The
phase dynamics D = ¢(Ny) C TE* is a differential inclusion, i.e., an implicit differential
equation for phase curves. The phase curves are now curves in E*. Like in the case of
the tangent bundle, any Lagrangian defines the Legendre map that associates momenta
to infinitesimal configurations,

A E— E* Xe)=T'r(dL(e)) = 1=(e(dL(e))) .
The Legendre map is a vertical differential of the Lagrangian.

The Hamiltonian side of the Tulczyjew triple is based on the map A. The dynamics D
is obtained from a function H : E* — R as the image of Ny = dH(E*) with respect to
A.. The dynamics is therefore the image of a Hamiltonian vector field of H created by
means of A.. We can ask if, for a given dynamics, there exists a Hamiltonian description.
This means that we ask if the dynamics is the image of a Hamiltonian vector field.

Like in the classical case, we can generalize the concept of the Hamiltonian description
of phase dynamics by looking for more general generating object than just one function
on E*. There is, however, much more freedom in choosing the generating object because
of the possible degeneracy of A. We have still the following (Lemma 1, p. 569).

Theorem 1. If the Lagrangian L is hyperregular, then the Lagrange submanifold N, =
dL(E) in T*FE corresponds, under the canonical isomorphism R g, to the Lagrange sub-
manifold Ny = dH(FE) in T*E*, where H : E* — E,

(4) H(p) = ((p, A7) = LA ().
It means that if the Lagrangian L is hyperregular, then the Lagrangian description is

equivalent to the Hamiltonian description with the Hamiltonian function given by (4).

In the algebroid framework we have also an analog of the Euler-Lagrange equation.
The Euler- Lagrange equation is now the equation for curves in F, not for curves on M
like in the classical situation. We have considered two equations. The first equation reads

El =TA (D).

A curve 7 in E is a solution of the above equation if A o v is a solution of the phase
dynamics. The equation E} corresponds to the construction proposed by de Leon and
Lacomba in [22]. The second equation reads

E!={veTE: T(eodL)(v) € T2 E*} = TA"(T?E").

A curve v in E is a solution of the equation E? if the tangent prolongation of A o is
equal to e o dL o A\. It is clear that E? is more restrictive than E}, i.e., E C E}. In
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local coordinates (z% y') on E, where (z%) are coordinates on M, and (3') being linear
coordinates in the fibres, we get
dz® :

O Gt 5 (55en) = b gelon) + oo ga ).

in the full correspondence with the equations proposed in [24, 25, 46]. Here, pf(z) are
the coordinates of the anchor p : E — TM, and of(x) i cfj(x) form the rest of the
‘structural functions’ of the algebroid. Note that the equation % = p(x)y* means that
the solutions v(t) of E? are automatically admissible, i.e., the tangent vector %(¢) to the
projection y(t) = 7 o ¥(t) on M equals p(y(t)). In the case E = TM it means that 7 is
the tangent prolongation of . Since in this case y = &, the equations (5) reduce to the
standard Euler-Lagrange equations of the second order for curves z(t) in the configuration

manifold M,
d(oLy_or
dt \oie) Oz’

If a Lagrangian is hyperregular, equations E? and E} coincide. In paper (1) one can find
also a version of the Noether theorem in the algebroid setting.

3. VARIATIONAL CALCULUS ON ALGEBROIDS

In paper (3) we discuss the variational foundations of the Lagrangian formalism in the
case of a Lagrangian being a function on a general algebroid 7 : £ — M. We can then
include constraints to our theory. To define a variational problem on an algebroid we
have to specify a manifold M of paths, whose tangent space TM represents all possible
variations, and an action functional W on M. Then, we have to choose a submanifold
N of admissible paths and a set (generalized distribution) D C TMy of admissible
variations of admissible paths.

In the case E = TM without constraints, we take smooth curves in TM defined for
t € [to,t1] as paths and curves in TTM as variations. The admissible paths are tangent
prolongations of curves in M, while admissible variations come from homotopies of curves
in M, i.e., maps x : R2 — M. In the construction of admissible variations we use the
canonical flip ky; : TTM — TTM. For a curve 0y : R — TM such that 7y, 0 §y = v, we
define the admissible variation of the admissible curve ¥ : R — TM as noo:’y R—>TTM.

In the algebroid setting admissible curves are curves v : R — E which satisfy 4 = po~,
where v = 7 0. Note that the concept of a homotopy of an admissible curve is closely
related to the problem of integrating Lie algebroids [5]. In the case of a general algebroid
we are forced to use a different method. The construction we use is similar to the classical
one in the sense that the crucial role is played by the algebroid analog of the morphism & ;.
Since € is not an isomorphism, its dual k. : TE—>TFE is a linear relation only. Admissible
variations are constructed by means of k. from ‘vertical variations’ of admissible curves,
i.e., vertical vector fields along admissible curves. In the case of a Lie algebroid we obtain
standard infinitesimal homotopies of admissible curves. Using the defined elements of the
structure, we derive the Euler-Lagrange equations which happen to be the same as E?
obtained in (1).

It happens quite often in mathematics and physics that considering generalizations of
certain theories we gain some new knowledge about their classical versions. Exactly that
happened, while we considered constrained systems in the algebroid setting. It turned
out that the correct description of a constrained system requires more than defining the
set of admissible infinitesimal configurations (constraints), namely also a set of admissible
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variations. We would even say that constraints are put on variations rather than on
configurations. Conditions that configurations must fulfill are consequences of that put
on variations.

There are two standard methods of assigning admissible variations to the subset ¥ C E
of configurations. We can use all variations that are tangent to X or we can construct
variations out of vertical variations tangent to X by means of x.. In the case E = TM, the
first method refers to vakonomic constraints and the second to nonholonomic constraints.
If variations obtained in a nonholonomic way are tangent to ¥, we say that we have
holonomic constraints. For all three types of constraints we derive the Euler-Lagrange
equations in a geometric way.

One of the important observations coming from the constructions done in the algebroid
setting is that, even in the case E = TM, it is the structure of an algebroid that matters
and is the main tool in constructing the phase dynamics and the Euler-Lagrange equations.
Working on the tangent bundle we do not pay much attention to this fact, because the
structures of the tangent and cotangent bundles are regarded as natural ingredients of
the theory. It turns out, however, that the most important from the point of view of
mechanics is the map oy (or, equivalently, k).

The theory of constrained systems is illustrated with few examples. As the example
of vakonomic system we describe the differential version of the Pontryagin maximum
Principle, the basic tool in the theory of optimal control. The nonholonomic example is
a ball moving on a rotating table.

4. THE FRAME INDEPENDENT DESCRIPTION

In many situations of classical mechanics the frame independent formulation is possible
only when constructions of affine geometry, understood as the geometry of affine bundles,
are used. This is the case of nonautonomous mechanics, mechanics of a charged particle,
and even the dynamics of one particle moving in the Newtonian space-time. To observe
that the affine geometry appears naturally, it is enough to see that e.g. the momentum of
a particle in the Newtonian space-time transforms in an affine way under the change of
an inertial observer. The mathematical representative of the momentum should therefore
be of an affine nature rather than of a vector one. The affine geometry as a tool for
such constructions appeared in papers of Tulczyjew and Urbanski [44, 42, 39, 45]. The
frame independent formulation of analytical mechanics in the Newtonian space-time can
be found in [13]. Our paper (2) is devoted to constructing the Tulczyjew triple in the
affine setting. In the earlier paper [12] we built a theory called the geometry of affine
values. The main idea of the theory is to replace functions on a manifold with sections
of a one-dimensional affine bundle modeled on a trivial vector bundle pry : M x R — M.
Sections of the affine bundle play the role of functions with affine values, therefore the
bundle itself was called the bundle of affine values (AV-bundle for short).

In the geometry of affine values the cotangent bundle is replaced by the phase bundle.
Let ¢ : Z — M denote an AV-bundle. In the set of pairs (z,0), where z is a point in M
and o is a section of ¢, we define an equivalence relation according to which (z,0) and
(2',0") are equivalent if and only if z = 2’ and d(o — ¢’)(z) = 0. Note that the difference
of two sections of an AV-bundle is a function on the base manifold, so we can calculate
the differential of that function. The set PZ of equivalence classes with respect to the
above relation carries a natural structure of a manifold. There is a canonical projection
from PZ to the base manifold M. As a bundle over M, the bundle PZ is an affine bundle
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modeled on the cotangent bundle T*M. Moreover, PZ is, exactly like T*M, equipped
with a canonical symplectic structure.

In the geometry of affine values we use also special affine bundles, i.e., affine bundles
modeled on vector bundles equipped with a distinguished nowhere-vanishing section. In
the category of special affine bundles there is a natural concept of duality. Namely, let
n: A — M be a special affine bundle with the distinguished section v4. We denote by
At the bundle of affine functionals on A. The fibres of A" are spaces of affine functions
on fibres of A. We will also denote with V(A) the model vector bundle for A. We call
the affine dual bundle A# of A the subbundle of A" of all affine functions on fibres of A
whose linear part equals 1 while evaluated on v,4. The affine dual A# is an affine bundle
modeled on the subbundle of affine functions on A with the linear part vanishing on v4.
The model vector bundle has the distinguished section: the constant function 14 equal to
1. This makes A# into a special affine bundle. Every special affine bundle has a certain
AV-bundle associated with the quotient A = A/(va).

Let us now assume that a Lagrangian is not a function but a section of the AV-bundle
associated with some special affine bundle A. We can find such situations e.g. in the
Newtonian mechanics. An appropriate tool for describing such a system is the following
affine Tulczyjew triple:

(6)

TA* - PA

PA# - At i
p#n# Tn#
dH \ Ta# \ p#n N
pn# A ~ T™ A
" J ﬂ//

A* A# A#/
NS NN

The bundles PA and PA# are double affine bundles while TA# is a double affine-vector
bundle. The map ¢ defines on A a structure of a special affgebroid, that can be equivalently
described as an affine-linear bracket

[-,]- : Sec(A) x Sec(V(A)) — Sec(V(A4)),

together with two morphisms: ¢, : A — TM and ¢, : V(A) — TM which are the left and
the right anchors and fulfill the following conditions. First, the bracket is special, i.e.,

[a7X+vA]E - [a+UA,X]6 - [a7X]E'

Then,
[(L, gX]s = g[avx]s + (El o a)(g)X,
la+fY,X], = (1= f)la, X]. + fla+Y,X], = (er 0 X)()Y,
where a is a section of A, X,Y are sections of V(A), and f, g are functions on M.

Let us observe, that the diagram (6) is an affine version of the diagram (3). The map r
is conencted to the affine tensor I' € Sec(TA# ® a# TA#). The tensor I gives rise to the
bracket between sections of the AV-bundle associated to A# and functions on A¥, with
values in functions on A%.

The bundle TZ appearing above is another example of a natural construction in the
geometry of affine values. Namely, every AV-bundle ¢ : Z — M can be equivalently
defined as a principal bundle with the structure group (R,+) of additive reals. Then,
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Tz=TZ /R — M is a special vector bundle. The distinguished section comes from the
fundamental vector field for the action of R on Z.

In the affine version we find similar scheme for the description of dynamics as in the
linear case. A Lagrangian section defines the Lagrangian submanifold N, C PA which is
the image of dL. The dynamics D is the image of N, with respect to the map . The
phase dynamics, as a subset of the tangent bundle, can be interpreted as a first-order
differential equation (possibly implicit) on curves in the affine phase space A#. An affine
Legendre map

A:A— A%, A=P#podL

associates momenta to the infinitesimal configurations. In the case when A is a diffeo-
morphism, i.e., when the Lagrangian is hyperregular, the dynamics is the image of a
Hamiltonian vector field for a Hamiltonian being a section of the AV-bundle associated
to A#. In all other cases we can look for more complicated generating object.

In the affine setting we can construct the Euler-Lagrange equation as well. It is an
equation for curves in A, therefore it can be represented by a subset of TA. If X denotes
the composition A = £ o dL, the Euler-Lagrange equation can be written as

Ep = TA™(T24%).
The solution of the above equation is a curve 7 in A such that the tangent prolongation

of the curve Ao~ equals XA o~. To illustrate the above theory we described the mechanics
of charged particle and dynamics of one particle in the Newtonian space-time.

5. NONHOLONOMIC CONSTRAINTS AND DIRAC ALGEBROIDS

In paper (5) we continue our work on Lagrangian and Hamiltonian formulation of
mechanics. We introduce the concept of a Dirac algebroid which is a natural generalization
of the Dirac structure on a manifold M, defined by Dorfman [6] and studied by Courant
[4], as well as the algebroid structure on a vector bundle 7 : ' — M. Originally, the Dirac
structure was proposed as a tool in the theory of integrable systems with constraints. In
analytical mechanics this concept was used lately in the context of singular Lagrangians
[47].

The definition of a Dirac algebroid is based on the following observations. Studying
complicated systems in mechanics and field theory we were more and more convinced
that the proper tool one should use is not associated with maps, like oy, By or maps
coming from Poisson structures, but with relations which are compatible with natural
bundle structures. An example of such important relation is . : TE—>TE which plays
the role of the canonical flip k), in the algebroid setting. The definition of the canonical
isomorphism of the double vector bundles T*E and T*E is based on some symplectic
relation generated by a canonical evaluation between a vector bundle and its dual. In the
affine setting, when we define an isomorphism between PA# and PA, relations are even
more visible. We use relations also in the construction of the Tulczyjew triple for field
theory.

The second observation is that linearity of different structures, e.g. symplectic, Poisson,
connection, etc., can be expressed in an elegant way in the language of double vector
bundle morphism [20]. In particular, an algebroid is a certain morphism of double vector
bundles.

For a vector bundle 7 : £ — M, let TE = TE* ®g- T*E* be the Whitney sum of T*E*
and TE*. The bundle T FE, sometimes called a Pontryagin bundle, is a double vector
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bundle over E* and TM @,; E equipped additionally with a canonical symmetric form.
A Dirac algebroid is a maximal isotropic subbundle D of TFE which is a double vector
subbundle. It means that D is a subbundle of the bundle over E* and over TM &), E
simultaneously. Here, we have to use the concept of a subbundle in a sense of [14] as a
subbundle supported on a submanifold. If D is a Dirac subbundle, i.e., is closed with
respect to the Courant bracket, then the structure is called a Dirac-Lie algebroid. The
following diagrams describe the structure of the double vector bundle 7 E and its duble
subbundle D, being a Dirac algebroid:

TE* ®p- T*E* D
/ X P it
(7) EX EoyT'M TMouE Phyp Ex Velp
M Mp

An example of a Dirac algebroid is the graph of the map Il that corresponds to any
linear bivector field II on a vector bundle E*. If the field is a Poisson tensor, then we
get a Dirac-Lie algebroid. Similarly, if & : TE* — T*E* is the map associated to a linear
2-form on a vector bundle, then the graph of @ is a Dirac algebroid. If additionally w is
closed (i.e., is a presymplectic structure), then the graph of @ is a Dirac-Lie algebroid.
The graph of 3, is a special case of both examples.

The base bundles Php and Velp of D are called the phase bundle and the wvelocity
bundle (or the anchor relation), respectively. Indeed, if a Dirac algebroid is given by a
skew algebroid (linear bivector field), then Velp is the graph of the anchor map. In paper
(5) we study thoroughly the structure of a Dirac algebroid. This structure turns out to
be unexpectedly rich. For example, it follows that the bundle Cp C T*M @), E* being
the core of D is the anihilator of Velp. We construct also local coordinates adapted to
the structure of a Dirac algebroid.

A Dirac algebroid can be regarded as a relation Sp : T*E*—>TE* which plays the
role of By in the construction of the Tulczyjew triple. The composition of Bp with Rg
gives the relation ep : T*E—>TE* for the Lagrangian side of the triple. The Tulczyjew
triple built on the Dirac algebroid is represented by the diagram

Bp

(8) T E* >TE*< o T*E «_ i
d/ \ 7 TE* {z ¢ 7;\\*
R/

>T M <
A /"
> B < / Pho E*

M M

idphp,

H
TE*
M
which is similar to (3), but some maps are replaced with relations.
The process of generating the dynamics from a given Lagrangian or Hamiltonian is

ideologically the same as in previous cases. The only change is that we have to compose
relations. The dynamics given by a Lagrangian L is a subset of TE* equal to ep(dL(E)).
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The Legendre relation (an analog of the Legendre map) we obtain as a composition
Ap = Tg= o ep odL. It turns out that Ap is actually a map when restricted to its the
domain. The domain of Ap is called the Euler-Lagrange domain, because in this set we find
curves being solutions of the appropriate Euler-Lagrange equation. The dynamics given
by a Hamiltonian is generated in a similar way: D = fp(dH(E*)). In concrete physical
situations the same dynamics can be generated out of a Lagrangian or a Hamiltonian.
For the obvious reasons we have more freedom in the choice of a generating object than
in previous cases.

Let Lp denote the composition Lp =epodL. The Euler-Lagrange equation one can
get as the inverse image of the set of holonomic vectors on E* with respect to the tangent
prolongation of the relation inverse to ZD, ie.,

Ep = TLZNT2EY).
The solutions of the above equation are curves in the Euler-Lagrange domain and such

that they are in the relation ZD with some admissible curve in TE*. Admissible curves
in TE* are tangent prolongations of curves in E*.

In the hyperregular case, i.e., when the vertical differential of L is a diffeomorphism,
the dynamics generated by the Lagrangian has also a Hamiltonian description with the
Hamiltonian function H(p) = (p, \"}(p)) — L(A"!(p)) as a generating object.

The main advantage of the Tulczyjew triple based on Dirac algebroid is its universality
and the possibility to include nonholonomic constraints in the geometry of the system.
Using a Dirac algebroid, we can describe most of known mechanical systems, moreover
the basic description does not change when we impose nonholonomic constraints. In such
a case we have to change a Dirac algebroid used, but we stay within the same setting. If,
for example, we start from a given Dirac algebroid D, then nonholonomic constraints are
given by a subbundle V' of the bundle Velp. The Dirac algebroid induced by constraints
is given by

DY = (t2)"{(v)+V°,
where VO C E* @), T*M is the anihilator of the subbundle V. We get the constrained
phase dynamics and the constrained Euler-Lagrange equations when we use DV instead
of D.

In paper (5) we describe also an affine analog of a Dirac algebroid and discuss affine
constraints. The universality of our method is illustrated by several examples. We present
a system on a skew-algebroid, Pontryagin maximum principle as an example of vakonomic
constraints, a presymplectic system, a system with Lagrangian depending on time, and
a system with nonholonomic constraints. We make concrete calculations for the example
of a disc rolling without slipping. All the above and very different examples can be
described by means of the Tulczyjew triple based on the same type of a structure — a
Dirac algebroid. Note that reduction with respect to symmetries does not require any
change of the language used.

6. CLASSICAL FIELD THEORY

The papers (4) and (6) are devoted to the construction of the Tulczyjew triple in field
theories. Variational calculus is a natural language for describing statics of mechanical
systems. All mathematical objects that are used in statics have direct physical inter-
pretations. Moreover, similar mathematical tools are also widely used in other theories,
like dynamics of particles or field theories. In classical mechanics and field theory the
variational calculus is traditionally used only for deriving the Euler-Lagrange equations.
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The alternative point of view of the role of the variational calculus for mechanics adopted
by Tulczyjew led to the new formulation of Lagrangian and Hamiltonian formalisms. We
have generalized it further to the case of mechanics on algebroids and on Dirac alge-
broids. According to Tulezyjew, the concepts of momentum and phase space have also
variational origins. In papers (4) and (6) we use the same philosophy in constructing the
Lagrangian and Hamiltonian description of a classical field theory. In (6) we analyze the
simplest topological case which can be called statics of multidimensional objects. Instead
od curves (as in dynamics), we consider maps from a disc D C R"™ into a manifold M.
Some generalization of the symplectic approach to the case of multidimensional objects
was considered earlier by Giinther [16]. The mathematics he used can be found in [2, 3].

Our approach to the Lagrangian and Hamiltonian description of field theory is different.
Like in mechanics, we do not use Klein’s formalism, so that we can avoid difficulties with
singular Lagrangians. We construct systematically all mathematical objects following the
ideas coming from the variational description of statics. To simplify the notation we work
with the case n = 2.

We start with identifying momenta and the phase space by analyzing variations of the
action functional on the boundary of the disc D. The phase space is T*M ® (R?)* ~

2
T*M x; T*M, that we denote simply by T*M. The phase space is a vector bundle. The
2

bundle of infinitesimal configurations is dual to the phase space and reads TM x,; TM =T
M. The simplified topological structure allows us to use double vector bundles and the
vector duality in the construction of the triple. This is not the case in a more general
setting where we have to use affine geometry. In the place of k), that is used in mechanics
in construction of admissible variations, we have here

k:TTM STTM,

which is a double vector bundle isomorphism. From the variational calculus we get also
the evaluation between the space of first jets of mappings from R? to the phase space

2 2 2
(TT*M) and the space of infinitesimal variations of configurations T T M. The evaluation
is degenerate, therefore we expect that the relation «, dual to &, is not an isomorphism.
The relation « building the Lagrangian side of the triple turns out to be a map

o TT*M = T*T*M

and a double vector bundle morphism.

The Hamiltonian formulation of mechanics is based on the existence of the symplectic
structure on the cotangent bundle. Here, the phase space is not a symplectic bundle any
more, nevertheless one can construct a map [ that forms the Hamiltonian side of the
triple. There are, in principle, two ways of defining the map /. The first method uses the

2 2

canonical isomorphism R between T* T*M and T* T M which is a particular example
of an isomorphism between cotangent bundles of the dual pair of vector bundles. The
map [ is a composition S = « o R. The above definition of f is related to the idea that
the Hamiltonian formulation is just an alternative way of generating the dynamics. We
therefore look for some cotangent bundle isomorphic to the the bundle that we found on
the Lagrangian side [43]. Another method of constructing 3 is related to the canonical
structures on the phase bundle. Instead of the symplectic form, we have a tensor

2 2
O Sec(T* T*M @ T* T*M) .
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Since there is an isomorphism
2 2 2 2 2 2 2
T"TMOT TMT" TMOIT " T"M Xpe y " T"M QT T*M ,

the above tensor can be represented as a pair of symplectic forms. The map /3 is therefore
related to a polysymplectic structure. The Tulczyjew triple constructed in (4) reads

(9)

2 B 22 o 2
T™T*M TT*M T™TM
2 id 2 id . T2
T"M T*M T*M
72 \ 2 \ 7.|.2
M M M

i ™ id T™
7.2 T2 ,rd
M "" M

id

The partial differential equation (usually in an implicit form) for phase maps

2
p:R2 5T*M
can be obtained from Lagrangian
2 2 2
TT*M DD =a '(dL(TM)),
or from Hamiltonian
2 2 2
TT*M > D =p"(dH(T*M)).
As an illustration of the theory we have chosen an example associated to the bosonic
string theory proposed by Nambu.
In paper (6) we construct the Tulczyjew triple for a classical field theory in a very
general setting, where fields are sections of a general fibration ¢ : £ — M without any
additional structure assumed. As always, all the geometric constructions are based on

the variational calculus with nonvanishing boundary terms. We pay a special attention
in choosing a proper mathematical language for physical concepts and quantities.

The classical field theory is usually associated with a multisymplectic geometry. The
literature concerning multisymplectic structure is very rich. For the first time, this concept
appeared in papers of Tulczyjew, Szczyrba, Gawedzki and Kijowski [7, 17, 18, 40]. Then, it
was developed by Gotay, Isennberg, Marsden, and others in [8, 9, 10, 11]. Our construction
of the Lagrangian and Hamiltonian description of the field theory is different. We do not
use directly the multisymplectic formalism but we construct the Tulezyjew triple using, on
one hand, the variational calculus, and on the other, our experience in working with double
structures. We do not concentrate on the Euler-Lagrange equations being interested rather
in phase dynamics. The Euler-Lagrange equations appear as consequences of the phase
dynamics. The Hamiltonian side of the triple is based on affine structures.

The starting point of the construction is a locally trivial fibration ¢ : £ — M over
a manifold M of dimension m. Sections of ¢ are fields. The bundle of first jets J'E
of sections of ( is the space of infinitesimal configurations on which a Lagrangian is
defined. Te bundle of first jets is an affine bundle over E. A Lagrangian is a map
L: 1E — Q™, where QF := /\k T*M is the bundle of k-forms on M. The phase space for
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our system is P = V*E ®g (*(Q™!). Here, V*E is the bundle dual to the subbundle VE
of vectors tangent to F and vertical with respect to the projection onto M. The symbol
¢*(¥™~1) denotes the pull-back of the bundle of multi-covectors with respect to (. To
simplify the notation we omit in the following all symbols of the pull-back, writing simply
P =V*E ®g Q™ 1. The Lagrangian side of the triple is based on the map

a: )P —-VIE®u Q™.

The map « is a morphism of double vector-affine bundles associated with the projections
on P and J'E. The vertical differential dL is a section of

V*IEQup Q™ - J'E

and the phase dynamics is a subset of J'P, given as the inverse image of dL(J'E) with
respect to a, i.e. D =« (dL(J'E)).

The Hamiltonian side of the triple is the map
B: 1P —PIE,

where JTE is the dual to J'E in the affine sense, i.e., elements of JIE are affine maps
form fibres JLE to QF},,. Here, PJIE denotes the affine phase bundle for the AV-bundle
6 : JTE — P. The difference with respect to AV-bundles used previously is that now one-
dimensional fibres of the bundle are modeled on the appropriate fibres of ™. Elements
of PJTE are equivalence classes of sections of . The affine phase bundle is an analog of
the cotangent bundle. A Hamiltonian is a section of the bundle 6. Its affine differential
is then a map dH : P — PJIE. The phase dynamics is given as the inverse image with
respect to 3 of the image of dH. The spaces PJIE and V*JIE ®,15 Q™ are canonically
isomorphic. The maps « and /3 are not isomorphisms. We can construct the triple based
on isomorphisms by passing to a quotient space of J!P loosing, however, the natural
interpretation od the dynamics as a first-order partial differential equation on sections of
the phase bundle. The diagram of the Tulczyjew triple for classical field theory reads as

(10) PITE ’ Jip L VAILE ® Qn

PO jt(rom) 3
Ps N PlE
P \ [ \ P
JE JE JE
' \ y \ y
E E

The spaces PJTE and V*J'E ® 15 Q™ carry the canonical 2-forms with values in Q™
that restricted to fibres over M are symplectic. The canonical structure of J'P is a
presymplectic form with values in Q™. The phase space also has some canonical structure.
It is a one-form with values in Q™! that plays the role of the Liouville one-form on T*M.

(5) Other publications after the PhD:
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(1) Janusz Grabowski, Katarzyna Grabowska, The Lie algebra of a Lie algebroid In:
Lie algebroids and related topics in differential geometry (Warsaw, 2000), 43-50,
Banach Center Publ., 54, Polish Acad. Sci., Warsaw, 2001.

(2) Jerzy Kijowski, Katarzyna Grabowska, Canonical Gravity and Gravitational En-
ergy, Differential Geometry and its applications, Ed.: O. Kowalski, D. Krupka,
J. Slovak, Opava, (2001) 261-274.
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(6) Katarzyna Grabowska, Pawel Urbanski, AV-differential geometry and Newtonian
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(20pp).
The summary of results

One of the classical theorems in differential geometry is the result of Pursell and Shanks
[29] which states that the Lie algebra of all compactly supported smooth vector fields on
a smooth manifold M determines the smooth structure of M, i.e., the corresponding Lie
algebras of vector fields on M; and M, are isomorphic if and only if M; and M, are
diffeomorphic. There are similar results in special geometric situations (Hamiltonian,
contact, group invariant vector fields, etc.) In paper (1) we analyze a similar problem
in the context of Lie algebroids. Sections of a Lie algebroid bundle form a (possibly
infinite-dimensional) Lie algebra with properties, generically, close to that of the Lie
algebras of vector fields. In the paper we describe ideals and maximal finite-codimensional
subalgebras, together with some Shanks-Pursell’s type theorems in the case when a Lie
algebroid satisfies some non-singularity conditions of its anchor map.

Paper (2) is devoted to a concept of the gravitational energy. According to the stan-
dard approach to the Legendre transformation in variational theories, the Hamiltonian in
the theory of gravity equals zero modulo the boundary terms. On the other hand, the
boundary terms in variational theories are usually neglected. The solutions of this prob-
lem proposed previously, e.g. by imposing additional conditions on the energy functional
or adding some corrections to the Lagrangian are not satisfactory. They are not universal
and not well justified. In paper (2) we propose a solution based on a profound analysis
of the Einstein equations. We use such a version of the theory of gravity where bound-
ary terms are not neglected. In our approach, the gravitational energy is a quasi-local
quantity contained within a generic two-dimensional compact boundary. The total energy
can be obtained by a limiting procedure, where the boundary goes to infinity spatial or
null. The results do not depend on a variational principle chosen. One can use either a
Hilbert-Einstein Lagrangian or an affine Lagrangian.
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In papers (3), (4), (5), (6), and (7) the geometry of affine values is developed. It is an
affine version of differential geometry in which functions on a manifold M are replaced
by sections of a one-dimensional affine bundle ¢ : Z — M modeled on the trivial vector
bundle pry : M x R — M. Almost all constructions from classical differential geometry
can be transformed into an affine version. For example, instead of the cotangent bundle,
we obtain the phase bundle PZ — M. Affine structures are natural in theories like
dynamics of a charged particle [45], nonautonomous mechanics, and frame independent
formulation of the Newtonian mechanics.

In (3) we define an affine analog of the Lie bracket on an affine space and an affine
bundle. We introduce an affine Poisson structure and the concept of a Lie affgebroid
which is an affine analog of a Lie algebroid. We analyze the correspondence between
affine and vector structures. Using the idea of affine-vector duality we prove the theorem
that states that every Lie affgebroid embeds canonically as a subbundle in some Lie
algebroid. This observation enables us to construct a Cartan-like calculus of affine forms.

In paper (4) we continue the works started in (3). We discuss systematically the notion
of a bundle of affine values (AV-bundle), together with canonical examples. We introduce
the concept of a special vector and a special affine bundle and develop the idea of an
affine duality in the category of special affine bundles. One of the sections is devoted to a
profound analysis of canonical bundles that appear in the geometry of affine values, i.e.,
the phase bundle, the bundle of contact elements, and the reduced tangent bundle. We
come back also to the affine Lie brackets, affine Poisson, and affine Jacobi brackets. The
theory is completed by a short presentation of some possible applications in mechanics.

Papers (5) and (6) are devoted to concrete applications of the geometry of affine values.
We formulate a Lagrangian and Hamiltonian description of nonautonomous analytical me-
chanics, and mechanics in the Newtonian space-time in homogeneous and inhomogeneous
versions. In paper (7) we discuss variational aspects of affine theories. The Lagrangian
description of a system with Lagrangian being a section of an AV-bundle is related to the
affine variational calculus.

The knowledge we gained while working with affine structures in applications to frame
independent description of different classical systems, turned out to be very useful also
in quantum mechanics, especially in the interpretation of the Schrodinger equation. It is
well known that the wave function which is a solution of the Schrodinger equation does
not transform under the change of inertial reference frame as ‘ordinary function’. In paper
(8) we present the idea of treating wave functions as sections of some one-dimensional
complex vector bundle associated with an U(1)-principal bundle with distinguished set of
trivializations. Those trivializations are associated with inertial frames in the Newtonian
space-time. The distinguished set of trivializations is an important element of the struc-
ture of the bundle. For the principal U(1)-bundle equipped with a set of trivializations we
propose the name a principal Schrodinger bundle. On this bundle there exists a natural
differential calculus of wave forms closely related to the corresponding Atiyah algebroid.
This leads to a generalization of the concept of the Laplace-Beltrami operator associated
with a metric. The free Schrodinger operator turns out to be the Laplace-Beltrami op-
erator associated with an invariant pseudo-metric on the principal Schrodinger bundle.
In (8) we show also the correspondence of the above theory with the frame independent
description of the classical mechanics in the Newtonian space-time, especially with the
Hamilton-Jacobi theory.
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