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4. Description of the achievements, set out in art. 219 para 1 point 2 of the Act.  

4.1 Title:  The scientific achievement presented below consists of a series of publications 
focused on “Dynamics of entanglement and complexity in the AdS/CFT correspondence.”  

4.2 Publications in chronological order (in my field authors are listed in alphabetical order 
please see the attached statements from my collaborators about my contributions): 

[A1] P. Caputa, G. Mandal, R. Sinha, “Dynamical entanglement entropy with angular 
momentum and U(1) charge”, JHEP 1311, 052 (2013).  

[A2] P. Caputa, M Nozaki, T. Takayanagi, “Entanglement of Local Operators in large N 
CFTs”, PTEP. (2014) 093 B 06. 

[A3] P. Caputa, A. Stikonas, J. Simon, T. Takayanagi, “Quantum Entanglement of Localized 
Excited States at Finite Temperature”, JHEP 1501, 102 (2015).  

[A4] P. Caputa, A. Stikonas, J. Simon, T. Takayanagi, K. Watanabe, “Scrambling time from 
local perturbations of the eternal BTZ black hole”, JHEP 1508, 011 (2015).   

[A5] P. Caputa, T. Numasawa, A. Veliz-Osorio, “Out-of-time-ordered correlators and purity 
in rational conformal field theories”, PTEP (2016) no.11, 113 B 06. 

[A6] P. Caputa, N. Kundu, M. Miyaji, T. Takayanagi, K. Watanabe, “Anti-de-Sitter space 
from Optimization of Path-Integrals in CFTs”,   Phys. Rev. Lett. 119 (2017) no.7, 071602.   

[A7] P. Caputa, N. Kundu, M. Miyaji, T. Takayanagi, K. Watanabe, “Liouville Action as 
Path-Integral Complexity: From Continuous Tensor Networks to AdS/CFT ”,                     
JHEP 1711 (2017) 097.  

[A8] P. Caputa, M. Miyaji, T. Takayanagi and K. Umemoto, “Holographic Entanglement of 
Purification from Conformal Field Theories ”, Phys. Rev. Lett. 122, 111601 (2019).		
[A9]	H. A. Camargo, P. Caputa, D. Das, M. P. Heller, R. Jefferson, “Complexity as a novel 
probe of quantum quenches: universal scalings and purifications”,                                     
Phys. Rev. Lett. 122 (2019) no.8, 081601.  

[A10] P. Caputa, J. M. Magan, “Quantum Computation as Gravity”,                                  
Phys. Rev. Lett. 122, (2019).  

4.3 Detailed description of the achievement:	
The main goal of the research that I summarize in this habilitation thesis was to explore 
basic mechanisms behind holography and shed light on how strongly interacting 
systems encode gravity. For that, I have been developing two closely related research 
programs in the context of the AdS/CFT correspondence: the first focused on exploring the 
structure of quantum entanglement and its dynamics in quantum field theories and the second 
on developing measures of complexity of quantum states in conformal field theories.  

In the first five projects described below, I studied dynamics of entanglement in conformal 
field theories in various dimensions. My main motivation was to test and develop probes of 
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entanglement in these many-body quantum systems and study differences in spreading of 
quantum entanglement and scrambling between holographic and non-holographic CFTs.   

In [A1], we developed “charged entanglement entropy” in 2D CFTs and studied its evolution 
after global quantum quench in the presence of conserved charges. In particular, we analyzed 
the time evolution of entanglement entropy in the charged thermofield-double (TFD) state 
that, holographically, corresponds to a rotating eternal black hole in anti-de Sitter spacetime. 
We computed and matched entanglement entropies on both sides of the holographic 
correspondence and found that they saturate to a value that depends on the charge (according 
to the Generalized Gibbs ensemble hypothesis).   

In [A2,A3,A4] we analyzed the evolution of Renyi and entanglement entropies in a class of 
CFT states excited by a local operator. First, in [A2], we set up the problem in CFTs in 
various dimensions and derived universal results for the evolution of Renyi entropies with the 
focus on differences between non-holographic (rational or integrable) models and large-N or 
large-c CFTs that play important roles in holography. We also developed the holographic dual 
of these excited states in terms of a massive particle propagating in AdS spacetime and 
matched our CFT results with holographic computations using the HRT prescription 
(explained below).  

Then, in [A3], we generalized our analysis to finite temperature and local operator excitations 
on top of thermal states. The results obtained for large-c holographic CFTs were matched 
with the HRT prescription used in the black hole geometry with a back-reaction from a 
massive particle dual to the local operator. Finally, in article [A4], we used our setup to derive 
the scrambling time from the evolution of the mutual information in perturbed thermofield-
double state. In these three works, we not only developed and tested quantum information 
tools for probing CFTs (including those with holographic dual) but also formulated criteria 
that distinguish holographic CFTs from integrable ones. The main one being the logarithmic 
growth of entanglement entropy with time in a quantum state excited by a local primary 
operator in holographic CFTs. On the contrary, in rational CFTs the entropy just increases by 
the logarithm of operator’s quantum dimension. 

In the meantime, the new ideas about constraining holographic CFTs matured in the concept 
of the Out-of-Time-Ordered Correlators (OTOC) as probes of quantum chaos. In [A5], we 
studied these 4-point functions and derived universal result for their late time behaviour in all 
rational CFTs in two dimensions. It turns out that in these integrable models, OTOCs 
approach to a certain constant (the so-called “monodromy constant”) fully specified in terms 
of the modular S-matrix of the rational CFT. 

In the second line of research, I focused on the problem of extracting holographic geometries 
from CFT and on quantifying complexity of quantum states prepared by Feynman’s path 
integrals. In [A6], we introduced the path integral optimization and path integral complexity. 
We showed how using the path integral optimization procedure, after minimizing the path 
integral complexity (Liouville action in 2D), one can extract a hyperbolic geometry that can 
be interpreted as a slice of a holographic dual spacetime.  

In [A7], we further developed the path integral complexity in two- and higher-dimensional 
CFTs, explored its quantum computational properties, studied optimal metrics and analyzed it 
from the perspective holographic complexity proposals. Then, article [A8] was a very 
important application of our optimization to the first computation of entanglement of 
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purification (EoP) in 2D CFTs. EoP was proposed to be holographically dual to the area of 
the entanglement wedge cross-section in AdS and we managed to verify this in our example.  

In [A9], exploring possible candidates for complexity measures in QFTs, we applied 
geometric approach to complexity in free Gaussian field theory (exactly solvable) to explore 
the dynamics of a quantum quench. We analyzed the so-called slow and fast quenches and 
found universal scalings of complexity with the quench rate. Our work established geometric 
complexity as a novel and useful probe of quantum quenches, in addition to correlation 
functions or entanglement entropy used before.  

Finally, in [A10], based on intuitions from path integral complexity, we initiated geometric 
approach to complexity in conformal field theories. In 2D CFTs, we introduced the notion of 
Virasoro quantum circuits and showed that by an appropriate choice of cost functions, 
Nielsen’s complexity action becomes the Polyakov action of 2D gravity (geometric action on 
the co-adjoint orbits of the Virasoro group). Our idea provided a natural definition of circuit 
complexity in interacting, holographic CFTs and has been further extended and fruitfully 
developed since then.  

The plan of this presentation is as follows. I will start with a brief introduction to the two 
main problems addressed in my works. Then, I will elaborate on the main results in each 
paper, their impact and implications. Finally, I will summarize and list several new directions 
that emerged from these works that I’m following with my group at present. 
Introduction.	
The AdS/CFT, proposed by Maldacena [1] (see also [2,3]), is a correspondence that relates 
certain quantum field theories which describe critical many-body systems (conformal field 
theories or CFT for short) with theories of quantum gravity on negatively curved Anti-de 
Sitter geometry (AdS for short) in one higher dimension. For this reason, by analogy with 
familiar holography, AdS/CFT is usually referred to as an example of a “holographic 
duality”.  

There are several reasons why AdS/CFT is important and attracts a lot of attention. Firstly, 
one of our biggest and most difficult open problems in theoretical high-energy physics is to 
unify two pillars of the 20th century physics, quantum mechanics and general relativity, into 
one theory of quantum gravity. On this front, the AdS/CFT correspondence provides us with a 
precise toy model and first working definition of a theory of quantum gravity in AdS 
spacetime by the dual, strongly interacting CFT (still, very non-trivial to analyze but a 
concrete model of quantum gravity).  

Secondly, in its most rigorous version, AdS/CFT relates supersymmetric conformal field 
theories in d spacetime dimensions to theories of quantum gravity (string theory) in d+1 
dimensional AdS spacetime. However, there is a wide belief and evidence that holography 
holds more generally (in models without supersymmetry and away from conformality) and 
can teach us important lessons about the notoriously difficult to study physical regime of 
strong interactions (present in e.g. quark-gluon plasma [4] or strange metals [5]). 

Still, a conventional, “particle physicists”-like approach to the duality seems to hide the 
principles of how it works. Indeed, even though the AdS/CFT correspondence is already 
more than 20 years old, we are still lacking the basic principle behind it and the answer to the 
key problem: 
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How states of strongly coupled quantum field theories encode spacetime geometry?  

This question drives some of the most recent research trends in theoretical physics and brings 
together scientists across several disciplines. From these efforts, we managed to discover a 
few important clues in the above puzzle. One of them, is the hypothesis that: 

Spacetime geometry is intimately related to the structure of quantum information and 
quantum entanglement in states of holographic quantum field theories.  

Pursuing this interesting idea allowed to discover several strong evidences that quantum 
information and spacetime geometry are intimately related.	
Most of the recent developments started with the proposal of Ryu and Takayanagi [6] to 
identify an area  of a co-dimension 2 (fixed time) surface in Anti-de Sitter spacetime with 
the CFT Von Neumann entropy  (entanglement entropy) of a boundary sub-region A to 
which the surface is attached: 

                                                                  ,                                                     (1) 

where  is the Newton constant. This expression, the “RT formula” for short, can be 
thought of as a generalization of the famous Bekenstein-Hawking relation for black hole 
entropy in terms of the area of its horizon. See [7,8] for more technical details of the RT 
proposal. 

In the special case of 2+1 dimensions, the RT proposal asserts that a geodesic on the 
hyperbolic plane computes the entanglement entropy of an interval in (1+1)-dimensional, 
strongly interacting conformal field theory at the boundary. This holographic proposal has 
been verified by explicit comparison with CFT [9] and its general derivation in AdS/CFT was 
given by Maldacena and Lewkowycz [10] (see [11] for a pedagogical review). 

For more general, time-dependent spacetimes, RT formula was generalized by Hubeny, 
Rangamani and Takayanagi [10] (HRT) to covariant prescription where entanglement entropy 
at Lorentzian time t is computed by the area of extremal surfaces homologous to the region A 
at the boundary. Similarly to its static predecessor, it was checked by various nontrivial 
computations and its derivation was also outlined in [13]. In most of the results in the first 
five works on dynamics of entanglement, it was in fact mainly the HRT prescription that we 
tested and used to extract new interesting results for holographic CFTs. 

In order to test RT and HRT proposals, one needs to compute entanglement entropy in 
conformal field theories. This is a non-trivial task since, as many of the quantum information 
concepts, they are not observables in the QFT sense. Moreover, one also has to face the 
problem of dealing with infinite dimensional Hilbert spaces of QFTs. The later problem can 
be circumvented by introducing a UV cutoff and extracting interesting information from 
“bare quantities” with explicit cutoff dependence. The former issue turns out to be solvable in 
a very elegant way in 2d CFTs [9]. 

!
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Namely, using the replica trick, entanglement entropy can be computed as a limit of  , 
of Renyi entropies : 

                                                                            (2) 

On the other hand, the trace of the n-th power of the reduced density matrix can be defined, 
in the path-integral formalism, as a partition function on the n-sheeted Riemann surface with 
cuts corresponding to the interval A. The cuts are glued together in an appropriate, 
consecutive way so that when we perform the integration around their end-points we move 
from the (n-1)-th to the n-th sheet (and from the n-th to the 1st). The trace of the density 
matrix is also normalised so we need to divide this partition function by the n-th power of the 
partition function on a single copy and  

                                                                                                       (3) 

where  is a model-dependent (non-universal) constant. In a series of elegant works, Cardy 
and Calabrese [7,14-18] showed that ratio (3) can be equivalently described by correlation 
function of twist operators at the end-points of the entangling region A. Twist operators are 
CFT primaries with conformal dimension given in terms of the CFT central charge c and the 
replica number n as  

                                                           .                                        (4) 

and since two-point functions are universally fixed in 2D CFTs, this result allowed to derive  
numerous single interval entropies including those for finite size or finite-temperature CFTs. 
These were in fact the first formulas reproduced by the holographic RT proposal. Moreover, 
it was argued that in large-c holographic CFTs with sparse spectrum of low energy operators 
[19], higher-point correlators of twist operators should be dominated by vacuum conformal 
blocks [20,21]. This then allowed for comparing entropies for multi-interval regions with 
large-c holographic computations [22]. In works [A1-A4], we have explored this computable 
setup of 2D CFTs and matched entropies with HRT results. In addition, in [A2], we used the 
replica trick itself to compute the growth of entropies in rational CFTs where we employed 
known correlators to extract new results for dynamics of Renyi entropies. 

As I already stressed, holographic CFTs are believed to be special among those describing 
generic critical points of many-body systems. Interestingly, many of their universal properties 
are determined by the fact that their states are dual to AdS geometries that contain black 
holes. Indeed, it is a very well known fact from the early days of the AdS/CFT that thermal 
states of CFTs describe black hole geometry in the bulk. However, it was the quantum 
information “revolution” in AdS/CFT that followed and explored this fact so extensively that 
new tools had to be developed and gave rise to new surprising lessons about black holes.  

Firstly, already in the early days of holography, Maldacena proposed a duality between the 
thermofield double state of two CFTs (a purification of the thermal state) and eternal black 
hole [23],  i.e., maximal extension of the black hole geometry that consists of two asymptotic 
black hole spacetimes connected by a wormhole. In the new light of quantum information, 
this duality made us realise that it is in fact pure quantum entanglement in CFT states that 
corresponds to connectedness of the bulk regions [24]. This was further promoted to a 

n → 1
S(n)

A

SA = lim
n→1

S(n)
A = lim

n→1

1
1 − n

Tr (ρn
A) .

Tr (ρn
A) = an
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(Z1)n ,
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h = h̄ = c
24 (n − 1/n)
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conjecture that bits of entanglement in CFTs always give rise to wormholes in the 
holographic bulk (dubbed as ER=EPR conjecture) [25].  

More quantitatively, universal properties of black holes in AdS, such as high-energy 
scattering near their horizons, gave rise to new CFT probes that helped to make a sharp 
distinction between models with a holographic dual and more familiar rational CFTs. In 
[26-28], the so-called thermal Out-of-Time-Ordered-Correlators (OTOC) of generic operators 
W and V were proposed as measures of quantum chaos in CFTs  

                                                      .                                 (5) 

It was also argued that, in thermal states of holographic models dual to black holes of 
Einstein’s gravity, this correlators should universally decay with a maximal Lyapunov 
coefficient . In [A5] we analysed these measures from a more general perspective 
of 2D CFTs and derived a universal result for their late time behaviour in terms of the 
modular S-matrix of a CFT. 

The second line of research that I have been actively developing in focuses on the question of 
how CFT states may encode the holographic geometry of their AdS dual. The most promising 
development in this direction, in my opinion, has been the so-called AdS/Tensor Networks 
correspondence (AdS/TN for short) that I will now briefly describe.  

Tensor Networks that started the AdS/TN were developed by Vidal [29]. With original goal of 
simulating many-body quantum systems he proposed an efficient algorithm to approximate 
quantum states of critical Hamiltonians (corresponding to CFTs in the continuum limit) by a 
Tensor Network called MERA. This network is built from a basic set of objects called tensors 
and is optimized (e.g. min. of energy; variational ansatz) taking into account the structure 
entanglement in the critical quantum state (the so-called “entanglement renormalisation”).  

After the optimization, the quantum state is represented by a geometric (discrete) network of 
tensors (MERA). Surprisingly, this optimized network resembles a discrete slice of the Anti 
de-Sitter spacetime that is holographically “dual” to the approximated quantum state (see 
Figure 1, right).  

Cβ(t) =
⟨W(t)V W(t)V ⟩β

⟨V V ⟩β⟨W(t)W(t)⟩β

λ = 2π /β

                                                                  7

AdS TN

SA

A A

Figure 1. Tensor Networks and holography.  
The correspondence between Tensor Networks and AdS space might be the key insight in 
understanding mechanisms behind holography and how quantum states encode holographic 
geometries. In both approaches, the entanglement entropy  of a subset A of the physical degrees of 
freedom is computed by a “geodesic”.
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Then, the crucial observation came from the work of Swingle [30], who pointed that MERA 
itself may represent a time-slice of Anti-de Sitter spacetime and could be thought of as a 
“discrete version of holography” (see also [31-36] for important developments following this 
work and [37,38] for recent reviews). One strong supporting argument was that a discrete 
Ryu-Takayanagi formula, a shortest piecewise path in the effective network geometry, indeed 
sets the upper bound on entanglement entropy of a subset of the boundary degrees of 
freedom. This interesting idea and incorporating it to genuine, strongly-interacting CFTs was 
the main motivation for my works on path-integral optimization [A6-A7] that I will describe 
below. 

Finally, the last concept that plays a important role in my works is complexity. In holography, 
it became important also in connection with the AdS/TN developments when Hartman and 
Maldacena [39] analyzed gravity dual of the global quench using time evolved thermofield 
double state and its dual eternal black hole. As in generic global quenches [17], entanglement 
entropy saturates after some time of order the interval size and this was elegantly reproduced 
from the HRT prescription (see also [40,41] for earlier studies of holographic thermalisation). 
However, Susskind [42] noticed that even after the saturation time, the Einstein-Rosen bridge 
in dual geometry continues to grow with time, hence knowing only the entanglement entropy 
may not be sufficient to fully determine holographic geometry. His proposed that this growth 
should be related to the dual state’s complexity (measured by the size of the tensor network 
representing the TFD state at time t), and with collaborators [43,44], suggested how one 
could estimate it using gravity constructions like volume of a maximal time-slice or gravity 
action on the Wheeler-DeWitt patch. Both of them seemed plausible from the gravity 
perspective, however the concept of “complexity” in dual CFTs was completely unexplored.  

As I will review below, we introduced the idea of path integral complexity as a continuous 
measure of the size of path-integral tensor network that prepares CFT states. This became one 
of the leading candidates for CFT complexity. Later on, the geometric approach of Nielsen to 
circuit complexity [45,46] was adapted to exactly-solvable free boson setup [47,48] (coupled 
harmonic oscillators). In this construction, after deciding on a set of quantum gates and the 
cost of applying them, we are interested in quantum circuits that prepare a target state 
(usually a vacuum of some interesting Hamiltonian or other entangled state) starting from 
some simple reference state. The set of unitary operations with gates that we have at our 
disposal can be represented geometrically as a “manifold” on which different paths represent 
different quantum circuits. Then we must decide on some physical way of associating the 
cost with each circuit, i.e., non-unique metric on the geometry of unitaries, that allows to 
estimate state’s complexity as the minimal length of a geodesic between the reference and 
target state.  

Each of the above steps is rather non-trivial and comes with an ambiguity that requires 
physical reasoning, especially in continuous quantum field theories. Nevertheless for free 
Gaussian systems there are some “natural” choices for this construction (e.g., position and 
momentum Gaussian gates or operations on covariance matrix) and one is able to make 
progress in computing states complexity [47,48]. I will describe below how one can e.g. 
employ such complexity to extract interesting and universal “scaling information” about 
quantum quenches.  

Moreover, there is another natural choice of gates in QFTs in terms of the symmetry algebra 
of the theory [49]. In 2D CFTs this is particularly constraining since the symmetry sector 
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consists of two copies of the infinite-dimensional Virasoro algebra. I will also describe below 
how in [A10] we generalized Nielsen’s approach to 2D CFTs and discussed possible choices 
of fixing these ambiguities that hint on further connections with gravity. 

After this brief introduction, I will now discuss each of the ten works in more detail. 

Details	of	my	works.	

1. “Dynamical entanglement entropy with angular momentum and U(1) charge.”	
In this work, I started studying dynamics of quantum information in the setup of quantum 
quenches in CFTs and holography. In particular, in [A1], we were interested in thermalization 
of the quantum system in the presence of additional global or local conserved charges. A 
general paradigm is that in the presence of conserved charges, the finial equilibrium state is 
represented by charged density matrix according to the Generalized Gibbs Ensemble (see e.g. 
[50]). Various examples of this phenomenon were found before in lattice models using 
correlation functions (see a relevant review [51]), but our work was the first one in 2D CFTs 
to confirm it with quantum information tools such as entanglement entropy. 

In order to make progress, we first had to introduce a concept of charged entanglement 
entropies in 2D CFTs. We started, with a thermal state with temperature and angular 
momentum as well as its purification, the charged thermofield double (TFD) state, and 
analyzed unitary time evolution focusing on dynamics of entanglement entropy. On the 
gravity side, such states correspond to a rotating BTZ black hole spacetime and its two-sided 
extension, that solves Einstein’s equations with negative cosmological constant. In this setup, 
using conformal maps, we computed entanglement entropy of a single interval in 2D CFTs 
and time-dependent entanglement entropy between two intervals in each copy of a CFT in the 
charged TFD state. Correspondingly, we derived holographic entanglement entropies using 
HRT prescription and found perfect match between both results. Interestingly, the speed of 
entanglement production as well as the plateau to which the entropy saturated in the global 
quench protocol dependent on the chemical potential  (see Fig 2.).  
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Figure 2. Entanglement entropy with conserved charge in large-c 2D CFTs and holography.  
Figure shows evolution of entanglement entropy for interval of size L computed in charged TFD 
state with chemical potential . In the presence of the conserved charge, entanglement entropy after 
the quantum quench can grow faster and saturate to the thermal value according to the Generalized 
Gibbs Ensemble prediction.
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Figure 2. Saturation of the Entanglement Entropy for different values of Ω.

where seqm is the equilibrium entropy density given in (2.19). Note that the saturation

value of the entanglement entropy for the single CFT is expectedly half of that in the case

of the thermofield double given by (2.19). Also note that the saturation value depends on

the angular momentum (see figure 2).

The above equation (2.28) is again of the form of (1.3). Thus, we have now proved

this equation starting from an arbitrary initial state (2.20).

2.3 Information loss

We wish to mention a rather remarkable feature of the EE described in this subsection.

By choosing the state |B〉 in (2.20) appropriately, we can make the initial state |ψ〉 com-

pletely arbitrary (contrast this with the state (2.1) which is fixed by the choice of β,Ω);

however, the entanglement entropy of an interval in any such state is independent of the

choice of the state (this statement is even true for EE at any finite time). The feature

of the calculation that makes this happen is the following. Recall that the choice of |ψ〉
corresponds to the choice of a boundary condition for the two-dimensional CFT (in an

appropriate coordinate system, the state specifies a boundary condition on the boundary

of the upper half plane (UHP)). As has been shown in [5], as long as the state |ψ〉 is a

conformally invariant boundary state, the correlation function of twist fields in the UHP,

involved in computing the Renyi entropy boils down to correlators on the plane involving

the original twist fields and their images in the lower half plane. This result is universal

and is independent of the choice of the specific conformal boundary state, of which there

is an infinite tower (the so-called Ishibashi states). Furthermore, as emphasized in [5],

even if our initial state is not one of the conformally invariant boundary states, RG flow

takes it to the nearby Ishibashi state; thus, for sufficiently large length scales/time scales

the result becomes completely universal. From the holographic viewpoint, the universality

is encapsulated by the fact that the bulk is given by a BTZ black hole geometry. These

features have already appeared in the work of [6]. Such universalities with respect to the

initial state have also been remarked upon in [8, 11].
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In addition, to explore charged entropies, we studied: holographic entanglement entropy with 
the U(1) charge described in gravity by a U(1) Chern-Simons gauge field, a QFT setup of a 
charged massive scalar field using covariance matrix approach [52,53] and the first law of 
entanglement entropy [54] in the presence of conserved charges. All these original 
computations provided non-trivial checks of this interesting tool, sensitive to symmetries of 
the system. Moreover, at the time, the motivation and need for charged entanglement 
entropies seemed purely theoretical but with time this idea gained more momentum and a 
related holographic work appeared in [55], extremal limit of the entropy was further 
developed in [56] and entanglement of charged operator excitations was investigated in [57]. 
More recently, the idea of “symmetry resolved” entanglement became very popular in 
condensed matter community [58] and computations generalizing our initial results are 
finding more use in this context [59]. 

From a broader perspective, with this work I became interested in quantum information in 
quantum field theories and AdS/CFT. It helped me to formulate a program of testing field 
theories from the perspective of quantum information and entanglement spreading that I have 
been developing for the last years. In particular, I started specializing in quantum quenches in 
field theories and quantum information and computation in AdS/CFT.  

2. “Entanglement of Local Operators in large N CFTs.”	
Another important setup for studying the dynamics of quantum information in quantum field 
theories and holography consists of states excited by insertion of local operators. This is a 
special case of the so-called local quantum quench [60] where one is usually interested in 
dynamics of quantum information measured by entanglement entropy at time t. More 
precisely, focusing on CFTs, at some initial time we start with an arbitrary quantum state and 
then insert a local primary operator at some spatial distance from the interval A of which 
reduced matrix we are interested in (see Fig. 3). Since the insertion breaks translation 
invariance, unitary Hamiltonian evolution leads to a non-trivial change of entanglement 
structure between A and its complement. On general grounds one expects that, as time 
progresses, energy from the local excitation spreads through the system and changes the 
entropy only after it reaches the interval A. Then, depending on the properties of the 
Hamiltonian as well as the entanglement structure of the initial state, one finds different 
characteristic behaviours in the growth of the entropy. This setup was first considered in 
[61-63]. 

	

In [A2], we developed and explored this setting focusing on differences between evolution of 
Renyi and entanglement entropies in holographic and non-holographic CFTs in various 
dimensions. Technically, in CFTs one can compute n-th Renyi entropies by the replica trick 
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Figure 3. Setup for computing Renyi entropies of states excited by local operators. 
Local CFT operator  is inserted in some distance from the interval A. We then perform time 
evolution and compute the change in Renyi entropies of A with time t.  

Oh



using partition functions on n-sheeted geometries or as correlator of twist operators [14], but 
now in the presence of 2n primary operators. Depending on a theory, these correlators can be 
computed directly (e.g., in free theories) or extracted in the large-c limit using conformal 
blocks. On the gravity side, one can construct time-dependent geometries corresponding to 
the excited, non-equilibrium, CFT states and compute entanglement entropies using the HRT 
prescription.  

Before our work, it was found that in two-dimensional rational CFTs (RCFTs) entropy 
increases by a constant amount equal to the logarithm of quantum dimension of the local 
operator [63]. On the other hand, using conformal blocks and bootstrap arguments, we found 
that for strongly interacting holographic models, the entanglement production is faster, and 
the entropy grows logarithmically with time. Moreover, we constructed the dynamical gravity 
dual geometry that represents the excited state by taking the back-reaction from a massive 
particle on the AdS spacetime (see [64] for a similar dual of a geometric local quench). Then, 
using the HRT prescription we found that our result perfectly matches the large-c CFT 
analysis. In addition, we performed a novel holographic computation of the 2n-point 
correlators on the replicated geometry using geodesic approximation in the hyperbolic black 
hole background with temperature related to the replica index n. This computation also 
confirmed the logarithmic growth of the entropy in the holographic regime.  

Last but not least, we managed to analyze this setup in free N=4 SYM theory with SU(N) 
gauge group and found a very different behaviour of Renyi entropies (with ) and 
entanglement entropy. Namely, exciting the state with a singlet operator Tr( ), with an 
SU(N) matrix Z, was seen by Renyi entropies as changing entanglement of the state by 
number J of EPR pairs, whereas entanglement entropy increased by  implying that 
it is sensitive to the internal degrees of freedom of the excitation. 

Our results were among the first works that started probing dynamics of locally excited CFT 
states from the perspective of quantum information and were later extended to various 
modified setups with different families of excitations as well as computations with other 
quantum information tools. More universal results was derived in [65] and importing new 
developments from CFT bootstrap [66], it was argued that, for heavy operator (operator with 
large conformal dimension) in holographic CFTs one may also find saturation of 
entanglement according to the Eigenstate Thermalization Hypothesis (ETH) [67]. 

3. “Quantum Entanglement of Localized Excited States at Finite Temperature.”	
In this work [A3], we generalized our setup to locally and globally excited states at finite 
temperature in 2d CFTs (see also parallel work [65]), and we derived various new results for 
entanglement evolution in thermal states excited by local primary operators. Using conformal 
transformations, we could again compute Renyi and entanglement entropies as well as mutual 
information in large c CFTs. In particular, for locally excited states, we found initial 
logarithmic growth of the entropy, but now, after times of order the inverse temperature, we 
observed universal saturation to the logarithm of the value of thermal entropy.  

Then, we analyzed single interval entanglement entropy in eigenstates of the CFT 
Hamiltonian prepared path integral on a disc with a primary operator inserted at the origin. 
Interestingly, for heavy operators, we derived a very general result in large-c CFTs with 
sparse spectrum where the vacuum block gives a dominant contribution to 4-point 

n ≥ 2
ZJ

∼ log(N )
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correlators. In this case, entanglement entropy, computed by 4-point correlators with two 
heavy excitations and two light twist operators (in the limit of ) can be derived using 
the Heavy-Light conformal block [68] and is universally expressed in a “finite temperature-
like” result: 

where  is the inverse effective temperature of the excitation with dimension h. This 
important result fits well with the expectation that holographic CFTs should generically 
correspond to chaotic Hamiltonians where the ETH hypothesis [67] is satisfied. Usually, the 
ETH is formulated in terms of correlators and other local observables, but our result also 
emphasizes the fact that it can be equally well studied and explored using quantum 
information measures. 

Finally, from the perspective of holography, locally excited thermal states are extremely 
interesting since the dual picture corresponds to a massive particle in the AdS-black hole 
background that is sent from the boundary at time t=0 towards the black hole (e.g. after times 
of order β  it also gets to the horizon region). Indeed, we have explicitly constructed such 
geometry by taking the back-reaction from the point particle on the BTZ metric. This metric 
allowed us to compute the length of extremal geodesic at time t and verify the result from the 
large-c CFT analysis. Our gravity solution can be modelled in various limits by shock-wave 
metrics but it is more general and valid for insertion of operators at arbitrary positions and 
time. Indeed, our work was further generalized to interesting AdS3/CFT2 setups [69-71] and 
is still being used in recent developments in lower-dimensional holographic duality with the 
SYK model as well as the “islands” computations [72,73]. 

4. “Scrambling time from local perturbations of the eternal BTZ black hole.”	
This work [A4], was the final application of the techniques that we developed in [A2,A3] to 
the computation of the evolution of mutual information after local excitation. More precisely, 
Shenker and Stanford [74] argued that, due to their chaotic nature, black holes scramble 
information in the fastest possible manner. Using holography, they showed that when we 
perturb an eternal black hole by a local excitation then the mutual information between two 
intervals A and B on each side will vanish after the so-called scrambling time proportional to 
the logarithm of the black hole entropy (i.e., an example of the butterfly effect). Their 
analysis was done using holography and supported by a random/chaotic qubit model, so it 
was very important to verify to what extend their claim is true in holographic CFTs. 
Fortunately, the tools that we developed studying local operator excitations, both in CFTs and 
in gravity, turned out to be tailor-made for performing this computation. 

In 2D CFT, we considered the time evolution of the thermofield double state (maximally 
entangled state of two CFTs) perturbed by a local primary operator at some time  in the past 
in one of the CFTs. The thermofield double state is holographically dual to the maximally 
extended BTZ black hole (with two asymptotic boundaries) and the excitation corresponds to 
a massive point particle sent from the boundary (left on Fig. 4). The dual geometry of the 
excited state is obtained by taking the back-reaction from the particle i.e., solving Einstein’s 

n → 1

βh
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equations with a point-like source on particle’s trajectory (similar solutions were found in 
[75] and used for quenches in [63]). 

The main object of our interest was then the mutual information between two spatial intervals 
A and B on the left and right boundary respectively, computed in this locally excited state. In 
CFT this computation involves a 6-point correlator of 4 (light) twist operators and 2 primary 
operators. In the large-c limit and assuming the vacuum conformal block dominance we 
evaluated the correlator and computed the evolution of the mutual information as a function 
of . Indeed we found that it vanishes for the value of the “scrambling time” given generally 
by 

where function f contains geometric details of the intervals A and B (L is the interval length), 
β is the inverse temperature of the state, E is the energy of the excitation and finally S 
represents the entropy density of the original system (proportional to c/β).  

On the gravity side, we managed to solve Einstein’s equations analytically and explicitly 
found geodesic lengths needed to compute entanglement entropies and mutual information 
holographically using the HRT prescription. Our results showed perfect agreement with the 
large-c CFT computation of the scrambling time. This was a very important and an elaborate 
check of not only the holographic HRT prescription but also the arguments behind the chaotic 
nature and scrambling of black holes as seen from the perspective of dual CFT. Our works 
were also a part of important developments that lead to the discovery of new probes of 
holographic CFTs and quantum chaos as I will now describe. 

5. “Out-of-Time-Ordered Correlators and purity in rational conformal field theories.”	
Studies of black holes, including the scrambling time and the butterfly effect as well as 
evolution of mutual information led to a paradigm that black holes are the fastest objects in 
nature in processing quantum information [76]. To be more precise, holographic CFTs that 
describe them should exhibit strong quantum chaotic properties. This gave rise to a new 
proposal for a diagnose of quantum chaos in QFTs in terms of the Out-of-Time-Ordered-
Correlators (OTOC) [24-26]. As in every QFT, Lorentzian correlators can be obtained from 
Euclidean ones by analytic continuation which takes into account the ordering of operators in 
Lorentzian time. The ordering that is relevant for the OTOC (5) can be interpreted as 

tω

                                                                  13

X

T

Figure 4. Gravity dual metric for 
evaluation of the scrambling time. 
Dual metric to the TDF state locally excited 
by a primary operator at time  in the past 
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particle following the blue trajectory. In 3D 
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computing the overlap between thermal states with operators inserted at initial time t=0 and 
some later time t and the state with opposite order of the insertions. This ordering is more 
natural from the perspective of the thermofield double state with two pairs of operators at 
different times on each side. Gravitationally, such four-point functions compute high-energy 
scattering of excitations near the black hole horizon and, based on universal results for this 
process, it was conjectured that OTOCs in CFT states dual to black holes decay with the 
maximal possible Lyapunov exponent equal λ=2π/β [28] (see also [77] for recent discussion).  

In [A5], with the aim of better understanding these putative probes of quantum chaos, we 
begun exploring the difference in their evolution in chaotic versus integrable models and 
what kind of information about 2D CFTs they are sensitive to. Interestingly, by carefully 
analyzing the analytic continuation from Euclidean to Lorentzian correlators, we realized that 
OTOCs at late time require performing a monodromy transformation on the conformal blocks 
that four-point correlators are expanded in. This allowed us to give a very elegant proof for 
the late time value of OTOCs in arbitrary RCFTs (non-chaotic) in 2D (see also [78,79] for 
more results). It turns out that in RCFTs, at late time, OTOCs for two operators  and  
approach to a constant value given in terms of the modular S-matrix of the model (the so-
called monodromy constant): 

                                                              ,                                                 (8) 

where ’s are the quantum dimensions of the two pairs of operators used in the OTOC and 
 is the complex conjugate of the modular S-matrix.  

We confirmed this powerful result using known correlators in the SU(N) WZW model, the 
compact boson theories and other RCFTs. Interestingly, from the perspective of 3D Chern-
Simons theory that is closely related to 2D conformal blocks [80] this constant describes 
expectation value of the Wilson loop on the Hopf link computing Jone’s polynomials [80,81]. 
This also suggests that even in RCFTs OTOCs are sensitive to a very fine and complex 
information about the model. These ideas are still being developed at present in the context of 
operator complexity in 2D CFTs. 

In addition, we compared differences in evolution of purity (second Renyi entropy) studied in 
[A2] and OTOCs. We found that while in RCFTs, in the large-N limit, purity can grow 
logarithmically with time similarly to holographic and chaotic models, OTOCs still approach 
to our monodromy constant confirming that model remains integrable. This interesting 
observation highlights the fact that, in order to make a sharp distinctions between holographic 
and non-holographic theories only one tool/probe may not be sufficient.   

6. “Anti-de-Sitter space from Optimization of Path-Integrals in CFTs.” 

In [A6], we initiated the program of extracting holographic geometries from CFT states using 
path integrals. The main idea for our construction came from tensor networks [82,83], where 
one starts from a particular representation of a quantum state (wave function) and then via a 
corse-graining procedure (TNR [83]) an optimal tensor network (geometry) is produced. 
Naturally, for holographic, strongly-interacting CFTs, such procedure must be implemented 
directly in the continuum limit and using universal tools (see e.g. cMERA [84]).  
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Our starting point was the representation of a quantum state in QFT by Feynman’s path 
integral on Euclidean plane with prescribed boundary condition. In fact, in QFT the wave 
function is a functional of this boundary condition. Then, we proposed to replace the flat 
metric on the Euclidean plane by a more general, curved one keeping the boundary condition 
unchanged. This is the step from the left to the middle in Fig 5. Next, in order to mimic the 
optimization procedure, we defined the “path integral complexity” action as logarithm of the 
ratio of two wave functions (curved and flat). This action is a functional of the background 
metric (e.g., in 2D CFTs it is given by the famous Liouville action) and we select the optimal 
metric as the one that minimizes the path integral complexity. We tested this procedure in 
numerous examples in CFTs and found that our optimal metrics are always hyperbolic. This 
established the path integral optimization procedure as a continuous counterpart of the AdS/
TN observation valid beyond free theories. 

               

More specifically, in [A6], we started by analyzing two-dimensional conformal field theories 
where metrics on the 2D Euclidean plane can be always written in the Weyl-flat form 

                                                      .                                           (9) 

By definition, the CFT action is invariant under the Weyl rescaling but the path-integral 
measure is anomalous and transforms with the exponent of the Liouville action [85] that 
becomes our path integral complexity in 2D: 

                                

This path integral complexity is universally defined for all 2D CFTs with central charge c (in 
front of the action) and the optimization procedure for the vacuum state corresponds to 
solving the Liouville equation on the half plane with the boundary condition that the UV 
cutoff is reproduced at the boundary of . The correct solution with the appropriate boundary 
condition is given by the metric on the hyperbolic plane that has constant negative curvature. 

ds2 = e2ϕ(τ,x)(dτ2 + d x2)

τ
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Figure 5. Path Integral Optimization for the vacuum state. 
Original path integral on flat space is replaced with one on curved geometry chosen by minimisation 
of path integral complexity functional. Optimal metrics are hyperbolic geometries realising 
continuous version of the AdS/TN observations.
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We applied this method to thermofield double states as well as primary and vacuum in CFT 
on the circle, and found that optimal metrics for path integrals preparing these states are 
always hyperbolic. Moreover, we interpreted them as slices of dual bulk geometries in AdS. 
This was followed by many interesting developments [86-92] and recently we proposed the 
“gravity dual” prescription of the path integral optimization in holographic CFTs using 
Hartle-Hawking wave functions [93,94]. 

7. “Liouville Action as Path-Integral Complexity: From Continuous Tensor Networks to 
AdS/CFT.” 

In this work we further explored Liouville action as path integral complexity and generalized 
it to higher-dimensional CFTs. Firstly, we interpreted the minimal on-shell value of the 
Liouville action as a relative measure of complexity (see [95] for review) of continuous path 
integral tensor networks. This comes from the fact Liouville action naturally depends on two 
metrics, the reference one (that we took flat in eq. (10)) and the second one related by the 
Weyl factor (9). Moreover, a shift of the Weyl factor accompanied by rescaling of the 
reference metric is a symmetry of the 2D geometry. However, the Liouville action is not 
invariant under this procedure and one has to subtract the volume of the reference metric to 
define the “improved” relative complexity action . Interestingly, this action satisfies 
the so-called cocycle properties in terms of three metrics:  

                 .               (11) 

The first property makes it clear that, unlike quantum computational measures based on 
distance, our relative path integral complexity action can be negative. This property is natural 
from our TN motivated definition that counts the relative number of tensors between two 
continuous tensor networks:  and . 

In the second part of [A7], we proposed a generalization of the relative path integral 
complexity action to higher dimensions. Guiding principles behind it were: the co-cycle 
properties above, solutions of the optimization given by constant curvature slices of AdS 
geometries in higher dimensions, match with holographic results such as entanglement 
entropy for spherical regions and reduction to the Liouville action for d=2. The formula for 
that fulfils all these constraints is given by: 

        

    

and computes relative complexity between background metric  and its Weyl rescaled form 
(9). In higher dimensions this is only a subset of metrics, nevertheless, we analyzed various 
solutions to the path integral optimization with this action with our boundary condition and 
checked that they all have constant negative curvatures (hyperbolic). The overall factor 
related to the Newton constant N~(d-1)/16πG was fixed by match with entanglement entropy 
results and the coefficient of the potential, related to the UV divergence, can be absorbed by 
constant shift of the Liouville field. Finally, the limit of d=2 should be taken on the level of 
the difference of improved actions  and yields . 
Furthermore, we evaluated  on-shell on our examples and found a universal spatial 
volume scaling of the leading UV divergence.  In addition, in [86] Czech argued that various 
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terms of our complexity action can be naturally interpreted from the perspective of MERA-
like tensor networks where the volume term counts the number of unitary and the kinetic 
term the isometric tensors respectively. Our result became the first definition of CFT 
complexity applicable to holographic CFTs and was followed by many interesting works that 
tested and extended it further in various directions. Despite all these appealing properties, the 
higher-dimensional action (12) remained a conjecture, but recently [92,93] we found a very 
strong evidence for  reproducing it as a "UV limit” of the gravity action that computes 
semi-classical Hartle-Hawking wave functions. 

8.  “Holographic Entanglement of Purification from Conformal Field Theories.” 

This work was the final application of the path integral optimization to computation of 
entanglement of purification (EoP) in AdS/CFT. In [96] authors proposed a new 
correspondence between the minimal area of the entanglement wedge cross-section  (see 
also [97,98] for other proposals relating the area of the cross-section to CFT computations) in 
AdS and quantum information measure of entanglement for mixed states called entanglement 
of purification  [99]: 

                               .                (13) 

In the above formula the density matrix  of two regions A and B is computed from a 
general wave function . Entanglement of purification  is then computed as 
entanglement entropy  of the union of A and its complement  minimized over all 
possible purifications that give rise to . On the other hand, on the gravity side, the density 
matrix is described by the entanglement wedge with cross section  with area .  

The above correspondence was argued based on various non-trivial quantum information 
theoretic properties of EoP that were found to be satisfied by the area of the entanglement 
wedge cross-section in gravity as well [96]. However, prior to our work, there has not been 
an explicit CFT computation that could support this interesting relation. The main difficulty 
in computing EoP in CFTs comes from its mathematically elegant by formal definition with 
minimization over “all possible” purifications that becomes an ill-defined problem in 
continuous quantum field theories. On the contrary, the gravity dual proposal with the 
minimal wedge cross-section is well defined and straightforward to evaluate, providing a 
sharp prediction for the correct CFT counterpart. 

Our new idea in this work was to focus on a class of “geometric purifications” corresponding 
to Weyl rescalings of the background metric in CFT that, by the path integral optimization 
construction, have minimal path integral complexity. In this class, the evaluation of the EoP 
boils down to the computation of entanglement entropy in a 2D CFT on hyperbolic 
geometries. Using standard CFT techniques on hyperbolic space, we evaluated EoP in these 
purifications and verified that it perfectly matches the gravity result. This was the first 
computation of EoP in quantum field theory and our result was recently reproduced from 
numerical computation in free Gaussian system [100,101]. This work was also one of the first 
important applications of the path integral optimization and established it as a powerful tool 
for probing many-body systems.  
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9. “Complexity as a novel probe of quantum quenches: universal scalings and 
purifications.” 

Similarly to the developments in entanglement entropy in many-body systems [102,103] it 
was natural to start with testing potential measures of complexity in exactly solvable, free 
Gaussian systems [47]. Even in these simple settings there are numerous approaches that one 
can consider. However, as discussed in the introduction, Nielsen’s geometric definition of 
circuit complexity based on the geodesic length in the manifold of unitaries stands out as a 
potentially useful tool in QFTs [45,46]. Indeed, initial results [47,48] that applied it to 
compute complexity of the vacuum states showed reasonable behaviour and universal scaling 
with the volume of the system. In [A9] we decided to employ this new tool in the context of 
quantum quenches and test whether it was sensitive to the interesting non-equilibrium 
physics, previously only probed with correlation functions [104] and entanglement measures 
[105]. 

The setup that we considered in [A9] is given by the harmonic chain with time dependent 
mass as follows: 

             

The mass profile is chosen such that at early times ( ) it is constant, then it passes 
through a massless “critical point” at  with velocity  (the so-called “quench rate”) and 
returns to its initial value at late times ( ). One generic choice of the profile described 
above that we adapted is given in terms of hyperbolic functions (see eq. (5) in [A9]). The 
interesting question then is how physical quantities evolve with time during this process and 
how they depend on the quench rate ? Often, depending on the quench rate, one can 
describe the physics of such non-equilibrium evolution using scaling arguments, with the 
most famous example of the Kibble-Zurek scaling [106,107] for “slow quenches” as well as 
recently found universal scalings in the fast quenches [108]. 

In our work we were interested in circuit complexity between the reference state 
corresponding to the ground state of the early-time Hamiltonian and a target state described 
by the wave function of the Hamiltonian at time t. As in previous works, we defined circuits 
in terms of position and momentum gates or, equivalently, we described them in terms of 
transformations of the covariance matrix for this Gaussian system. It turned out that the  
algebra of “sufficient set” of our unitary gates corresponds to Nielsen’s geometry given by 
the hyperbolic space  (one for each momentum mode separately) and our task was to find 
minimal geodesics in this geometry at time t. Having solved this problem, we adapted the 
cost function given by the  norm, summed (and regulated) the answers from each mode 
and studied its dependence on the quench rate. 

In this proof of concept work, we analyzed complexity from the “universality” point of view 
and indeed verified that it is sensitive to these universal scalings i.e., shows particular 
scalings depending on the quench rate and hence can be used as a novel probe of quantum 
quenches. For example, we verified that at the critical point , it scales linearly with the 
quench rate (see Fig. 6). Similar results were confirmed in [109,110] and complexity is now 
frequently used as an interesting new probe of non-equilibrium physics [111]. 
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10.  “Quantum Computation as Gravity.” 

Last but not least, I will finish with a summary of [A10] where, building on the intuition from 
the path integral complexity as well as Nielsen’s geometric complexity we proposed how to 
formulate and compute circuit complexity in conformal field theories. We started from CFTs 
in 2 dimensions which enjoy a large, universal “symmetry sector” governed by two copies of 
the infinite dimensional Virasoro algebra generated by the modes of the chiral and anti-chiral 
components of the energy momentum tensor  and  respectively. In this setup, we defined 
“Virasoro circuits” built from the energy momentum tensor. More precisely, our symmetry 
circuits in 2D CFTs have the form [A10]: 

where  stands for the path ordering,  is the energy momentum tensor of 2D CFT expanded 
in terms of Virasoro generators  and similarly for ( ). These circuits take us from some  
given reference state (e.g. vacuum or other eigenstate of the Hamiltonian) to an arbitrary 
Virasoro descendants. Nielsen’s geometric approach is then naturally implemented by 
defining circuit complexity by the length of the minimal geodesic in the Virasoro group 
(infinite dimensional geometry). At first it appears that this setup is too simple but actually in 
holographic large-c CFTs points on these “orbits” can be represented in terms of geometries 
(Banados metrics [112]) that are fixed by specifying the expectation values of T and . Of 
course, the universal symmetry sector can be naturally extended to include (non-universal) 
primary operators in gates Q instead of T. 

This is not the only connection to gravity that we observed in our setup. Namely, in the 
Nielsen’s approach, geodesics length clearly depends on the cost function (metric on the 
space of unitaries). In [49] it was argued that, in QFTs, it is natural to define them in terms 
connected or disconnected higher point correlation functions of the “instantaneous gates” Q. 
Interestingly, we showed that in the large-c limit various norms are equivalent up to 1/c 
corrections and the action that emerges from the geometric complexity is given by the famous 
Polyakov action of 2D gravity [85] or more mathematically, the geometric action on the 
coadjoint orbits of the Virasoro group [113]. This explains the title and our main claim that, in 
CFTs, there exist cost functions that naturally lead to gravity actions governing circuit’s 
complexity. It turns out that this feature is universal in many generalizations of our analysis 
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P T
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Figure 6. Scaling of circuit complexity with the quench rate. 
Figure shows log-log plot of complexity of the (1+1)D model (14) at the critical point t=0 as a 
function of the quench rate . The straight line reveals the linear scaling in the fast regime. δt

3

where a(t), b(t) 2 R are the real and imaginary parts of
the frequency iḟ

⇤
/f

⇤ in (3), and we have suppressed the
time-dependence for compactness. Note that a> 0 (one
can verify that the solutions to (4) indeed satisfy this
normalizability constraint), while b may take any sign.
Our reference state will be provided by the ground state
of our time-dependent Hamiltonian (6) at t=�1,

 R(x) =
⇣
!R

⇡

⌘1/4
exp

n
�
!R

2
x
2
o

, (11)

where 0 < !R 2 R. Our task is now to construct a cir-
cuit U satisfying (9) according to the geometric approach
outlined above.
The details of our complexity calculation are given in

appendix A. The key point is that we may view U as a
matrix which acts at the level of covariance matrices, so
that (9) becomes

GT = UGRU
T
, (12)

where the matrix elements of G are given by

G
ab = h |⇠

a
⇠
b + ⇠

b
⇠
a
| i , (13)

where ⇠
a

⌘ {x
1
, p

1
, . . . x

N
, p

N
} are the dimensionless

phase-space operators for N oscillators. The covariance
matrix is an equivalent representation of the wavefunc-
tion, which has the advantage of making the explicit
choice of gates more transparent. In particular, we seek
the minimal set of gates necessary to e↵ect the desired
transformation. As explained in appendix A, this natu-
rally leads to hyperbolic space, with the metric

ds2 =
2dz2 + dy2

8z2
, (14)

and therefore the complexity of the target state (10) is
given by the well-known geodesic distance formula on H

2

(cf. appendix B), which admits a particularly compact
expression in terms of the squeezed target-state covari-
ance matrix G̃T = SGTS

T :

C =
1

2
ln
⇣
�+

p
�2 � 1

⌘
, � ⌘

1

2
tr G̃T , (15)

where S is the squeezing operator defined such that
SGRS

T = . This result immediately generalizes to
the case of N oscillators: since G̃T is block-diagonal in
an appropriate basis, the geometry factorizes into N in-
dependent copies of H2. Hence the complexity of a 1-
dimensional lattice of oscillators is

C =

vuut
NX

j=1


1

2
ln
⇣
�j +

q
�
2
j � 1

⌘�2
. (16)

Note that in this expression, we have added the complexi-
ties in the L2-norm; we shall comment on the use of other
norms in appendix D. By taking the continuum limit of

such a lattice, we obtain the complexity for a bosonic
system in 1+1 dimensions. Specifically, we consider the
harmonic chain whose Hamiltonian is given by

H =
1

2

NX

n=1

�
⇧2

n + (�n+1 � �n)
2 +m

2(t)�2n
�
, (17)

where (�n,⇧n) are mutually conjugate scalar field vari-
ables. Since we work with dimensionless variables, we
shall set the lattice spacing (i.e., the UV-cuto↵) to unity.
In momentum space, each mode then satisfies

�̈k +

✓
4 sin2

k

2
+m

2(t)

◆
�k = 0 , (18)

where we have imposed periodic boundary conditions k=
k+2⇡, and the quench profile is given by m(t)=!(t/�t) in
(5). The reference state, | Ri is given by the ground state
of the Hamiltonian (17) at t = �1 when m(t) = !0.
Integrating over momentum modes, the continuum limit
of (16) is simply

C(t) =

sZ 2⇡

0

dk

2⇡


1

2
ln

✓
�k(t) +

q
�
2
k(t)� 1

◆�2
. (19)

where �k(t) is given in (15) with the covariance matrix
corresponding to the k

th oscillator.
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Figure 1. Log-log plot of complexity of the (1+1)-dimensional
free field theory (19) at the critical point t=0 vs. the quench
rate �t (measured in units of the lattice spacing), with !0 =
0.005. The straight-line fit (blue) reveals linear scaling in the
fast regime.

Since we are interested in the behaviour of complexity
as the system passes through the critical point of the
quench, it is su�cient to evaluate this function at t = 0;
see Fig. 1. This then allows us to extract the universal
scaling behaviours, which we examine in more detail in
the next section.

Universal scalings in complexity

We now wish to examine the presence of universal scal-
ings of the critical complexity with respect to the quench
rate. In particular, the contributions from individual mo-
mentum modes to C(0) in (19) are plotted in Fig. 2. We

U(⌧) = P exp

✓Z ⌧

0
d⌧ 0(Q(⌧ 0) + Q̄(⌧ 0))

◆
, Q(⌧) =

Z 2⇡

0

d�

2⇡
✏(⌧,�)T (�), (15)
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including extended symmetries in 2D [114] and global symmetry sector of higher 
dimensional CFTs [115]. 

Moreover, we explored different possibilities of defining complexity functional in our 2D 
CFT setup, including connected correlation functions (e.g., the Fubini-Study metric for the 2-
norm) as well as more mathematical approaches based on the Euler-Arnold equations on the 
Virasoro group. Based on large-c scalings as well as time evolution, we argued that some cost 
functions are less natural (e.g. 1/c suppressed) from the perspective of holography but 
nevertheless very interesting on their own right in this completely unexplored setting. Since 
our work only initiated this new exciting direction in CFTs, the final rules of the game for 
holographic CFTs and exact gravity dual of our construction still remain to be determined 
and this is being very actively developed at present (see e.g. [116]). 

Conclusions	
Summarizing, ideas and tools from quantum information and computation turned out to be 
extremely fruitful in the study of holographic correspondence. At present, we are still in the 
explorative phase and this “unreasonable effectiveness” of quantum information in gravity 
remains mysterious. My works on this subject, discussed in this habilitation, were focused on 
aspects of dynamics of quantum information as well as on extracting geometry and 
complexity of states in conformal field theories. In particular, I have developed analytical 
tools to study quantum quenches in CFTs and their gravity dual geometries. My works [A1-
A5] on charged entropies, local operator quenches and back-reacted geometries from point 
particles in AdS are among the important developments in my field. On the other hand, path 
integral optimization in CFTs [A6-A8], that I have developed with my collaborators, not only 
sheds new light on the possible mechanism behind AdS/CFT (extracting geometry from CFT 
states) but also remains one of the leading approaches to field theory complexity. Even 
though complexity in QFTs is still at its infancy, new applications such as [A9] and new ideas 
based on symmetry and universality as [A10] are pushing these developments forward. I am 
certain that further studies of black holes in AdS as well as in observational/realistic 
spacetimes will bring more fascinating surprises in the future and will allow us to understand 
the reason behind the holographic nature of gravity. 
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OTHER ACCOMPLISHMENTS:  

Grants: 
1. NCN Sonata Bis 9 (2020/06/01-2025/05/31), Warsaw, Poland                               
Principal Investigator 
Title: ”Quantum Information in Quantum Field Theories and Holography: Dynamics and 
Complexity.”                                                                                                                                           
Grant number: UMO-2019/34/E/ST2/00123.                                                                                   
Amount: 2 185 000 PLN. 

2. NAWA Polish Returns 2019 (01.02.2020 - 31.01.2024), Warsaw, Poland                
Principal Investigator 
Title: ” Holographic Geometry and Quantum Information”.                                                     
Grant Number: PPN/PPO/2019/1/00010/U/0001.                                                             
Amount: 2 010 000 PLN. 

3. KAKENHI Starting Grant from JSPS (2017-2019), Kyoto, Japan                          
Principal Investigator, 
Title: ”From Einstein equations to Tensor Networks”,                                                           
Grant Number: 17H06787.                                                                                                                     
3 Million Yen (∼24k Euro) for 2 years 2017-2019.  

Fellowships and Awards: 
1. Simons ”It from Qubit” Fellowship (2017/01/01-2019/12/30)                              
Prestigious fellowship from the Simons ”It from Qubit” collaboration.                                       
Around 180 k USD for 3 years at the Yukawa Institute in Kyoto. 
Principal Investigator: Tadashi Takayangi.  

2. JSPS Short Term Scholarship (9 months in 2014)  
Japanese Scholarship for Promotion of Science for 2014. 
4.5 Million Yen (∼36k Euro) for 9 months at the Yukawa Institute in Kyoto, Japan.  

3. Claude Leon Foundation Postdoctoral Fellowship (2013)  
Scholarship for Postdoctoral Researchers for 2014/15, WITS, South Africa.                     
Around 34k EUR for 2 years (declined for the JSPS fellowship).  

4. PhD fellowship at the Niels Bohr Institute (11/2008-10/2011)  
Project Title ”Integrable theories of particles and strings”.                                                 
Around 80k EUR for 3 years.  

5. HSP Huygens Scholarship (01/2008-08/2008)  
A scholarship for students to perform their Master’s research in The Netherlands.            
Awarded by the Dutch Minister of Education, Culture and Science. 
Around 1400 EUR/month.  
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6. Shell Theoretical Physics Award (2008)  
Annual prize of 2000 EUR for the best Master students in The Netherlands. 

7. Scholarship for excellent results of studies (2004-2007)  
Wroclaw University, Poland  

Selected talks and seminars: 

1. "Holographic Path-Integral Optimization", University of Crete, Greece, 2021. 

2. "Path Integral Optimization from CFT to AdS", University of Barcelona, Spain, 2021. 

3. "Path Integral Optimization from CFT to AdS", Wurzburg University, Germany, 2020. 

4. Invited talk (overview of my area): ”Complexity of Energy-Momentum Circuits in 
AdS/CFT. Workshop: “Complexity from Quantum Information to Black Holes”.  
Amsterdam University 2020. 

5. CERN Theory Colloquium, CERN, Switzerland, 2019                                                              
Title: “Quantum Information for Quantum Field Theories: From Black Holes to 
Complexity”.  

6. Workshop at Simons Center for Geometry and Physics, Stony Brook, USA, 2019                       
Title: “Sphere Partition Functions and cut-off AdS”. 

7. Quantum Fields and Strings Seminar at Perimeter Institute, Canada, 2018                                
Title: “Path Integral Optimization and Complexity in 2d CFTs”.  

8. Quantum Information in Quantum Gravity 4, Florence, 2018                                                   
Title: “From Liouville to Nielsen”. 

9. The Relativistic Quantum Information North 17, Kyoto 2017                                                   
“Out of Time Ordered Correlators and Quantum Chaos”.  

10. Theory Seminar at UC Santa Barbara, USA, 2017                                                                 
Title: “Path Integral Complexity”.  

11. Seminar: “Rencontres Theoriciennes” at ENS Paris, 2016                                                       
Tite: “Entanglement of local operators”.  

12. Holography Program at Galileo-Galilei Institute, Florence, 2015                                            
Title: “Quantum Entanglement of local excitations”.  

13. Japanese Strings, YITP, Kyoto, 2014                                                                                  
Title: “Entanglement of local operators in large N CFTs”.     

14. String Theory Seminar at TIFR, Mumbai, 2013                                                                     
Title: “On correlators with giant gravitons”.  

Teaching and Supervision: 

Master’s students: 

1. Mario Benites, Stockholm University, 2015 
Title: ”Covariant Prescription for Holographic Entanglement Entropy” 
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Defended with the highest grade (Now a PhD student at Florida State University, 
USA)  

2. Jan Boruch, University of Warsaw. Expected to graduate in June 2021.                               
Research topic: “Entanglement wedge cross-section in shock wave geometries”.             
Planning to apply for a PhD in my group. 

3. Michal Baczyk, ETH Zurich, Switzerland. Expected to graduate in May 2021.               
Research topic: “Petz map in free quantum field theories”.                                               
Planning to apply for a PhD in my group. 

PhD students: 

1. Dimitrios Patramanis, University of Warsaw. 01.11.2020 - present.                                     
Research topic: “Quantum Information in Quantum Gravity”. 

Mentoring (co-supervising) PhD students at YITP, Kyoto, Japan:  

1. Masamichi Miyaji, 2017-2019 (From 2020 a Postdoc at UC Berkeley, USA). 

2. Kento Watanabe, 2014-2017 (Now Postdoc at UC, USA). 

3. Tokiro Numasawa, 2014-2015 (Now Simons Postdoc at MIT, USA). 

4. Masahiro Nozaki, 2014 (Now Postdoc at UC Berkeley, USA). 

Mentoring (co-supervising) PhD students at WITS in Johannesburg, South Africa:  

1. Gareth Kemp, 2012-2013 (Now lecturer at U. of Johannesburg).  

2. Badr A.E. Mohammed, 2012-2013 (Now professor at SUST, Sudan).  

Invited Lectures: 

1. “Complexity in Quantum Field Theories”                                                                            
Three lectures at ”International PhD School in Theoretical Physics”, Pretoria, South 
Africa, 10/2018.  

2. “Introduction to Entanglement in CFTs”                                                                               
Two introductory lectures for the Theory Group at OKC and NORDITA, Stockholm, 
Sweden, 04/2015.  

3. “Introduction to Integrability”                                                                                                                          
Three lectures on Integrability at ”International PhD school in Theoretical Physics”, 
Johannesburg, South Africa, 09/2013.  

4. “Introduction to String Theory for Mathematicians”                                                                
Two introductory lectures (4 h) on String Theory for the Topology Group. 
Copenhagen, Denmark, 2010.  

Organized Conferences: 

1. ”Quantum Information and String Theory 2019” 27.05-28.06, 2019 YITP Kyoto.  

2. ”Holography, Entanglement and Higher Spin Gravity II” 14-16.03.2018 YITP Kyoto.  

3. ”Holography and Quantum Dynamics” 11.11.2017 YITP Kyoto.  
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