

FACULTY OF PHYSICS UW

DNA damage and repair in cells exposed to radiation

Beata Brzozowska Jerzy Pniewski and Leopold Infeld Colloquium, 4th of March, 2024

Neuroinformatics

Biomedical Physics Division \subset **Faculty of Physics** \subset **University of Warsaw**.

Medical physics

Medical physics @ Biomedical Physics Division

DNA damage and repair processes in cells exposed to ionising radiation

Laboratories

Motivation: why mixed beams? DSB, SSB, 53BP1, GFP

• Focus analysis:

A. Damage induction

B. Repair kinetics

Ongoing projects

Outline

Who is exposed to mixed beams of radiation?

People living in areas of high natural background radiation ($\alpha + \gamma$)

• Aeroplane passengers and astronauts $(n + p + \chi)$

• Cancer patients treated with IMRT and proton therapy $(n + \gamma)$

• People involved in radiation accidents

Absorbed dose: D = dE/dm

LET (Linear Energy Transfer) = dE/dx

Biological effectiveness

RBE - Relative Biological Effectiveness

LET distributions

Tartas A., Filipek M., Pietrzak M., Wojcik A. i Brzozowska B. (2022). Modeling of dose and linear energy transfer homogeneity in cell nuclei exposed to alpha particles under various setup conditions, International Journal of Radiation Biology (https://doi.org/10.1080/09553002.2023.2161659)

Nanodosimetry: measurements of ionisations

M. Pietrzak, M. Mietelska, A. Bancer, A. Rucinski, B. Brzozowska, Geant4-DNA modeling of nanodosimetric quantities in the jet counter for alpha particles, PMB 2021

Radiation exposure on biological systems

DNA damage high LET Iow LET

X-rays, gamma, beta radiation

alpha particles, protons, neutrons, etc.

Mixed beam exposure facility at Stockholm University

²⁴¹Am (0.21 Gy/min)

0.05 Gy/min 0.07 Gy/min

Synergism or additivity?

Positive interaction

Mixed beam irradiation

Source	Dose (Gy)	DSB	SSB	SSB/DSB
α particles	0.235	25.8	150.5	5.8
X-rays	0.253	13.5	241.3	17.9
Mixed beams	0.488	38.9	391.7	10.06

MC simulations with PARTRAC

Brzozowska B., Tartas A. i Wojcik A. (2020). Monte Carlo modeling of DNA lesions and chromosomal aberrations induced by mixed beams of alpha particles and X-rays, Frontiers in Physics, Medical Physics and Imaging 8: 567864

photons (0.25 Gy) + alpha particles (0.25 Gy) = mixed beams (0.5 Gy)

How to visualize DSB?

double strand break.

}DNA strand

Radiation-induced foci 53BP1

X-rays

alpha particles

Sollazzo A., Brzozowska B., Cheng L., Lundholm L., Haghdoost S., Scherthan H. i Wojcik A. (2017). Alpha Particles and X Rays Interact in Inducing DNA Damage in U2OS Cells, Radiation Research 188(4): 400-411

mixed beams

control cells (not irradiated)

large focus courtesy of J. Szczechowska

Focus analysis

STEP 1: cell response on radiation - focus frequency as a function of dose measured 0.5 h after exposure

STEP 2: repair kinetics - focus frequency as a function of time for the dose equal 1 Gy

t = 0.5 h because the highest focus frequencies

Dose response

STEP 1: cell response on radiation - focus frequency as a function of dose measured 0.5 h after exposure

Dose response in U2OS cells

saturation: focus confluency alpha particles: lowest frequencies of foci (AF, SF)

If the relationship is linear

C. Streffer and W-U. Müller. Dose-effect relationships and general mechanisms of combined exposures. IJRB 51:961-969, 1987.

STEP 1: cell response on radiation

If the dose response is **not** linear

G.G. Steel and M.J. Peckham Int J Radiat Oncol Biol Phys 5:85-91, 1979

Envelopes of additivity for SF and LF

Repair kinetics

STEP 2: repair kinetics - focus frequency as a function of time for the dose equal 1 Gy

Focus decay

- •focus appearance immediately after irradiation
- •lower no. of foci for alpha particles at 30 min
- •sharp decrease between 30 min and 1 h for alphas and X-rays (41%, 34%)
- •slower decrease for mixed beams (18%)
 - control: 1.9 ± 1.0 X-rays: 5.2 ± 1.8 alpha: 10.9 ± 2.1 mixed: 6.7 ± 1.9

Sollazzo A., Brzozowska B., Cheng L., Lundholm L., Scherthan H. i Wojcik A. (2018). Live Dynamics of 53BP1 Foci Following Simultaneous Induction of Clustered and Dispersed DNA Damage in U2OS Cells, International Journal of Molecular Sciences 19(2): 519

STEP 2: repair kinetics

Mean square displacement

How to visualize DSB?

double strand break.

}DNA strand

- 80 images were taken per radiation quality;
- Every picture was treated as a random representation of all investigated areas;
- deviation equal to 1;

Akuwudike, P., López-Riego, M., Ginter, J., Cheng, L., Wieczorek, A., Życieńska, K., Łysek-Gładysińska, M., Wójcik, A., Brzozowska, B. & Lundholm, L. (2023). Mechanistic insights from high resolution DNA damage analysis to understand mixed radiation exposure. DNA repair, 130, 103554.

TEM analysis

Images were normalised to obtain a mean value of pixel darkness equal to 0 and a standard

Focus number and size

Focus localisation within chromatin

ring), the average pixel intensity (brightness) was computed

For each area surrounding a bead or focus (between the outer and inner

Conclusions

Synergistic effect	 high and low LET redamage than expected the mixed beam effective cancer risk and radia 	
	 initial elimination of slowly than expected 	
Damage response machinery	 the pool of freely av 	
	 additional damage i repaired properly or 	

- e induced by the second agent may not be or in the usual time frame;
- vailable repair proteins is depleted by high LET IR;
- f foci induced by mixed beams proceeded more ed;
- radiations interact to produce more DNA ected from an additive action;
- ffect should be considered when transferring diation protection.

Department of Molecular Biosciences, The Wenner-Gren Institute

Stockholm University

Andrzej Wójcik Lei Cheng Lovisa Lundholm Alice Sollazzo

Does the order of irradiation matter: NBS1 focus dynamics

Tartas A., Lundholm L., Scherthan H., Wojcik A. i Brzozowska B. (2023). The order of sequential exposure of U2OS cells to gamma and alpha radiation influences the formation and decay dynamics of NBS1 foci, PLoS ONE 18(6): e0286902 (https://doi.org/10.1371/journal.pone.0286902)

Do cells adapt to radiation?

Mateusz FILIPEK Medical Physics

+48 22 55 32 858

Location: room 4.58, 5 Pasteur Street, Warsaw

 \sim

CELL SURVIVAL

REPAIR FOCUS ANALYSIS

Do exosomes make cells more radiosensitive?

Pszczółkowska B., Olejarz W., Filipek M., Tartas A., Kubiak-Tomaszewska G., Żołnierzak A., Życieńska K., Ginter J., Lorenc T. i Brzozowska B. (2022). Exosome secretion and cellular response of DU145 and PC3 after exposure to alpha radiation. Radiation and environmental biophysics, 1-12

Can we distinguish between exosomes from healthy and cancer cells?

Zycieńska, K., Pszczółkowska, B., Brzozowska, B., Kamiński, M., Lorenc, T., Olejarz, W., Sęk, S. & Ginter, J. (2022). Brownian Motion Influence on AFM Exosomes' Size Measurements. International Journal of Molecular Sciences, 23(17), 10074.

Katarzyna ŻYCIEŃSKA Medical physics

> +48 22 55 32 855

Location: room 4.55.5 Pasteur Street, Warsaw

Józef GINTER **Medical Physics**

> +48 22 55 32 867

Location: room 4.67, 5 Pasteur Street, Warsaw

Supervision

Can we measure spatial dependencies of ionisation events?

M. Pietrzak, Nanodosimetric characteristic of carbon ion beam - experiments and Monte Carlo simulations, Doctoral thesis, 2023, Faculty of Physics, University of Warsaw

Can nanodosimetric quantities be used to describe DNA damage? Monika MIETELSKA

M. Mietelska, M. Pietrzak, A. Bancer, A. Ruciński, Z. Szefliński, B. Brzozowska, Ionisation detail parameters for DNA damage evaluation in charged particle radiotherapy: simulation study based on cell survival database, under preparation

Medical physics +48 22 55 32 858

Location: room 4.58.

You can design and create, and build the most wonderful place in the world. But it takes people to make the dream a reality.

L Walt Disney

Thank you for your attention! <u>beata.brzozowska@fuw.edu.pl</u>

