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Dear Dr. Kühnel, 

 

I apologize that it has taken me so long to get back to you with what seemed to be a relatively 

simple revision of my manuscript on the maps obtained using X-rays, electrons and neutrons 

as the probe. The delay was caused by issues unrelated to the manuscript: I had to undergo 

several surgeries in the summer/autumn, and I am only slowly catching up now. 

 

The major issue in this revision was the referee’s request to better justify the qualitative 

statements on the effects of excess charge on ED and ESP maps at low and high resolution. I 

believe that I have been able to do this in a very satisfactory way, using both RHF based model 

calculations, and a comparison of experimental ED and ESP maps. The results of these 

calculations, which fully support the analytical results, are presented in the new Fig. 9. I was 

also able to support my conclusions by more literature search. All charge effects that I describe 

have previously been noticed by other authors. The new version of the manuscript does a better 

job referencing the prior work on this specific aspect.  

 

With one exception, the other referee comments were largely editorial, or based on 

misunderstandings that hopefully could be clarified by rewriting some text passages. The 

referee has a point that my generalization from CM shells to quantum chemical shells was too 

general. I still believe that the essence of the argument is correct (when orbitals with different 
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angular momentum are averaged over). However, I was not able to provide a rigorous 

mathematical demonstration. As the generalization is peripheral to the main argument of the 

manuscript, I have simply removed it from the manuscript.  

 

On an editorial level, I have tried to comply with Structure format requirements. In particular, 

I have separated text, figures and Tables, and I have removed the numbering of paragraphs. I 

hope that you will find the new version of the manuscript suitable for publication.    

 

 

With best regards 

 

 
 

Prof. Matthias Bochtler 

International Institute of Molecular and Cell Biology 

Trojdena 4, 02-109 Warsaw, Poland 
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Pawinskiego 5a, 02-106 Warsaw, Poland 

Tel: 0048 22 5970732 

Fax: 0048 22 5970715 
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Reviewer #1: Matthias Bochtler provided the third version of his manuscript, titled "X-rays, 

electrons, and neutrons as probes of atomic matter". In his response, he argues that the manuscript was 

difficult to read because it requires advanced mathematics. However, it is not the equations that are 

difficult to read, it is the text between the equations. The manuscript is lengthy to read and seems to jump 

between topics - it is still hard to discover the line of thought, with some sections seemingly repeating what 

was stated earlier. 

 

Both reviewers did not understand the term EO in version 2 of the manuscript. I still do not. A mathematical 

definition might help, where words fail to explain the concept. 

There is agreement with all referees that the ESP is the electrostatic potential due to nuclei and electrons. 

From the EO point of view, the potential is attributed to the electrons, the contribution of the nucleus is 

treated implicitly. To make the point clearer, the EO picture is now introduced with an additional panel in 

Fig. 2A. In the context of the Cromer-Mann model, the ESP is expressed in terms of ai and bi, which can 

be seen as an example of the EO point of view. 

     

p. 20: "eq. 5 predicts..." where does eq. 5 come from? p. 21 line 16: typo with 'y' rather than 'x' in integral? 

There was a glitch in equation referencing. The text should be: “Eq. 4 for predicts…” The argument 

substitution is now written out explicitly so that the reader can verify mathematical correctness. For the 

second comment, I assume that page 12 (not 21), line 16 is meant. There is no typo. The ‘y’ in the integral 

is correct.  

 

In Eq. 6, tilde(rho(q)) = f(s), while in Eq. 16: tilde(rho(q)) = f_X(q), while q != s 

The difference is between the notations of physicists and mathematicians. Throughout, I use f for the form 

factor, which can be understood as a function of q or s, which is common practice in the physics 

community. Of course, in the mathematical sense, this makes f a different function when the argument is 

q and when the argument is s. To avoid the issue, I would have to introduce different symbols for form 

factors dependent on whether the function argument is q or s. I doubt that this would be helpful. 

 

The text leading from Eq. 18 to 19 is not very clear. Maybe it could be replaced with a logically consistent 

sequence of equations for better readability (same applies in many sections, e.g. 6.1 could this way be 

shortened to a few lines). 

I struggle to reword this to make it clearer. The problem is analogous to a famous problem in astronomy, 

that is described by the exact same mathematics, because the Coulomb and gravitational potentials have 

the same mathematical form.  For a long time, it was unclear whether the gravitational potential from a 

spherical earth was identical to the gravitational potential that would be caused by an equal point mass 

within the center. Differential geometry can then be used to show that: 

(a) outside the spherical earth, the statement is true. 

Response to Reviewers



(b) inside the spherical earth, the statement is only true with modification. The gravitational potential is 

the potential from a point mass, but of the mass equal to the mass inside the sphere that contains the 

observation point.  

 

Section 4.4.5 seems a lengthy discussion about Eq. (1). It states Eq. (20), points out that this Eq. (20) cannot 

be evaluated, while being more accurate than (1), and returns to Eq. (1) for a qualitative description of the 

2/3 power relation between ESP and ED. It seems this is just a repetition of what has been said. 

The derivation of the power law relating ESP and ED from the CM model was necessary because of 

referees’ doubts about the derivation from DFT and TF theory. Note that only “routine numerical 

integration of equation (20) is impossible”, but the integral can actually be evaluated by a combination of 

analytical and numerical methods. As the  

 

Eq. 22 assumes a spherical symmetric potential. This is appropriate for a single 

atom (or ion), but for molecules, this approximation should not hold. Maybe it refers to the integrated 

intensity around one atom. In this case, the upper integration limit would not be infinity. In case only a 

single atom is considered, Coulomb's law is valid, and the intermediate step (the double 

integral) seems an unnecessary complication. 

The referee’s argument looks convincing, but it is nonetheless incorrect. In fact, I made the same mistake 

originally. Following the referee’s line of reasoning, one obtains a result that disagrees with the reciprocal 

space result by exactly a factor of 2. This discrepancy has puzzled me for a long time. The referee’s 

argument and my original own reasoning overlook that only the potential gradient, but not the potential 

itself is related to the charge within. Hence, one integration is necessary to go from the potential gradient 

to potential itself. The other integration is needed to quantify the charge that goes into the calculation of 

the potential gradient, i.e. the charge “within”. 

 

p. 28 argues "In case of the ESP, electrons contribute proportionally to the bj values of their CM shells. 

Therefore,  all space ESP integrals depend strongly on the quantum chemical shell structure of 

the atoms". In response to the review, this line of thought is reasoned with the statement "The chemical 

orbitals can be expanded as a sum of Gaussians". This statement and the above conclusion are incorrect. 

The concept of 'Gaussian orbitals' include Gauss functions, but in combination with a polynomial term 

r^l. In contrast to the CM expansion, Gaussian orbitals therefore do not peak at the origin, but at a certain 

point away from the origin (nucleus), as one would expect for chemical shell structure, but not like CM 

shells. Whether or not ESP integrals depend on the quantum chemical shell (which seems plausible), this 

connection to CM expansion does not justify this claim. 

I am grateful to the referee for spotting this problem. When I made the argument, I had the radial charge 

distribution in mind, which contains an additional 4pi r^2 factor and is 0 at the nucleus for the Cromer-

Mann shells and the quantum chemical shells, irrespective of n and l. As the expansion is indeed 

problematic (also because of intrinsic widths of CM and quantum chemical shells), I have removed the 

claim that the inner/outer shell statements generalize from CM shells to quantum chemical shells, as well 

as any explanations of other effects that use this argument. 

 



The discussion on integrated potential and shell structure would benefit from previous work, notably, Acta 

Cryst.(1994). A50,33-45 (O'Keefe, Spence, "On the Average Coulomb Potential (Phi_o) and Constraints on 

the Electron Density Crystals" 

Indeed,  the reference contains not only the Bethe-Mott formula, but also an equation for the integrated 

ESP (with infinite integration radius), albeit given in Fourier space, that I was unaware of (their equation 

(8)). The work of O’Keefe and Spence is now appropriately referenced. 

 

p.28, "This increase can be understood as a consequence of the addition of electrons, ". Electrons are added 

also within the same row of the periodic table. When moving to the next period, the first electron is added 

at a much larger distance (higher energy level) compared with the addition within a period, resulting in a 

weaker shielding. 

With the removal of the generalization of the influence of inner and outer electrons from CM shells to 

quantum chemical shells, the statement has been removed altogether. Instead, I simply argue with the 

much increased mean square radius, which was earlier given as an alternative explanation. 

 

p. 30: 'equation X': is this a typo with missing reference?  

Indeed, this is an error that has been introduced with the rewrite of the paragraph on the power law. The 

proper equation is now referenced. 

 

Section 4.5.2.1 defines rho_B and rho_R (without further comment), but they are not used anywhere else 

in the manuscript (other than the appendix). What is their purpose within the manuscript? 

In this section, I discuss peak map values for finite B-factor (rho_B) or finite resolution (rho_R), or finite 

integration radius (rho_Rhat). The subscripts were introduced at the request of the other referee. 

Elsewhere, they are not needed, because integration is to infinity, and a resolution or B-factor limit is not 

used. 

 

p. 28: "The data show that integrated and peak map values depend in opposite ways on inner and outer 

shell electrons of neutral atoms. Inner electrons are more important for the ED, outer electrons for the 

ESP" How do the data show these opposite dependency? The graphs are different, but how 

are they related to inner and outer shell electrons (c.f. comment above on Gaussian orbitals). 

The abscissa is in units of (scaled) sqrt(b), a measure for the size of the CM shell. For the validity of the 

extrapolation from CM shells to quantum chemical shells, see the response to the comment on Gaussian 

orbitals. 

 

p. 36: "Therefore, negative excess charge increases the ED and positive excess charge decreases it" is this 

a sloppy sentence? positive charge (i.e. a proton) does not alter the electron density. 

Note that I am referring to “excess” charge, defined as charge not present in the neutral atom, so nuclear 

charge is not an option.  

 

p. 38: "(Fig. 5, column ED)" typo, Fig 6 referred to instead? 

Indeed, this is a typo. Fig. 6 was meant. 



 

p.39: "Of course, the greater relative contribution of excess charge to map values at low than high 

resolution does not mean that partial charge is more accurately measured at low resolution". This may or 

may not be right, but to test this hypothesis, maps calculated from shells (!, high and low resolution) 

would need to be juxtaposed. The manuscript argues by maps from the entire resolution range by providing 

two references, one with high resolution data, one with low resolution data. (Yonekura et al. 2017, Yip et 

al. 2020).  

In my eyes, the best way to demonstrate the validity of the statement would be a juxtaposition of  

(a) a high-resolution cryo-EM map 

(b) an originally high-resolution cryo-EM map, with resolution degraded by a resolution cutoff 

(c) an originally high-resolution cryo-EM map, with resolution degraded by addition of a B-factor 

(d) an originally low resolution cryo-EM map 

The manuscript makes three claims about excess charge: 

(a) it has opposite effect on the ED and ESP 

(b) it affects the ESP more than the ED 

(c) it is more noticeable in low resolution than in high resolution maps. 

In the meantime, I have found reports in the literature on all three effects. The earlier observations are 

now appropriately referenced in the text. To further support the point, I have carried out RHF calculations 

in GAMESS and then calculated ED and ESP maps for high and low B-factors (Fig. 9A). Additionally, I have 

compared charged aspartate and glutamate residues with uncharged asparagine and glutamine residues 

in low and high resolution experimental ED and ESP maps (Fig. 9B). The results of this computational 

analysis are fully consistent with the theoretical expectations.  

 

Overall this text my contain some useful, or new information, but this is not obvious to find, and much of 

the reasoning does not seem to hold. As mentioned above, replacing paragraphs with logically consistent 

equations but be of benefit. In order to test this hypothesis, one would have to compare data in a low 

resolution shell (!) with data at high resolution shell (!). While the claim may or may not be valid, the 

reasoning of the author compares two entire data sets. However, both reviewer seem to judge the quality 

of this manuscript quite differently. I suggest it is now time for the editor to make a decision, without 

further rounds of revision. 

I see a dilemma here. Lecturing on the content of this paper, I have noticed that I have a much better 

audience response if I focus on the results and emphasize conclusions. On the other hand, the reaction of 

the referees shows that many statements in the manuscript are definitely novel, and are even met with 

considerable skepticism, showing that omission of many derivations (as in the original version of the 

manuscript) is not possible at this stage. Perhaps it would be useful to write up a more streamlined review 

of the conclusions after publication of the original paper. Alternatively, I would welcome it very much if 

Structure accompanied the paper by a Commentary that could help guide the reader.  
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Abstract

X-rays, electrons and neutrons interact differently with matter and
probe different properties. X-rays detect electron density (ED). Elec-
trons measure the electrostatic potential (ESP) of electrons and nu-
clei. Neutrons measure the nuclear coherent scattering length (NCSL).
The differences between NCSL maps and the other maps are well
known. In contrast, ED and ESP maps are tacitly expected to be
similar or even identical, as evidenced by the description of micro-ED
and cryo-EM maps as “densities”. Here, I demonstrate that the im-
plicit assumption of ED and ESP equivalence is wrong, but contains
a grain of truth. Based on Density Functional Theory (DFT), the
Bethe-Mott (BM) relation and the Thomas-Fermi (TF) and Cromer-
Mann (CM) atomic models, I show that ED and ESP maps are indeed
more similar to each other than to NCSL maps. Nonetheless, peak
and integrated map values depend differently on atom order number
and on contributions from electrons in inner and outer CM shells.
ED and ESP maps also differ in the sign and relative magnitude of
excess charge effects.

• X-rays, electrons and neutrons probe different aspects of matter.

• The resulting maps are ED, ESP and NCSL maps.

• ESP maps are intrinsically broadest, NCSL maps are intrinsi-
cally sharpest.

• Excess charge has opposite effects on ED and ESP maps, and no
effect on NCSL maps.

Keywords: X-rays, electrons, neutrons, electron density (ED), elec-
trostatic potential (ESP), nuclear coherent scattering length (NCSL),
X-ray crystallography, electron diffraction, cryo-EM, neutron crystal-
lography.
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Introduction

X-rays, electrons and neutrons as the probe

Macromolecular structures can be studied using X-rays, electrons or neutrons
(Shull and Wollan 1948). Diffraction can be used for all three types of probes.
Reciprocal space “imaging” is practiced in the fields of X-ray crystallography
(Drenth 1999), of 3D-ED techniques (Gemmi et al. 2019) including micro-ED
(Clabbers, Shiriaeva, and Gonen 2022), and of neutron crystallography (Blake-
ley, Langan, and Niimura 2008). “Conventional” imaging is only practical using
electrons as probes, because good lenses are only available for electrons, but
not X-ray photons or neutrons. Real space imaging is practiced in the fields
of cryo-electron microscopy (cryo-EM) (Dubochet 2012; Bai, McMullan, and
Scheres 2015) and of cryo-electron tomography (cryo-ET) (Baumeister 2020).
For diffraction techniques with incident wavelength λ, the physical resolution
limit is λ/2 (λ/

√
2 for a flat detector perpendicular to the beam). For cryo-EM

imaging and cryo-ET, the Abbe limit applies (Abbe 1873), given by Scherzer
as 0.6λ or 0.8λ depending on the setup (Scherzer 1949). For diffraction and
imaging, the best possible resolution is therefore of the order of the wavelength.
To achieve atomic or near-atomic resolution, the wavelength must therefore be
less than a few Å.

X-rays as the probe

X-rays as probes of matter are typically used in the 1.6 − 0.5 Å wavelength
range, corresponding to photon energies in the 8 − 25 keV range (Fig. 1A,
left). The long wavelength limit is close to the limit set by the resolution cri-
terion and is additionally limited by the photoelectric effect (Hall 1936). This
effect becomes much more pronounced at long wavelengths (Saloman, Hubbell,
and Scofield 1988) and causes radiation-induced damage without contributing
to the useful signal (except in anomalous scattering experiments). The short
wavelength limit is set by the ratio of desirable coherent to undesirable incoher-
ent scattering, which becomes increasingly unfavourable at shorter wavelengths
(Wentzel 1927; Cromer 1969). Since the incident wavelengths are of the order
of atomic distances, the scattering is typically wide-angle (Fig. 1B, left). In the
long wavelength limit, the cross section for coherent scattering is of the order
of (Zre)

2, where re ≈ 2.8 fm is the classical electron radius (Fig. 1C, left). As
this value is very small, thick samples such as macromolecular crystals can be
probed. Despite the small cross section, very thin samples can also be studied
thanks to the high photon flux and beam brilliance of modern synchrotrons and
X-FEL sources (Shin 2021). In the classical picture, coherent X-ray scattering
can be understood as the radiation from induced dipoles (Jackson 1998). Com-
pared to single electrons, the nucleus feels only a slightly stronger force (Z times,
where Z is the atomic order number). However, it reacts with much greater in-
ertia, due to the larger mass (Nmn/me times, where mn/me ≈ 2000 is the
nucleon/electron mass ratio, and N ≈ 2Z the number of nucleons). Therefore,
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an X-ray beam sees only the electron density (ED) but is blind to the nuclear
density to a very good approximation (Fig. 1D, left).

Electrons as the probe

Electrons as a probe of matter are typically used in the 4.0 − 2.0 pm wave-
length range, corresponding to kinetic energies in the 100−300 keV range (Fig.
1A, middle). Short wavelengths are used, because the larger cross sections for
longer wavelengths would lead to undesirable multi-bounce scattering in all but
the thinnest samples (Lenz 1954). On the short wavelength side, the cryo-EM
contrast at 2.0 pm is already low and would decrease further at even shorter
wavelengths. As the probe wavelength is much shorter than atomic distances,
scattering is focused into a narrow forward cone (Fig.1B, middle). The cross
section for scattering is orders of magnitude larger than for X-rays as the probe
(Henderson 1995). At 300 keV, the electron scattering cross section is of the
order of (0.1a0)

2 for the lighter elements, where a0 ≈ 0.52 Å is the Bohr radius
(Fig. 1C, middle). Due to the large cross section, electrons as a probe are only
suitable for very thin specimens, such as micro-crystals in micro-ED and other
3D-ED techniques, or molecules embedded in thin layers of amorphous ice (cryo-
EM) or very thin specimens (cryo-ET). Electrons as charged probes respond to
the nuclei and the electrons in a sample. Several authors have emphasized that
electrons measure the electostatic potential (ESP), as one would expect, justi-
fying the conclusion either by a physical picture of the probe-sample interaction
and empirical observations (Marques, Purdy, and Yeager 2019), or by detailed
calculations of image formation and reconstruction (Rullg̊ard et al. 2011) (Fig
1D, middle).

Neutrons as the probe

Neutrons as probes of matter are typically used in the 6.0−0.7 Å pm wavelength
range, corresponding to thermal kinetic energies in the 2−150 meV range. The
long wavelength limit is set by the maximum resolution achievable, and to some
extent by radiation damage due to neutron capture, primarily by the 1H and 14N
nuclei in the sample (Henderson 1995). The short wavelength limit appears to
be primarily related to the contraction of the diffraction pattern with decreasing
wavelength and the resulting limits on beam divergence. Tighter limits reduce
the usable neutron flux, which is typically time limiting in neutron diffraction
experiments. As the probe wavelengths and atomic distances are similar, the
scattering is wide angle (Fig. 1B, right). In the useful wavelength range, the
cross section for coherent neutron scattering is independent of wavelength and
happens to be of similar magnitude as the cross section for coherent X-ray
scattering, despite the very different physical origin (Sears 1992) (Fig. 1C,
right). As the cross section is small and the neutron flux is typically limiting,
the technique is best suited to very thick samples (large crystals). Neutrons
interact with nuclei by short-range nuclear forces (Squires 1996). The cross
section for scattering of neutrons by electrons is orders of magnitude smaller

3
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(Condon 1936; Foldy 1958) unless the electrons are unpaired and spin ordered
(Lynn 1936). For non-magnetic biological samples it is therefore reasonable to
conclude that neutrons see only the nuclei but are blind to the electrons (Fig.
1D, right). In the following I will use the term “nuclear coherent scattering
length” (NCSL) maps for maps of non-magnetic samples obtained using thermal
neutrons as a probe (Fig. 1D, right).

X-rays, electrons and neutrons as probes of ED, ESP, and NCSL

The concept that X-rays, electrons and neutrons measure ED, ESP and NCSL,
respectively, is useful and will form the basis of this work. It is an idealisation
applicable when confounding factors such as incoherent scattering, absorption
in the sample and multiple scattering (dynamical diffraction) can be neglected
or corrected for (Wentzel 1927; Cromer 1969; Saloman, Hubbell, and Scofield
1988; Clabbers and Abrahams 2018; Schoenborn and Nunes 1972). Multiple
scattering is a particularly severe limitation for electrons as the probe, because of
the large scattering cross section. In diffraction experiments, it causes a paucity
of weak reflections (Clabbers et al. 2019) and degrades hydrogen visibility in
ESP maps (Palatinus et al. 2017; McCusker 2017; Clabbers et al. 2019). In
the following I will discuss expectations for “ideal” ED and ESP maps, with
occasional reference to NCSL maps for comparison. The focus on “ideal” maps
is useful, because it drastically simplifies the analysis, and still explains actual
features of experimental maps measured using X-rays, electrons and neutrons
as probes.

Methods

Conventions

Key abbreviations are listed in Table 1. Throughout this work, Hartree atomic
units are used. The unsigned electron charge e, the electron mass me, and the
reduced Planck constant h̄ = h/(2π) are set to 1, and the vacuum permittivity ϵ0
is set to 1/(4π). Note that in these units, the speed of light is 1/α ≈ 137, where
α is Sommerfeld’s fine structure constant, and not 1 as in many other systems
of “natural” units. The unit of length in Hartree atomic units is the Bohr,
a0 ≈ 0.52 Å, used for example for resolution R and wavelength λ. The unit of
energy is the Hartree, E0 = h̄2/(mea

2
0) ≈ 27.2eV. EDs and ESPs are measured

in units of e/a30 ≈ 1.08 · 1012C/m3 and E0/e ≈ 27.2V, respectively. The ED
is denoted as a positive number density. Fourier transform pairs are defined
asymmetrically with the 1/(2π)3 factor assigned to the transformation from
reciprocal to real space. A tilde denotes a reciprocal space quantity. Integrals
without explicit bounds are taken over all real or reciprocal space. For scattering
events, λ is the wavelength of the incident beam, θ is the Bragg angle, and 2θ is
the angle of deflection of the probe beam. The momentum change in a scattering
event in atomic units is q = 4πsinθ/λ. In connection with the Cromer-Mann
model, I also use s = sinθ/λ = q/(4π). Both q and s are given in reciprocal
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Bohrs. The resolution R is defined as the smallest distance between crystal
lattice planes that scatter discrete spots, i.e. R = λ/(2sinθ) = 1/(2s). The
gauge (arbitrary offset) for all potentials is chosen such that the potentials are
0 at a large distance from the sample. Φ(r) is used interchangeably with the
ESP for the electrostatic potential from the nucleus and all electrons. Φel is
the electrostatic potential from the electrons only. ΦTF is the electrostatic
potential seen by one electron due to the nucleus and all other electrons, in the
TF approximation. In the large Z limit, for which the TF model is intended,
ΦTF and Φ = ESP need not be distinguished.

Data sources

Revised Cromer-Mann coefficients were taken from the Int. Tables for X-ray
crystallography, vol 4, pages 99-101, as digitalized by the CCP4 project (Agirre
et al. 2023).

Calculations

Numerical work for Figures 3, 5 and 7 was done in python, using the numpy
(Harris et al. 2020) and scipy packages (Virtanen et al. 2020). The relative
contributions of electrons to ED and ESP maps (from the EO point of view) are
expressed in terms of weights wED and wESP . These weights were calculated
using symbolic integration as implemented in the maxima package (Maxima
2022). For numerical tests of the power law relating ESP and ED, equation (20)
had to be evaluated. As an analytical expression for the integral could not be
found, integration was done semi-numerically. For this purpose, the integration
range was partitioned into a small qr region, where numeric integration was
unproblematic, and a large qr region, where numeric integration was hindered
by poor convergence. In this region, the terms in the sum of equation (20)
can be neglected, and the integral can be evaluated analytically noting that∫∞
0

dx · sin(x)/x = π/2. The latter formula can be derived in the y → 0 limit
from the Laplace transform identity e−xysin(x)/x = arctan(1/y) (Bronstein
and Semendjajew 1991). For the calculation of ESP maps, short peptides were
first geometry-optimized using Avogadro (Hanwell et al. 2012). HF calculations
were done for a 6-31G(d) basis set using GAMESS (Barca et al. 2020). The
ED and ESP were calculated based on the GAMESS output using multiwfn (Lu
and Chen 2012; Zhang and Liu 2021). Multiwfn generated maps were read into
numpy arrays using cubetools (P. R. Vaidyanathan, unpublished). Convolutions
to apply B-factors to maps were calculated in reciprocal space for computational
efficiency. Maps were output in .mrc format using EMDA (Warshamanage,
Yamashita, and Murshudov 2022) and displayed using PYMOL (Schroedinger,
unpublished). Map values at atom positions in experimental maps were obtained
by interpolation using MAPMAN (Kleywegt and Jones 1996).
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Results

Manuscript organization

This work summarizes theoretical expectations for the shared features and dif-
ferences of ED, ESP and NCSL maps. The differences between NCSL maps
on the one hand and ED and ESP maps on the other hand are widely appre-
ciated. In contrast, the differences between ED and ESP maps do not appear
to have been systematically explored. Attention has been paid primarily to the
accuracy of map derived models (Wlodawer, Li, and Dauter 2017), rather than
to differences in the maps themselves. With this work, I aim to fill this gap.
After a brief statement of conventions, I start out with the Thomas-Fermi (TF)
and Cromer-Mann (CM) atom models. While the material on the TF model
is of course not novel, the interpretation of the CM coefficients in real space
appears new (albeit it is certainly implicit in the work of Cromer and Mann).
I then proceed to clarify the relationship between the ED and the ESP. The
equations relating the potentials due to electrons Φel with the electron density
ρ are of course well known. It is less well appreciated, however, that Φel cannot
be equated with the ESP, because the nuclear contribution is missing. In fact,
the nuclear contribution dominates and the ESP is best regarded as a nuclear
potential that is imperfectly screened by the electrons. I also test the applica-
bility of the TF theory power law relating ESP and ED for neutral atoms using
the CM coefficients derived from Hartree-Fock theory. The results confirm that
ESP and ED are approximately related by a power law, with an exponent not
very different from 1, explaining why ED and ESP maps are more similar to
each other than to NCSL maps. I quantify map values for spherical neutral
atoms, either at the nuclear positions (“peak map values”), or in a spherical re-
gion around the nuclei (“integrated map values”). I deduce the dependence on
the atom order number and disentangle the contributions of electrons in inner
and outer CM shells. The dependence of the integrated and peak map values
on the atom order number is certainly implicit in prior work, but I am unaware
of any juxtaposition of results for ED and ESP maps. To my knowledge, the
discussion of the relative contributions of electrons in inner and outer CM shells
to the ED and ESP is novel. In the end, I present qualitative corrections for
the neutral atom theory when charge neutrality does not hold.

Atom models

Qualitative properties of ED, ESP and NCSL maps are best understood in
the context of simple atom models. In this work, two types of models for
spherical symmetric atoms are considered, the Thomas-Fermi (TF) model and
the Cromer-Mann (CM) model.

The Thomas-Fermi (TF) model

The TF model smooths over the quantum chemical shell structure of electrons
and treats them as a a continuous gas or quantum liquid (Hohenberg and Kohn
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1964) and can therefore be seen as a precursor of the density functional theory
(Becke 2014). The central ingredient of the TF model is a power law (derived
in the first paragraph of the Suppl.) that relates the potential ΦTF due to the
nuclear charge and the charge of all other electrons on the one hand and the
electronic charge density on the other hand.

ΦTF (r⃗) =
1

2
(3π2)2/3ρ2/3(r⃗) (1)

For spherical, neutral atoms, this formula can be combined with the Poisson
equation (Jackson 1998) to derive the TF equation (Thomas 1927):

∆ΦTF (r) =
8
√
2

3π
Φ

3/2
TF (r) (2)

This equation can be solved for all atoms (all Z) in terms of a universal function
χ that fulfills

√
xχ′′ = χ3/2 and the conditions χ(0) = 1 and χ(x) → ∞ as x →

∞ (Landau and Lifshitz 1977). With the abbreviation C = (3π/4)2/3/2, the
expressions for the potential and the electron density are (Landau and Lifshitz
1977):

ΦTF (r) =
Z

r
χ

(
rZ1/3

C

)
(3)

ρ(r) =

(
Z

r

)3/2 √
8

3π2
χ3/2

(
rZ1/3

C

)
(4)

In these equations, ρ(r) can be directly identified with the ED. ΦTF (r) is the
potential felt by an electron of the atom, due to the interactions with the nucleus
and all other electrons. By contrast, the ESP or Φ(r) is the potential felt by an
electron of the probe beam, which is due to the interactions the nucleus and all
electrons of the atom. For atoms with many electrons, for which the TF model
is intended, the difference is unimportant and ΦFT (r) can be identified with the
ESP. For atoms with just a few electrons, the TF approximation becomes poor
and the identification of ΦTF (r) with the ESP becomes questionable. Numerical
calculations presented later in this work show that even in this low Z regime, the
relationship between ESP and ED is still quite well described by a power law,
albeit with an exponent closer to 1 than TF theory would predict. Qualitatively,
equations (3) and (4) express that all atoms “look alike” from the perspective of
an X-ray photon or electron beam, except for charge and size scale factors. This
is a consequence of the smoothing over the quantum chemical shell structure by
the inhomogeneous electron gas approximation of the TF-model. Within the
limits of this approximation, equation (4) predicts a power-law decrease of the
mean squared radius ⟨r2⟩ with Z.

⟨r2⟩ ∝ Z−2/3 (5)

The Cromer-Mann (CM) model

The CM model is based Hartree Fock (HF) calculations that respect the chem-
ical shell structure of atoms. Cromer and Mann calculated form factors, which

7

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



they then approximated as sums of Gaussian functions, according to the for-
mula:

ρ̃(q) = f(s) =

4∑
i=j

aie
−bis

2

+ c =

5∑
j=1

aje
−bis

2

a5 = c, b5 = 0,

5∑
j=1

aj = Z

(6)

where θ is the Bragg angle, i.e. half the angle of beam deflection, λ the wave-
length, and s = sin(θ)/λ, which relates to the exponent q in the Fourier trans-
form according to q = 4πs. This reciprocal space expression can be converted
into an expression for the real space density ρ(q) using the spherical Fourier
transform for Gaussians.

ρ(r) =
∑
j

ρj(r) where ρj(r) = aj

(
4π

bj

)3/2

e−4π2r2/bj (7)

For bj = 0, the expression for ρj(r) is technically undefined. However, it can eas-
ily be shown that for bj → 0, ρj(r) → ajδ

3(r), where δ3(r) is the 3-dimensional
delta function. The result shows that the CM model approximates both the
reciprocal space form factors and the real space densities as sums of Gaus-
sians. This justifies an interpretation of the ρj(r) as CM electron shells, which
together account for the ED. The CM shells are of course different from the
usual quantum-chemically defined electron shells. The CM shells are not as-
sociated with quantum numbers and can be filled with a non-integral number
of electrons. They are spherically symmetric and have their maximum elec-
tron density at the nuclear position, which is not true in general for quantum
chemical shells (Pauling and Wilson Jr 1985). The aj values play the role of
weights in real and reciprocal space. As the aj values sum to Z according to
equation (6), the aj values can be understood as the number of electrons in
the CM shells in real space. To get a feel for the interpretation of the bj val-

ues, note that the total (non-integer) number of electrons 4πr2draje
−4π2r2/bj

in an interval dr is maximal when r =
√

bj/(2π). This observation sug-
gests a possible relationship between the mean squared radius ⟨r2⟩ and the
bj value of a CM shell. Such a formula can indeed be derived using the formula∫∞
0

xne−x2

dx = 1
2

∫∞
0

y
n+1
2 −1e−ydx = 1

2Γ(
n+1
2 ), where Γ(z) =

∫∞
0

tz−1e−tdt is
the well-known Γ function. Note also that Γ(5/2) = 3/2 ·Γ(3/2), because of the
recursion Γ(z) = (z − 1)Γ(z − 1). Hence:

⟨r2⟩j =
∫∞
0

4πr4ρj(r)dr∫∞
0

4πr2ρj(r)dr
=

aj
4π

b
3/2
j

(
bj
4π2 )

5/2Γ(5/2)

aj
4π

b
3/2
j

(
bj
4π2 )3/2Γ(3/2)

=
3

8π2
bj (8)

The equation shows that the mean squared radius grows with the bj . Math-
ematically, this result is identical to the expression that relates the isotropic
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mean square displacement (in all three spatial directions, hence the factor 3)
to the temperature factor (Bahar, Atilgan, and Erman 1997). However, the bj
values do not describe thermal motion. They rather reflect the smearing of the
electrons in the CM shells. The mean squared radius of the whole atom is a
weighted average of the mean squared radii of the CM shells, where the shell
weights reflect the number of electrons in the shells.

⟨r2⟩ =
∫∞
0

4πr4ρ(r)dr∫∞
0

4πr2ρ(r)dr
=

3

8π2

∑5
j=0 ajbj∑5
j=0 aj

(9)

ED, ESP, and NCSL maps

At atomic resolution, NCSL maps should have point-like atomic signals in the
absence of thermal motion or blurring due to limited resolution. In contrast,
ED and ESP atomic signals are intrinsically broadened, even in the absence of
blurring from thermal motion or limited resolution. The ED and ESP maps are
related in that they both depend entirely (ED maps) or partially (ESP maps)
on the electron cloud. In the following, these relationships will be explored in
more detail. The key conclusion is a confirmation of the power law of equation
(1) relating ESP and ED, with exponent 2/3 for large Z and between 2/3 and
1 for smaller Z. ED and ESP maps are similar because they are related by
a power law with an exponent close to 1. As the exponent in the power law
is smaller than 1, atomic signals are intrinsically broader for ESP than for ED
maps, which can be understood in terms of the long-range nature of the Coulomb
interactions. Of course, atom intrinsic signals are further broadened by thermal
motion (B factor effects) and limited resolution for all three map types.

Electron electrostatic potential and ED

The electron density and the electrostatic potential due to the electrons, a quan-
tity different from ESP (see below), are interdependent. In real space, the rela-
tions are (Jackson 1998):

Φel(r⃗) = −
∫

ρ(r⃗′)
|r⃗ − r⃗′|

d3r′ = −ρ(r⃗) ⋆
1

|r⃗|
(10)

∆Φel(r⃗) = ∇⃗∇⃗Φel(r⃗) = 4πρ(r⃗) (11)

In the equation (10) the ∗ denotes a convolution. The equation follows directly
from the Coulomb law and the superposition principle. In the equation (11)

the operators ∆ and ∇⃗ denote the Laplace and Nabla (gradient) operators
respectively. Geometrically, this equation states that the electron density is
related to the three-dimensional curvature of the electron electrostatic potential.
The Fourier transform gives the corresponding expressions in reciprocal space:

ρ̃(q⃗) =

∫
ρ(r⃗)eiq⃗r⃗d3r = − 1

4π
q2Φ̃el(q⃗) (12)

9
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Φ̃el(q⃗) =

∫
Φel(r⃗)e

iq⃗r⃗d3r = −4π
ρ̃(q⃗)

q2
(13)

These reciprocal space equations can be derived from equation (10), remember-
ing that the Fourier transform of a convolution of two functions is the product
of their Fourier transforms, and that the Fourier transform of 1/|r⃗| is (4π)/q2.
Alternatively, they can be derived from equation (11), since each application of

the ∇⃗ operator in real space corresponds to a multiplication by iq⃗ in reciprocal
space, and since i2 = −1.

ESP and ED, the electrons only (EO) point of view

The equations in the previous paragraph do not describe the relationship be-
tween ED and ESP, despite a widespread perception to the contrary. While ED
is indeed ρ, the ESP is the sum of the potentials of the electrons and nuclei.

ESP = Φ = Φel +Φnuc (14)

Despite this physical reality, it is sometimes useful to assign the potential to the
electrons alone. The electrons must then be divided into a “balanced charge”
group of electrons with a total charge equal to the combined charge of the nuclei,
and an “excess charge” group of electrons (or holes for positive partial charges)
that can contain a non-integer number of electrons and has no counterbalancing
nuclear charge. For the electrons in the “balanced charge” group, the potential is
the potential normally associated with them, plus the potential of a unit positive
charge at the associated nucleus. Ambiguities in the partitioning of electrons
between balanced and excess charge groups, and to nuclei within the balanced
charge group, are inconsequential. They only affect the partitioning of the ESP
into contributing terms, which are non-observable anyway. Since the potentials
are additive, the total ESP is not affected by any of the ambiguities. In the
following, I will refer to the description of the ESP in terms of the electrons
alone, i.e. with implicit nuclear charge, as the “electrons only” (EO) point of
view (Fig. 2A).

Exact reciprocal space relation between ESP and ED

Exact relations between ESP and ED are simpler in reciprocal than in real space.
For simplicity, assume that a spherical neutral atom is placed at the origin. The
ESP is then the sum of potential from the nucleus, Z/r, and from the electrons
Φel. The Fourier transform of 1/|r⃗| is (4π)/q2. The Fourier transform of Φel

in the spherical case is −4πρ̃/q2 according to equation (13). As the Fourier
transform is linear, it follows that:

Φ̃(q) = 4π
Z − ρ̃(q)

q2
(15)

The first and second terms in the numerator of the equation represent the nu-
clear and electronic contributions to the ESP, respectively. For spherically sym-
metric atoms, ρ̃(q) and Φ̃(q) are linearly related to the form factor for X-ray
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scattering fX , and the form factor for electron scattering fe that is termed the
Born electron scattering amplitude in the volume C of the International Tables
of Crystallography.

fX(q) = ρ̃(q) (16)

fe(q) = Φ̃(q)/(2π) (17)

Therefore, equation (15) is equivalent to the celebrated Bethe-Mott equation
(Bethe 1930; Mott 1965) relating X-ray and electron scattering form factors.

Exact real space relation between ESP and ED

The exact relation between ED and ESP is more complicated in real space
than in reciprocal space. First consider the contribution of the electrons to the
potential gradient, in the spherically symmetric case. The Gauss flux theorem
(Gauss 1877) relates the surface integral of the potential gradient to the charge
enclosed by this surface: ∫

S

∇⃗ΦeldS⃗ = 4π

∫
V

ρ(r⃗)d3r (18)

The equation shows that ∇⃗Φel(r⃗) remains unchanged when the electronic charge
inside the sphere of radius r is collapsed into a point charge at the center and
the charge outside this sphere is ignored (Fig. 2B). Now include the nuclear
charge in the consideration. At any observation point r⃗, the contributions to
the potential gradient ∇⃗Φ by electrons inside the sphere of radius r and by the
associated nuclear charges cancel according to Fig. 2B. The rest of the nuclear
charge remains uncompensated. Hence, the potential gradient ∇⃗Φ is equal to
the potential that would result if the electrons outside the sphere of radius r
were collapsed into the nucleus with inverse charge, and all other charge was
removed (Fig. 2C). With the usual Φ(∞) = 0 gauge, one gets:

Φ(r) =

∫ ∞

r

|∇⃗Φ|dr =

∫ ∞

r

∫∞
µ

4πν2ρ(ν)dν

µ2
dµ (19)

The equation indicates that for neutral atoms the potential at a point r⃗ is only
dependent on the electrons outside a sphere of radius r from the EO point of
view.

Approximate real space relation between ESP and ED

The exact relation between ED and ESP in equation (19) is non-local, and
therefore not very intuitive. By contrast, equation (1), which is based on the
TF model, has a simple interpretation. It expresses a power law relationship
between the ED and ESP, provided the quantum chemical shell structure can
be ignored and ΦTF (r) can be identified with the ESP, which is permissible
in the large Z limit for which TF theory is intended. The applicability and
accuracy of the power law relating ED and ESP can be tested using the CM
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model. The expression for the ED can be taken directly from equation (7). A
semi-analytically tractable (see Methods) expression for the ESP is obtained by
plugging equation (6) into equation (15) and applying a radial Fourier transform.

Φ(r) =
1

r
· 2
π

∫ ∞

0

Z −
5∑

j=0

aje
−(qr)2·bj/(4πr)2

 sin(qr)

qr
d(qr) (20)

By eliminating r from the expressions (7) and (20) for the ED and ESP, one
can relate map values over several orders of magnitude, independent of the
TF approximation and the identification of ΦTF with Φ. For large Z atoms,
the dependence ln(ESP) on ln(ED) is well described by a straight line of slope
2/3, as equation (1) of TF theory predicts. For second row elements, and to a
lesser extent third row elements, with smaller Z, ln(ESP) still depends linearly
on ln(ED) to a reasonably good approximation, but the slope is somewhere
between 2/3 and 1 (Fig. 3).

The power law relating ESP and ED with exponent close to 1 indicates
that the maps for neutral spherical atoms are similar, except for scale factors.
Both the ED and the ESP decrease gradually with increasing distance from the
nucleus. As the exponent of the power law is less than 1, the ESP is slightly
broader than the ED profile, particularly for atoms with larger order number
Z, provided that B-factor blurring is absent or equal. This difference may
be understood as a consequence of the long-range of the Coulomb potential.
The intrinsic width of the ED and ESP map peaks has to be contrasted with
the delta-function shape of the NCSL in the absence of thermal broadening.
Formally, the delta function NCSL depends on the ED by a power law with an
exponent approaching infinity, which is very different from the exponent close to
1 relating ESP and ED. At least for neutral atoms, it can therefore be concluded
that ED and ESP maps are much more similar to each other than to NCSL maps
(Fig. 4A).

Due to the reciprocity of lengths in real and reciprocal space, slightly broader
ESP than ED profiles in real space translate to form factors that are slightly
broader for X-ray than for electron scattering. In both cases, they fall off with
inverse resolution, or with increasing momentum transfer 4πsinθ/λ. In contrast,
the form factor for neutron scattering (the scattering length) is a constant,
independent of resolution or momentum transfer (Fig. 4B).

All space ED and ESP integrals

The ED integral over all space is simply the electron count Z.∫
ρ(r⃗)d3r = Z (21)

The ESP integral over all space can be calculated in reciprocal space with equa-
tion (15), as detailed in the Supplement, or in real space by integration by parts
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with reference to equation (19):∫ ∞

0

4πr2drΦ(r) =

∫ ∞

0

4π
r3

3
·
∫∞
r

4πν2ρ(ν)dν

r2
dr =

4π

3

∫ ∞

0

r2

2
4πr2ρ(r)dr = 2πZ

⟨r2⟩
3

(22)

Equations (21) and (22) are general for neutral atoms and neutral, spherical
atoms, respectively. Taking into account that

∫∞
0

4πr2drΦ(r) = Φ̃(0) = 2πfe(0)
according to equation (17), equation (22) is equivalent to the results of Ibers and
O’Keeffe and Spence for the electron scattering form factor in forward direction
(Ibers 1958; O’Keeffe and Spence 1994). For the CM model, equations (21) and
(22) specialize to: ∫ ∞

0

4πr2drρ(r) =

5∑
j=0

aj (23)

∫ ∞

0

4πr2drΦ(r) =
1

4π

5∑
j=0

ajbj (24)

Equations (23) and (24) show that electrons contribute equally to the all space
integral in case of the ED, but not the ESP. In case of the ESP, electrons
contribute proportionally to the bj values of their CM shells. Therefore, all
space ESP integrals depend strongly on the quantum chemical shell structure of
the atoms. With each new row in the periodic table, the all space ESP integral
rises rather abruptly. This increase can be attributed to the strongly increasing
mean square radius ⟨r2⟩ when a shell with a new main quantum number (K,
L, M...) starts to fill. The integration limit ESP decreases with Z as deeper
d- and f-quantum chemical shells are filled. In these situations, the shrinkage
of the mean square atom radius with Z dominates over the additional ESP
contribution from newly added electrons. For p-shells the effects depend on
the main quantum number. Decreases of the integration limit ESP are seen for
low main quantum numbers, while increases are seen for high main quantum
numbers (Fig. 5).

Integrated and peak map values

Maps are usually displaced as isosurfaces at a given contour level, chosen some-
what arbitrarily with respect to the root mean square deviation (rmsd) of the
map. For theoretical description, integrated and peak map values are more
tractable. However, there is a problem at the atomic centers. ESP peak val-
ues diverge at the atomic center. So do ED values, but only in the TF and
CM approximations (when ai > 0 and bi = 0). Fortunately, the ED and ESP
divergences are weak. According to the equations (4) and (3), the ED and
ESP diverge as r−3/2 and r−1, respectively. This divergence is weaker than the
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growth of the differential sphere volume 4πr2dr with r. Therefore, the map val-
ues become finite as soon as any kind of averaging is involved. Map values that
are integrated to a maximum radius R̂, and peak map values in the presence
of B-factor broadening or finite resolution R are effectively averaged, with or
without some weighting. These differences should matter in the general case,
but not in the R̂, B,R → 0 and R̂, B,R → ∞ limiting cases. In the following, I
refer to these limits as the “peak limit” and the “integration limit” respectively.
In the latter limit, the integrated map values become equal to the all space
integrals discussed earlier. In the following, I calculate values for the peak and
integrated ED and ESP, derive the dependence on the atom order number Z,
and clarify the contribution of inner and outer electrons.

ED and ESP Z-dependence in the limits (TF model)

Some scaling rules for integrated and peak map values for neutral spherical
atoms can be deduced independently of detailed atom models. In atomic units,
the ED is equal to Z in the integration limit. Moreover, the ESP is proportional
to Z in the peak limit, because the potential close to the nucleus is Z/r, since
almost all the electron density is outside the sphere of radius r and therefore does
not contribute to the ESP at r. The remaining rules require the power law of
equation (1), or the TF model. In the peak limit, the proportionality of the ESP
to Z implies that the ED is proportional to Z3/2. In the integration limit, the
power law cannot be applied, because a power law for the summands does not
imply a power law for the sum. In this limit, the ESP should be proportional to
Z⟨r2⟩ according to equation (22). Since ⟨r2⟩ ∝ Z−2/3 according to equation (5),
the ESP should grow as Z1/3 in the integration limit, in reasonable agreement
with CM calculations (Fig. 4B). Taken together, the scaling rules suggest that
the ED is more dependent on Z than the ESP, and that the dependence of both
the ED and the ESP is stronger in the peak than in the integration limit (Table
2).

ED and ESP Z-dependence in general (CM model)

Calculations of the Z-dependence of integrated and peak map values in the
general case are easier to do in the CM model than the TF model. Integrated
ED map values can be calculated analytically. For integrated ESP map values,
only a numerical solution was found. For peak map values, analytical solutions
were found in all cases. The necessary calculations are tedious. In the main
text and Fig. 6, I state only the results. The full derivations are presented in
the Supplement.

ED: For the ED one gets with reference to Fig. 6:∫ R̂

0

dr · 4πr2ρ(r) =
5∑

j=1

ajwED(bj , R̂) (25)
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ρB(0) :=
1

(2π)3

∫ ∞

0

dq · 4πq2ρ̃(q)e−Bs2 =

(
4π

B

)3/2 5∑
j=1

ajwED(bj , B) (26)

ρR(0) :=
1

(2π)3

∫ 2π/R

0

dq · 4πq2ρ̃(q) = 4π

3

1

R3

5∑
j=1

ajwED(bj , R) (27)

ESP: For the ESP, calculations require equation (15). One gets, also with
reference to Fig. 6:∫ R̂

0

dr · 4πr2Φ(r) = 2πR̂2
5∑

j=1

ajwESP (bj , R̂) (28)

ΦB(0) :=
1

(2π)3

∫ ∞

0

dq · 4πq2Φ̃(q)e−Bs2 =
4
√
π√
B

5∑
j=1

ajwESP (bj , B) (29)

ΦR(0) :=
1

(2π)3

∫ 2π/R

0

dq · 4πq2Φ̃(q) = 4

R

5∑
i=j

aiwESP (bj , R) (30)

Interpretation of the wED and wESP

The wED or wEPS in equations (25-30) measure the fractional contribution
of an electron to the ED or ESP (from the EO point of view) compared to
what would be expected for a unit point charge at the origin. For any fixed
R̂, B,R, the

∑
ajwj sum with wj values from equations (25-30) is proportional

to the integrated or peak map values, with a proportionality constant that does
not depend on Z or the bj values. Results for typical R̂, B,R are shown in
Fig. 7. The data show that the ED grows fairly steadily with Z, regardless of
the R̂, B,R. In comparison, the ESP grows less smoothly with Z. Ripples in
the ESP dependence on Z in comparison to the overall growth are pronounced
in the large R̂, B,R regime. This is expected, since the integrated and peak
map values in this regime become proportional to

∑
ajbj , to which outer CM

shell electrons make strong contributions. The ED/ESP ratio grows with Z as
anticipated. The power laws of Table 2 imply growth with a slope between 1/2
and 2/3 on a double logarithmic plot. The CM results are closer to the exponent
1/2. Further calculations show that this is the case because the ESP ∝ Z1/3

regime is hard to reach. Moreover, the ESP integral depends on a contribution
from the region of large r, where the TF approximation is poor (Landau and
Lifshitz 1977).
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bj dependent electron contributions to ESP and ED

Electrons in small bj and large bj CM shells generally do not contribute equally
to peak and integrated map values. The expressions of equations (25-30) depend
on a bj independent prefactor, and the bj dependent wED or wESP terms. The
prefactors in equations (25-30) are chosen to represent the contribution of a
point-like unit charge at the nucleus. With this choice, the wED and wESP

can take values between 0 and 1 for the whole (nominal) bj range from 0 to
∞. The wED and wESP values can thus be interpreted as weights that measure
the contribution of electrons in different CM shells to integrated or peak map
values. The plots in Fig. 6 show that electrons in inner CM shells contribute
more to peak or integrated ED map values than electrons in outer CM shells.
In the case of the ESP, the absolute value of the weights decreases with bj
only for excess charges. From the EO point of view, the opposite is true for
electrons in neutral atoms. Those in inner CM shells contribute less than those
in outer CM shells to peak and integrated ESP values. Qualitatively, this result
can be understood as a consequence of incomplete cancellation of nuclear and
electron potentials. The smaller the bj , the better the cancellation, and the
smaller the remaining net potential. However, contributions become (nearly)
bj independent in the large and small R̂, B,R regimes for ED and ESP maps,

respectively. While the large R̂, B,R limit is easily reached, the small R̂, B,R
limit is not, because some of the CM bj values are always small compared to

typical R̂, B,R values. One bj value may even be 0, making the limit completely
inaccessible. Therefore, the conclusion that large bj electrons contribute more
to peak and integrated ESP values than small bj electrons is always true in
practice. In contrast, the statement that small bj electrons contribute more to
peak and integrated ED than large bj electrons needs to be qualified. In the

large R̂, B,R regime, electrons contribute equally to the ED (Fig. 6 and Table
3).

NCSL

On the atomic scale, the nuclei are point-like. Moreover, nuclear interactions
with neutrons have a very short range (Segre 1977). Therefore, the scattering of
neutrons from nuclei is of s-wave type (Landau and Lifshitz 1977) and therefore
isotropic, and the form factor does not depend on sin(θ)/λ. It can be described
by a single number, the nuclear coherent scattering length (NCSL), which de-
termines integrated and peak NCSL map values. For isotope mixtures, the
scattering length can be averaged. Table 4 lists the values for biologically im-
portant atoms, assuming natural isotope abundances (Sears 1992). The NCSL
is positive for most elements, but shows no systematic dependence on Z. The
most prominent example of a biologically relevant element with a negative NCSL
is 1H. Since the scattering length of 2H is positive, the hydrogen signal in NCSL
maps can be tuned continuously from negative to positive values by increasing
deuteration. The NCSL of 2H is similar in magnitude to that of other elements.
Therefore, the hydrogen atoms in deuterated biological samples are very well
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resolved. Deuteration of biological samples also minimizes unwanted neutron
capture because the neutron capture cross section of 2H is exceptionally small
(Sears 1992). Therefore, biological samples are usually deuterated for neutron
diffraction experiments.

Excess charge

Neutral atom theory requires corrections when excess charges are present. Such
charges can be either“true” net charges, or excess charges from bond polar-
ization. “True” net charges are typically compensated by ions from the buffer.
From an electrostatic point of view, the charge pairs are similar to partial charge
pairs, except that there is no covalent bond. The quantitative discussion in
this manuscript is limited to the simplest case of spherically symmetric ex-
cess charge. Spherical symmetry may be a good approximation for “true” net
charge in cations (e.g. Na+, K+, Mg2+, Ca2+) or anions (e.g Cl−), but is
clearly a poor description for charges from bond polarization. The qualitative
arguments, however, are more general, and therefore conclusions are expected
to be qualitatively applicable also to non-spherically symmetric excess charge.
For a quantitative treatment, calculations that go beyond the spherical atom
approximation are required (Kulik, Chodkiewicz, and Dominiak 2022).

Excess charge has opposite effects on ED and ESP

In the case of the ED, excess charge simply adds to the charge of the electron
cloud of the neutral atom. Therefore, negative excess charge increases the ED
and positive excess charge decreases it. In the case of the ESP, excess negative
charge adds to the shielding of the nuclear charge, while excess positive charge
reduces the shielding. Therefore, excess negative charge decreases the ESP and
excess positive charge increases it. The effect explains the poor visibility of
negatively charged amino acid carboxylate groups (Yonekura et al. 2015; Wang
2017b), the weaker than expected signal for phosphate groups (Wang and Moore
2017), and the excellent visibility of metal carbocations (Wang et al. 2021a) in
ESP maps. Hydrogen atoms carrying partial positive charge should be more
visible in ESP than in ED maps. This difference was indeed noted when high
resolution ESP maps obtained by cryo-EM became available for comparison with
ED maps of the same resolution (Yip et al. 2020; Nakane et al. 2020). In the
absence of magnetic scattering, neutrons as a probe are completely insensitive
to excess charge, except for indirect effects of charge on geometry (Fig. 8A).

Excess charge affects ESP more drastically than ED

Excess charge perturbs the quantum chemical shell structure of atoms only on
the periphery, inner quantum chemical shells are expected to be filled and largely
unperturbed. Excess charge is therefore expected to be associated with a bex
value (or several bex values) that are comparable to the largest bj values for
electrons of the neutral atom. For the ED, large bj values are associated with
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small contributions to integrated or peak map values (Fig. 6, column ED). For
ED maps, excess charge therefore competes with all neutral atom electrons, on
less or equal terms. For the ESP, potentials due to electrons and associated
nuclear charges cancel partly. This cancellation is particularly good for inner
CM shell electrons. Therefore, excess charge mostly competes with outer CM
shell electrons only. Additionally, competition is on better or equal terms, except
for peak values when the resolution is very good and the temperature factor very
low (B > b/(1.7)2) (Fig. 6, column ESP). As excess charge effectively competes
more favorably and with fewer neutral atom electrons in case of the ESP than
in case of the ED, the ESP is more sensitive to excess charge than the ED.
This difference between ED and ESP maps has been noted earlier, based on
comparisons of both simulated and experimental maps (Hirai et al. 2007; Wang
2017a). In a materials science context, the result has been stated as a finding
in reciprocal space. “Below a critical scattering vector, s (|s| = sin(θ)/λ),

ranging typically from 0.2 to 0.6 Å
−1

depending on the atomic number, electron
diffraction is more sensitive to valence charge densities than X-ray diffraction”

(Zheng et al. 2005). As R = 1/(2s), critical scattering vectors of 0.2 Å
−1

and

0.6 Å
−1

correspond to resolutions of 2.5 Å and 0.83 Å, respectively. As most
ESP maps have only Fourier components below this threshold, the statement
implies that ESP maps are more sensitive to charge than ED maps at the same
resolution (Fig. 8B).

Excess charge has a relatively larger effect on the ESP at low than at
high resolution

At low resolution, when the temperature factors are high, or when a large inte-
gration radius is chosen, the difference between the point-like nuclear charge and
the more diffuse electron cloud of neutral atoms matters little, and the potentials
compensate quite well. Such compensation does not occur for excess charges.
Hence, excess charges make an important contribution to low resolution ESP
maps. For high resolution, low temperature factors, and when the integration
radius is small, the compensation of nuclear and electronic contributions to the
potential occurs only to a lesser extent. The potential for the neutral atom
(at the nucleus) is therefore larger. On the scale of this larger neutral atom
contribution, the contribution of excess charges to the ESP appears smaller.
Thus, excess charges have a more striking effect on ESP map appearance at low
than at high resolution, even though the high resolution map is objectively more
informative (higher resolution data can always be truncated). The resolution
dependence of excess charge effects on ESP map appearance has been noted
previously by other authors (Hirai et al. 2007; Wang 2017b) (Fig. 8B).

A comparison of actual ED and ESP maps at low and high resolution

To illustrate charge effects independent of potentially confounding radiation
damage effects, theoretical ED and ESP maps were calculated based on RHF
atom models (Fig. 9A). The dipeptides Glu-Arg and Glu-Gln were chosen to
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compare anionic (Glu), cationic (Arg) and neutral (Gln) side chains. To avoid
spurious charge effects at the termini, the dipeptides were assumed to be ami-
dated at the C-terminus and formylated at the N-terminus. To simulate low and
high resolution maps, the ideal ED and ESP maps from the quantum chemi-
cal calculations were convoluted with point-spread functions corresponding to

temperature factors of 45 Å
2
and 10 Å

2
, respectively. The simulated maps are

consistent with the theoretical expectation that charge has opposite effects on
ED and ESP maps, affects ESP maps more than ED maps, and is more notice-
able in low than in high resolution ESP maps (note the Glu carboxylate oxygen
atoms outside the map isocontour surface, black arrows) (Fig. 9A).

To illustrate charge effects for experimental maps, available apoferritin ED
and ESP maps were analyzed (Fig. 9B). Apoferritin was selected as a model
protein because of the availability ED and ESP maps of similar resolution in
the low (Wang et al. 2021b; Hamdi et al. 2020) and high (Val et al. 2012;
Yip et al. 2020) resolution regimes. Asp/Asn and Glu/Gln pairs were cho-
sen for analysis, because of their different charge and near isostericity, which
should result in similar temperature factors. To further minimize temperature
factor effects, average peak map values were determined for all Asp and Asn
OD1 and all Glu and Gln OE1 atoms. For the low resolution ESP map, the
Asp(OD1)/Asn(OD1) and Glu(OE1)/Gln(OE1) ratios of averages were small,
reflecting poor carboxylate visibility. For the other maps, ratios were closer to
1, reflecting similar visibility of carboxylates and carboxamides. Note that ex-
perimental Asp(OD1)/Asn(OD1) and Glu(OE1)/Gln(OE1) ratios may be even
lower than theoretically expected due to radiation damage (Petrova et al. 2009;
Shelley and Garman 2022; Hattne et al. 2018) and the common practice to offset
maps to a mean at or near 0. At least qualitatively, the theoretically expected
effects of charge are also seen in the experimental maps (Fig. 9B).

Discussion

This work describes theoretical expectations for ideal ED, ESP, and NCSL maps
measured using X-rays, electrons, and neutrons as probes (Fig. 1). Atoms in
ED and ESP maps have intrinsic widths, whereas atoms in NCSL maps are
effectively point-like (at the atomic scale) in the absence of broadening due to
thermal motion or limited resolution. DFT theory (or TF theory in the special
case of neutral spherical atoms) suggests that ESP and ED are related by a
power law with an exponent different from, but similar to, 1 (Figs. 3 and 4).
Thus, the (scaled) maps are similar but not identical. As a consequence of the
long-range nature of electrostatic interactions, atoms appear intrinsically wider
in ESP maps than in the ED maps. Due to Fourier reciprocity, the reverse
is true for the form factor profiles (Fig. 4). On average, integrated and peak
map values increase with atom order number Z for both ED and ESP maps,
but the increase is stronger for ED than ESP maps. There is no systematic Z-
dependence for NCSL maps (Table 2). For ESP, but not ED maps, integrated
or peak map values can decrease in some Z regions, for large integration radius,
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high B-factor, or poor resolution (Figs. 5 and 7). This effect, together with
charge effects, predicts that ESP maps should have slightly stronger integrated
map values for carbon than for oxygen, while the reverse should be true for ED
maps. Electrons in inner CM shells contribute equally or more to the ED than
electrons in outer CM shells. The opposite is true for ESP maps (from the EO
point of view) (Table 3 and Fig. 6). Excess or partial charges have opposite
effects on the ED and ESP maps, and no effect on the NCSL maps. In ESP
maps, they are measured more accurately at higher resolution, but their effect
on map isosurfaces appears stronger at lower resolution (Fig. 8 and 9). Overall,
this paper highlights the differences between ED, ESP, and NCSL maps, but
also shows that the former two are more similar to each other than the latter,
which is in line with the common perception.
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Figure legends

Figure 1: X-rays, electrons, and neutrons as atomic resolution probes of matter.
(A) Typical energies and wavelengths (B) Deflection of incident waves/particles
(C) Cross sections (D) Sensitivity to atomic components. Contributions from
electrons in blue, from nuclei in red, and combined contributions in purple.

Figure 2: Nuclear and electronic contributions to the ESP. (A) “Electrons Only”
(EO) point of view with implicit nuclear charge. From the conventional point of
view, the ESP is dominated by the nuclear contribution. Nonetheless, it is often
convenient to describe the ESP exclusively in terms of features of the electron
cloud. For this description, each electron is associated with one unit charge (one
proton) in the nucleus, and its contribution to the potential gradient includes
the contribution of the (implicit) proton. (B) Potential gradient due to the
electrons only, for spherically symmetric electron clouds. According to Gauss’s
flux theorem (Gauss 1877; Jackson 1998), the electric field, and its inverse, the

potential gradient ∇⃗Φel depend only on the charge inside the sphere of radius
r. The potential gradient ∇⃗Φel at r⃗ remains therefore unchanged (curved dark
blue arrow) when the charge inside the sphere of radius r (dark blue) is collapsed
into a point charge, and the charge outside the sphere of radius r (light blue) is

removed. (C) Potential gradient ∇⃗Φ due to the electrons and the nucleus, for
spherically symmetric electron clouds. According to (B), the contribution of the
electrons inside r (dark blue) to the potential gradient cancels perfectly with the
contributions of the associated nuclear charges. Therefore, their contribution
to the potential gradient is 0 from the EO point of view. The electrons outside
the sphere of radius r (light blue) do not contribute to the potential gradient
from the conventional point of view. However, their associated nuclear charges
do. From the EO point of view, these electrons are therefore responsible for
the potential gradient ∇⃗Φ. This gradient remains unchanged (curved light blue
arrow) if the outer electrons (light blue) are collapsed with inverted charge into
the nucleus, and all other charges (dark blue and red) are removed. From the
EO point of view, the potential gradient at r⃗ can therefore be attributed to the
electrons outside the sphere of radius r (albeit with inverted sign). Qualitatively,
this argument explains why electrons in outer CM shells contribute more to the
ESP than those in inner CM shells. For a quantitative treatment, the potential
and its gradient have to be distinguished, as is done in the text.
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Figure 3: Test of the power law relating ED and ESP. Black lines show the
results of CM calculations for atoms with order number 6 (carbon), 10, 20, ..,
90. Note that arbitrary offsets have been added to avoid overlap (3, 6, .., 27
for Z=10, 20, ..90) to avoid overlap between the curves. The thick continuous
grey lines shows the expectation based on TF or lowest order DFT theory, i.e.
they have a slope of 2/3. The dotted line has a slope of 1, which would make
ESP and ED maps identical except for scale factors. For large Z, the calculated
slopes are very close to the expected value of 2/3. For small Z, the CM model
suggests some deviations from the power low. The dependence in the log-log
plot can be roughly modeled with slopes between 2/3 and 1. The curves are
calculated for the radial range from 0.05 to 3 Bohrs (0.26 Å to 1.56 Å). For
smaller values, the CM Gaussians model the cusp of the ED too inaccurately.
For larger values, the numerical integration becomes increasingly unreliable.

Figure 4: Maps and form factors for X-rays, electrons and neutrons as the
probe. (A) Real space. In the absence of B-factor blurring, atoms should
appear point-like in NCSL maps, but not in ED and ESP maps. Equation
(1) predicts that atoms appear slightly broader in ESP than ED maps when
B-factor blurring is absent or equal. (B) Reciprocal space. Form factors are
related to (spherical) atom map values by a radial Fourier transform. Because
of the inverse relationship between lengths in real and reciprocal space, form
factors are broadest (resolution independent) for neutrons as the probe, and
slightly sharper for electrons than for X-rays as the probe.

Figure 5: Dependence of map values on Z for neutral spherical atoms in the
integration limit. The ordinate shows the integrated map values. Calculations
were performed using the revised CM coefficients from the International Tables
for X-ray crystallography. (A) Linear plot of the dependence of the integrated
ESP on Z. The integrated ESP increases strongly when a new main quantum
number shell (K, L, M...) is started and tends to decrease in between, except
when p electrons are added. (B) Double logarithmic plot of the dependence
of the integrated ESP on Z. The TF model predicts the straight dashed line
with a slope of 1/3 (the offset was fitted, not calculated). This slope is in
reasonable agreement with the CM model. The sensitivity of the ESP map
values contrasts with the insensitivity of the ED map values to the quantum
chemical shell structure of the atoms in the integration limit.
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Figure 6: ED (left) and ESP (right, EO point of view) contributions of a unit
charge, relative to the contribution of a unit point charge at the nucleus. For
the ED, the black line applies to electrons in neutral atoms (b = bj) and to
excess electrons (b = bex). For the ESP, the black line applies to electrons
in neutral atoms (b = bj), and the grey dotted line to excess positive charge
(b = bex). Grey dotted and black lines add to 1 (as the potentials cancel, except
for the potential from a unit charge at the nucleus). Dashed lines indicate the
midpoint between the small and large bj regimes, where w=1/2. The data show
that electrons in inner CM shells are more important for the integrated and
peak ED map values than those in outer CM shells. For the ESP, the reverse is
true. From the EO point of view with implicit nuclear charge, outer CM shell
electrons contribute more than inner CM shell electrons.

Figure 7: Z-dependence of integrated and peak map values for selected integra-
tion radii R̂, B-factors B, and resolution cutoffs R, for neutral spherical atoms.
To display the plots for different R̂, B or R values in the same graph, only the∑

j ajwj is plotted. To get to the map values, the ordinate values in the plots
must be multiplied by the prefactors in the equations (25-30). The data show
that the dependence on Z is relatively smooth for the ED in any regime and
for the ESP in the peak limit. The effects of the chemical shell structure of the
atoms are most evident for the ESP in the regime close to the integration limit
(second and third column, red line). In this regime, the map values decrease
with Z in some regions of the plot. The ED/ESP ratio plots (right panels) con-
firm the TF model prediction that the ED is more strongly Z-dependent than
the ESP.

Figure 8: Qualitative excess charge effects (A) Correction to the neutral atom
model due to excess positive (”+”, orange) or negative (”-”, green) charge for
X-rays, electrons and neutrons as the probe. Excess charge has opposite effects
on ED and ESP and affects ESP more strongly than ESP. (B) Comparison of
the effect of excess charge on ESP at high and low resolution. Poor resolution
degrades the neutral atom signal more strongly than the excess charge signal.
The schematic diagrams apply for peak and integrated map values.
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Figure 9: Effects of excess charge on maps (A) Calculated ED and ESP maps
for Glu-Arg and Glu-Gln dipeptides. To avoid spurious charges at the termini,
aminotermini were capped by formyl groups and carboxytermini were amidated.
Note the poor visibility of Glu carboxylate oxygen atoms in high temperature
factor (i.e. low resolution) ESP, but not ED maps. With usual contouring,
the effect is much less visible in high resolution maps. (B) Experimental low
and high resolution ED and ESP maps for selected Asp, Asn, Glu, and Gln
residues of apoferritins. As the structures were determined for apoferritins from
different animal species, conserved residues were chosen as examples. For the
calculation of Asp(OD1)/Asn(OD1) and Glu(OE1)/Gln(OE1) ratios, average
OD1 and OE1 map values for all Asp, Asn, Glu, Gln residues of an apoferritin
subunit were used. No attempt was made to second-guess map offsets chosen by
the original authors. Note the very small ratios for ESP maps at low resolution.
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Table legends

Table 1: Frequently used abbreviations in this work. ED, ESP and NCSL maps
are measured using X-rays, electrons, and neutrons as probes, respectively.

Table 2: Power laws relating integrated or peak map values to Z. The exponents
apply to the limiting cases of very large and small effective averaging areas. Ex-
ponents of 1 are independent of the atom model and should apply to any neutral
atom. The other a values are calculated for the TF model that averages over
the quantum chemical shell structure of atoms. For the NCSL, there is no sys-
tematic dependence of integrated or peak map values on Z. The Z-dependence
of integrated and peak map values is strongest for the ED, intermediate for the
ESP, and absent for the NCSL.

Table 3: bj dependent contribution of a CM shell electron to the ED and ESP
(from the EO point of view). Electrons with small bj values reside in inner CM
shells, those with large bj values in outer CM shells. In practice, the regime of
equal contributions from inner and outer CM shell electrons is not achievable for
the ESP. Therefore, large bj electrons always contribute more to the integrated
and peak ESPs than small bj electrons.

Table 4: Coherent neutron scattering lengths l in fm (not atomic units!) of
biologically important elements, listed in order of increasing Z. For hydrogen,
the 1H and 2H coherent scattering lengths are given separately. For the other
elements, isotope weighted averages are given. The values are taken from a
systematic compilation of scattering data for all elements (Sears 1992).
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Abbreviations

ED (ρ) Electron Density

ESP (Φ) ElectroStatic Potential

NCLS Nuclear Coherent Scattering Length

EM Electron Microscopy

TF model Thomas-Fermi model (electron fluid approximation)

HF model Hartree-Fock model (discrete quantum orbitals)

CM model Cromer-Mann model (Gaussian “orbitals”)

EO point of view “Electrons Only” point of view (implicit nuclear charge)

All space integral Integral extended over all space

Z Atomic order number (number of electrons or protons)

Table 1



Z-dependence

integration limit peak limit

(large R̂, B,R) (small R̂, B,R)

ED Z Z3/2

ESP Z1/3 Z

NCLS Z0 Z0

Table 2



bj dependent electron contributions

integration limit peak limit

(large R̂, B,R) (small R̂, B,R)

ED small bj = large bj small bj > large bj

ESP small bj < large bj (small bj = large bj )

Table 3



1H 2H C N O Na Mg P S Cl K Ca Zn

l(fm) -3.7 6.7 6.6 9.4 5.8 3.6 5.4 5.1 2.8 9.6 3.7 4.7 5.7

Table 4



Supplement to “X-rays, electrons, and neutrons

as probes of atomic matter”

Matthias Bochtler

Derivation of the power law relating potential and
density

The Thomas-Fermi (TF) (Thomas 1927) model treats the electron cloud as
an inhomogeneous electron gas (Hohenberg and Kohn 1964). In a volume dV
there are 2(4π/3)p3F dV/(2π)

3 quantum states with a momentum smaller than
the Fermi momentum pF . In this formula, the pre-factor 2 represents the two
spin states of an electron, and (4π/3)p3F is the volume of a sphere with mo-
mentum pF . The factor (2π)3 in the denominator is the phase space volume
occupied by a quantum state in atomic units. Equating the number of states
with momentum up to pF to the number of electrons in the volume element
ρdV gives an expression for the largest (Fermi) momentum for a given density
ρ, pF = (3π2ρ)1/3. The equation can also be understood in terms of Heisen-
berg’s uncertainty relation (Heisenberg 1927). The higher the electron density,
the more confined a single electron is in space, and therefore the higher its
momentum (the exponent 1/3 arises because the cube root of the density is
an inverse “confinement” length). In atomic units, the kinetic energy corre-
sponding to momentum pF is Ekin = p2F /2 = (3π2ρ)2/3/2. More sophisticated
analysis shows that this expression for the dependence of the kinetic energy
Ekin on ρ is the leading term of more complicated expressions that also include
the gradient of ρ (Weizsäcker 1935), or even non-local functionals (Becke 2014).
For the sake of simplicity, I will continue here with only the leading term. For
a stationary state, no energy should be gained by shifting the position of an
electron. Therefore, the sum of the kinetic and potential energies should be
constant. From the condition that the potential and kinetic energies should
vanish far away from the molecule, it can be further deduced that the constant
should be 0. Taking into account that the electron has a charge of -1 in atomic
units, it follows that Ekin(r⃗) = ΦTF (r⃗). Substitution then leads to equation (1)
of the main text. This approximate equation is very general. It does not depend
on the assumptions of spherical atoms, but it does assume charge neutrality. In
practice, charges in biological macromolecules are neutralised by atoms from the
solution. The inclusion of these ions makes the equation applicable to charged
macromolecules. Alternatively, variants of equation (1) of the main text (with
an offset in the potential) are available that are applicable in the presence of

1
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charge (Landau and Lifshitz 1977).

All space ESP integral from the BM rule

The calculation of the all (real) space ESP integral can be done in reciprocal
space. The calculation starts from the observation that the integral of the ESP
over all real space is related to the Fourier transform of the the ESP at the
origin, which is turn is given by the BM equation. For the ESP, the integrated
map value is given by:∫

Φ(r⃗)d3r = Φ̃(0) = 4π · limq→0
Z − ρ̃(q)

q2
(1)

In order to calculate this limit, it is necessary to know ρ̃(q) not only at the origin,
but also for small q⃗. In this limit, the eiq⃗r⃗ in the Fourier transform formula
for ρ̃(q) can be Taylor expanded to 1 + iq⃗r⃗ − (q⃗r⃗)2/2 + ... = 1 + iqr cosψ −
q2r2 cos2ψ/2 + ..., where ψ is the angle between q⃗ and r⃗. Since the Fourier
transform of a spherically symmetric real function centered on the origin is
real, the first order term in the Taylor expansion (with the pre-factor i) cannot
contribute to the Fourier transform. Considering that the differential volume
element is dV = 2πr2dr sinψdψ, one has for neutral atoms and small q:

ρ̃(q) =

∫ ∞

0

dr 2πr2ρ(r)

∫ π

0

dψ sinψ

(
1− q2r2

2
cos2ψ

)
= Z

(
1 + q2

⟨r2⟩
6

)
(2)

One therefore has: ∫
Φ(r⃗)d3r = limq→0Φ̃(q) = 2πZ

⟨r2⟩
3

(3)

For neutral, spherical atoms, the result is exact because q does not appear in
the equation, and the small q approximation was only necessary to take the
q → 0 bound. The result could also have been derived by applying L’Hopital’s
rule twice to equation (1). It confirms equation (22) of the main text, which
was derived based on real space considerations.

Integrated and peak intensities

In the following, derivations for equations (25-30) of the main text and the
expressions for wED and wESP in main text Fig. 6 will be derived. Note that
scaling is always chosen so that the wED and wESP take on values between 0
and 1. If Γ(z) =

∫∞
0
tz−1e−tdt denotes the well-known Γ function, one has:∫ ∞

0

xne−x2

dx =
1

2

∫ ∞

0

y
n+1
2 −1e−ydx =

1

2
Γ(
n+ 1

2
) (4)
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With the definition of the error function by erf(X) = 2√
π

∫X

0
e−x2

dx, one can

show: ∫ X

0

x2e−x2

dx =

√
π

4

(
erf(X)− 2√

π
Xe−X2

)
(5)

This formula can be readily proven by comparing the values at X = 0 and the
demonstration that the derivatives with respect to X of the left and right sides
of the equation are equal.

ED

Integrated map value

Using main text equation (7) for ρ(r), one has:∫ R̂

0

dr · 4πr2ρ(r) =

4π

5∑
j=1

aj

(
4π

bj

)3/2 ∫ R̂

0

dr · r2e−4π2r2/bj =

4√
π

5∑
j=1

aj

∫ 2πR̂/
√

bj

0

dν · ν2e−ν2

(6)

With reference to equation (2), and the abbreviation γj = 2πR̂/
√
bj , one there-

fore has: ∫ R̂

0

dr · 4πr2ρ(r) =
5∑

j=1

ajwED(bj , R̂)

wED(b, R̂) = erf(γ)− 2√
π
γe−γ2

γ = 2πR̂/
√
b

(7)

Peak map value, B-factor broadening

Using main text equation (6) for ρ̃(r), one has:

ρB(0) =
1

(2π)3

∫ ∞

0

dq · 4πq2ρ̃(q)e−Bs2 =

32π

5∑
j=1

aj

∫ ∞

0

ds · s2e−(B+bj)s
2

(8)

Using
∫∞
0
t2e−t2dt = 1

2Γ(
3
2 ) =

√
π/4, it follows that:

ρB(0) = (4π)3/2
5∑

j=1

aj
(B + bj)3/2

(9)
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Hence:

ρB(0) =

(
4π

B

)3/2 5∑
j=1

ajwED(bj , B)

wED(b, B) = (1 + b/B)−3/2

(10)

Peak map value, blurring by limited resolution

Using main text equation (6) for ρ̃(r), one has with q = 4πs:

ρR(0) =
1

(2π)3

∫ 2π/R

0

dq · 4πq2ρ̃(q) =

32π

5∑
j=1

aj

∫ 1/(2R)

0

ds · s2e−bjs
2

=

32π

5∑
j=1

aj

b
3/2
j

∫ √
bj/(2R)

0

dx · x2e−x2

=

4π

R3

5∑
j=1

aj(√
bj

2R

)3

(∫ √
bj/(2R)

0

dx · x2e−x2

)
(11)

Using equation (2) and the abbreviation βj =

√
bj

2R , one therefore has:

ρR(0) =
4π

R3

5∑
j=1

aj ·
√
π

4
·
erf(βj)− 2√

π
βje

−β2
j

β3
j

(12)

For large βj , the last fraction in equation (7) approaches 0. To derive the small
βj limit, it is necessary to Taylor expand the error function around 0. As can

be readily verified from the definition, erf(x) = 2√
π

(
x− x3

3 + ...
)
. The Taylor

expansion of the exponential is e−x2

= 1−x2+ .... For small βj , the last fraction
in equation (7) therefore converges towards 4

3
√
π
. It is therefore convenient to

write the expression for ρR(0) as:

ρR(0) =
4π

3

1

R3

5∑
j=1

aj ·
3
√
π

4
·
erf(βj)− 2√

π
βje

−β2
j

β3
j

(13)
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Hence:

ρR(0) =
4π

3

1

R3

5∑
j=1

aj · wED(bj , R)

wED(b, R) =
3
√
π

4
·
erf(β)− 2√

π
βe−β2

β3

β =

√
b

2R

(14)

ESP

Integrated map value

Taking into account that
∑5

j=1 aj = Z, the integrated nuclear potential is:∫ R̂

0

dr · 4πr2Φnuc(r) =

∫ R̂

0

dr · 4πr2
5∑

j=1

aj/r
2 = 2πR̂2

5∑
j=1

aj (15)

The gradient of the electronic potential at a point r depends upon the charge
inside a sphere of radius a (see Fig. 2 of the main text). This charge is given by
equation (4). With the gauge that the potential vanishes at infinity, one has:

Φel(r) = −
5∑

j=0

aj

∫ ∞

r

erf(νj)− 2νje
−ν2

j /
√
π

r̃2
dr̃ where νj = 2πr̃/

√
bj (16)

Variable substitution yields:

Φel(r) = −
5∑

j=0

aj
2π√
bj

∫ ∞

µ

erf(νj)− 2νje
−ν2

j /
√
π

ν2j
dνj where µ = 2πr/

√
bj

(17)
The integrated electronic potential is therefore:∫ R̂

0

dr · 4πr2Φel(r) = −
∫ R̂

0

dr · 4πr2
5∑

j=1

aj
2π√
bj

∫ ∞

µj

erf(ν)− 2νe−ν2

/
√
π

ν2
dν

where µj = 2πr/
√
bj
(18)

Another round of variable substitution yields:∫ R̂

0

dr · 4πr2Φel(r) = −
5∑

j=1

aj
bj
π

∫ γj

0

µ2

(∫ ∞

µ

erf(ν)− 2νe−ν2

/
√
π

ν2
dν

)
dµ =

−2πR̂2 · 2
5∑

j=1

aj
bj

(2πR̂)2

∫ γj

0

µ2

(∫ ∞

µ

erf(ν)− 2νe−ν2

/
√
π

ν2
dν

)
dµ

where γj = 2πR̂/
√
bj
(19)
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Taking into account that bj/(2πR̂)
2 = 1/γ2i , and that Φ = Φnuc+Φel, it follows

from equations (12) and (16) that:∫ R̂

0

dr · 4πr2Φ(r) = 2πR̂2
5∑

j=1

ajwESP (bj , R̂)

wESP (b, R̂) = 1− 2

∫ γ

0
µ2

(∫∞
µ

erf(ν)−2νe−ν2
/
√
π

ν2 dν

)
dµ

γ2

γ =
2πR̂√
b

(20)

To my knowledge, this double integral can only be evaluated numerically. In the
limit R̂ → 0, wESP approaches 1, as should be, since only the nuclear charge
matters in this limit. To derive the opposite limit of large R̂, i.e 2πR̂ ≫

√
bi,

note that: ∫ ∞

0

dr · 4πr2Φ(r) =
5∑

j=0

1

4π
ajbj (21)

according to equation (24) of the main text. This can be rewritten as:∫ ∞

0

dr · 4πr2Φ(r) = 2πR̂2
5∑

j=0

aj
bj

8π2R̂2
(22)

Therefore, one can conclude that:

wESP (b, R̂) ≈
b

8π2R̂2
for 2πR̂≫

√
b (23)

Peak map value, B-factor broadening

ΦB(0) =
1

(2π)3

∫ ∞

0

dq · 4πq2Φ̃(q)e−Bs2 (24)

Using the Bethe-Mott relationship,
∑5

j=1 aj = Z, and q = 4πs, it follows that:

ΦB(0) =
2

π

∫ ∞

0

dq(Z − ρ̃(q))e−Bs2 =

8

5∑
j=1

aj

∫ ∞

0

(1− e−bjs
2

)e−Bs2ds =

8

5∑
j=1

aj

∫ ∞

0

(
e−Bs2 − e−(bj+B)s2

)
ds

(25)
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Using
∫∞
0

e−t2dt = 1
2Γ(

1
2 ) =

√
π/2, it follows that:

ΦB(0) = 4
√
π

5∑
j=1

aj

(
1√
B

− 1√
bj +B

)
(26)

Hence:

ΦB(0) =
4
√
π√
B

5∑
j=1

ajwESP (bj , B)

wESP (b, B) = 1− (1 + b/B)−1/2

(27)

Peak map value, blurring by limited resolution

ΦR(0) =
1

(2π)3

∫ 2π/R

0

dq · 4πq2Φ̃(q) (28)

Using the Bethe-Mott relationship,
∑5

j=1 aj = Z, and q = 4πs, it follows that:

ΦR(0) =
2

π

∫ 2π/R

0

dq · (Z − ρ̃(q)) =
2

π

5∑
j=1

aj

∫ 2π/R

0

dq · (1− e−bjs
2

) =

8

5∑
j=1

aj

∫ 1/(2R)

0

ds · (1− e−bjs
2

) =

5∑
j=1

aj ·

(
4

R
− 8√

bj

∫ √
bj/(2R)

0

dx · e−x2

)
=

5∑
j=1

aj ·

(
4

R
− 4

√
π√
bj

erf

(√
bj

2R

))
=

4

R

5∑
j=1

aj ·

1−
√
π

2

erf(

√
bj

2R )
√

bj
2R


(29)

Hence:

ΦR(0) =
4

R

5∑
i=j

aiwESP (bj , R)

wESP (b, R) = 1−
√
πerf(β)/(2β)

β =

√
b

2R

(30)
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