Seminarium Fotoniki
sala 1.02, ul. Pasteura 5
2022-03-03 (12:15)
dr Radosław Łapkiewicz (Instytut Fizyki Doświadczalnej, Zakład Optyki, FUW)
Breaking the diffraction limit by measuring photon correlations
Single fluorescent emitters in biological samples are probably the most common sources of quantum light. Nevertheless, their quantum optical properties are rarely exploited. I will discuss how fluorescence microscopy can benefit from measurements of quantum correlations. Such measurements allowed counting emitters within a diffraction-limited spot [1] and enhancing the resolution of classical super-resolution methods further beyond the diffraction limit, as in the case of recently introduced Quantum Image Scanning Microscopy (QISM) [2].
We found that the classical analog of QISM relying on classical light correlations offers a higher SNR at short measurement times and is less demanding experimentally. This method, termed Super-resolution optical fluctuation image scanning microscopy (SOFISM) [3], exploits fluorescent emitter blinking as its image contrast. SOFISM offers a robust path to achieve high-resolution images with a slightly modified confocal microscope, using standard fluorescent labels and reasonable acquisition times.
[1] Y. Israel, et al., Quantum correlation enhanced super-resolution localization microscopy enabled by a fibre bundle camera. Nat.Comm. 8, 14786 (2017).
[2] R. Tenne, et al., Super-resolution enhancement by quantum image scanning microscopy, Nat. Phot., 13, 116–122 (2019).
[3] A. Sroda, et al., SOFISM: Super-resolution optical fluctuation image scanning microscopy, SOFISM: Super-resolution optical fluctuation image scanning microscopy, Optica 7, 1308-1316 (2020).
Single fluorescent emitters in biological samples are probably the most common sources of quantum light. Nevertheless, their quantum optical properties are rarely exploited. I will discuss how fluorescence microscopy can benefit from measurements of quantum correlations. Such measurements allowed counting emitters within a diffraction-limited spot [1] and enhancing the resolution of classical super-resolution methods further beyond the diffraction limit, as in the case of recently introduced Quantum Image Scanning Microscopy (QISM) [2].
We found that the classical analog of QISM relying on classical light correlations offers a higher SNR at short measurement times and is less demanding experimentally. This method, termed Super-resolution optical fluctuation image scanning microscopy (SOFISM) [3], exploits fluorescent emitter blinking as its image contrast. SOFISM offers a robust path to achieve high-resolution images with a slightly modified confocal microscope, using standard fluorescent labels and reasonable acquisition times.
[1] Y. Israel, et al., Quantum correlation enhanced super-resolution localization microscopy enabled by a fibre bundle camera. Nat.Comm. 8, 14786 (2017).
[2] R. Tenne, et al., Super-resolution enhancement by quantum image scanning microscopy, Nat. Phot., 13, 116–122 (2019).
[3] A. Sroda, et al., SOFISM: Super-resolution optical fluctuation image scanning microscopy, SOFISM: Super-resolution optical fluctuation image scanning microscopy, Optica 7, 1308-1316 (2020).