SEMINARIUM

TEORIA DWOISTOŚCI

KATEDRY METOD MATEMATYCZNYCH FIZYKI



W dniu 24 października 2019 r. o godzinie 10:30

R. Kerner (Paris VI)

wygłosi wykład pt.

"The Z3-graded extension of the Poincare algebra"

streszczenie

    A Z3 symmetric generalization of the Dirac equation was proposed in recent series of papers, where its properties and  solutions discussed. The generalized Dirac operator acts on "coloured spinors" composed out of six Pauli spinors, describing three colours and particle-antiparticle degrees of freedom characterizing a single quark state, thus combining Z2 x Z2 x Z3 symmetries of 12-component generalized wave functions. Spinorial representation of the Z3-graded generalized Lorentz algebra was introduced, leading to the appearance of extra Z2 x Z2 x Z3 symmetries, probably englobing the symmetries of isospin, flavors and families. The present article proposes a construction of Z3-graded extension of the Poincaré algebra. It turns out that such a generalization requires introduction of extended 12-dimensional Minkowskian space-time containing the usual 4-dimensional space-time as a subspace, and two other mutually conjugate "replicas" with complex-valued vectors and metric tensors. Representation in terms of differential operators and generalized Casimir operators are introduced and their symmetry properties are briefly discussed.


Seminarium odbywa się w czwartki w godzinach 10:15–12:00 w sali 2.23 w głównym budynku Wydziału Fizyki UW przy ul. Pasteura 5 (II p.) w Warszawie.
Dodatkowe informacje są zamieszczane na stronie http://www.fuw.edu.pl/KMMF/sem.czw.przedp.html.