|
W dniu 24 października 2019 r. o godzinie 10:30
R. Kerner (Paris VI) wygłosi wykład pt. "The Z3-graded extension of the Poincare algebra" streszczenie A Z3
symmetric generalization of the Dirac equation
was proposed in
recent series of papers, where its properties
and solutions
discussed. The generalized Dirac operator acts
on "coloured spinors"
composed out of six Pauli spinors, describing
three colours and
particle-antiparticle degrees of freedom
characterizing a single quark state,
thus combining Z2 x Z2 x Z3 symmetries of
12-component generalized
wave functions. Spinorial representation of
the Z3-graded generalized
Lorentz algebra was introduced, leading to the
appearance of extra Z2
x Z2 x Z3 symmetries, probably englobing the
symmetries of isospin,
flavors and families. The present article
proposes a construction
of Z3-graded extension of the Poincaré
algebra. It turns out that
such a generalization requires introduction of
extended 12-dimensional
Minkowskian space-time containing the usual 4-dimensional
space-time as a subspace, and two other
mutually conjugate
"replicas" with complex-valued vectors and
metric tensors. Representation
in terms of differential operators and
generalized Casimir
operators are introduced and their symmetry
properties are briefly
discussed.
Seminarium odbywa się w czwartki w godzinach 10:15–12:00
w sali 2.23 w głównym budynku Wydziału Fizyki UW przy
ul. Pasteura 5 (II p.) w Warszawie.
Dodatkowe informacje są zamieszczane na stronie http://www.fuw.edu.pl/KMMF/sem.czw.przedp.html. |