Obserwacja gigantycznych rezonansów dipolowych i rezonansów "pygmy" w ¹³²Sn i sąsiednich izotopach

Na podstawie rozprawy doktorskiej Przemysława Adricha (promotor: prof. W. Waluś) Uniwersytet Jagielloński, 25 VIII 2005 Physical Review Letters **95**, 132501 (2005)

> Tomasz Matulewicz ZFJA 31 marca 2006

Observation of Pygmy and Giant Dipole Resonances in ¹³²Sn and neighboring mass isotopes

Plan prezentacji

- Rezonanse gigantyczne wprowadzenie
- Motywacja
- > Eksperyment
- > Wyniki
- Podsumowanie

Prosty model makroskopowy resonansów gigantycznych

izoskalarny

izowektorowy

Monopolowy (GMR)

Dipolowy (GDR)

Kwadrupolowy (GQR)

Gigantyczny rezonans dipolowy podstawowe własności

> występuje powszechnie

$$\sigma_{\gamma}(E) = \frac{\sigma_{\max}}{1 + \frac{(E^2 - E_{\max}^2)^2}{E^2 \Gamma^2}}$$

$$\sigma_{\max}, E_{\max}, \Gamma - \text{gladkie funkcje masy}$$

$$\mathbf{E}_{\text{GDR}}(\mathbf{A}) = \mathbf{31.2A^{-1/3} + 20.6A^{-1/6}}$$
gęstość powierzchnia

- > energia powyżej progu na emisję nukleonu
- > nasilenie wysyca regułę sumacyjną TRK

Reguła sumacyjna TRK
(dla wzbudzeń dipolowych)
$$\int_{0}^{\infty} \sigma_{\gamma}(E) dE = \frac{2\pi^{2} e^{2} \hbar}{m_{0} c} \frac{NZ}{A} = 60 \frac{NZ}{A} \text{ [mb \cdot MeV]}$$

Prosty model mikroskopowy rezonansów gigantycznych

Koherentna superpozycja wielu wzbudzeń typu 1p-1h pomiędzy głównymi powłokami. Energia silnie przesunięta na skutek oddziaływań resztkowych.

➤Jak powiązać drgania kolektywne...

... z mikroskopową strukturą

jądra atomowego ?

"Particles and Nuclei", Springer-Verlag, 2004

Przykład: GDR w ¹⁶O

Schematyczny model mikroskopowy

$$\begin{pmatrix} H_{0} + V \end{pmatrix}_{i=1}^{N} c_{i} | \psi_{i} \rangle = E \sum_{i=1}^{N} c_{i} | \psi_{i} \rangle$$

$$\sum_{i=1}^{N} \langle \psi_{k} | H_{0} + V | \psi_{i} \rangle c_{i} = E c_{k}$$

$$\sum_{i=1}^{N} \left(E_{i} \delta_{ik} + \langle \psi_{k} | V | \psi_{i} \rangle \right) c_{i} = E c_{k}$$

$$\begin{cases} E_{1} + V_{11} & V_{12} & V_{13} & \cdots \\ V_{21} & E_{2} + V_{22} & V_{23} & \cdots \\ V_{31} & V_{32} & E_{3} + V_{33} & \cdots \\ \vdots & \vdots & \ddots \\ \end{cases} \cdot \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \\ \vdots \end{bmatrix} = E \cdot \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \\ \vdots \end{bmatrix}$$

V₀>0 – oddziaływanie odpychające

"Particles and Nuclei", R. Povh... Springer-Verlag

Motywacje – nasilenie dipolowe w jądrach bogatych w neutrony

W jądrach stabilnych:

 nasilenie GDR wysyca ~100% reguły TRK

W jądrach bogatych w neutrony:

- fragmentacja funkcji nasilenia
- nasilenie poniżej energii GDR
- nowe wzbudzenie kolektywne?

N.Paar et al, Phys.Rev. C67(2003)34312

Atomic and Nucl. Data Tables 1988

Phys.Lett.B601(2004)27-33

Motywacje – poszukiwanie rezonansu typu "Pygmy" (PDR)

Stan kolektywny przy energii poniżej 10 MeV, opisany koherentną superpozycją wzbudzeń 1p-1h, o nasileniu wysycającym kilka % reguły TRK.

Przewidywana gęstość przejść (transition density):

- Wewnątrz jądra protony i neutrony drgają w fazie
- Przy powierzchni wkład tylko od neutronów

Interpretacja makroskopowa – drganie skórki neutronowej względem rdzenia jądra

Eksperyment

>

GSI = Gesellschaft für Schwerionenforschung
 = Instytut Badania Ciężkich Jonów
 Darmstadt, Niemcy

Podstawowe zagadnienia

- Wytwarzanie wiązki (²³⁸U : rozszczepienie w locie + separacja fragmentów)
- Metoda wzbudzenia (reakcja wzbudzenia w peryferyjnym zderzeniu ciężkich jąder – wzbudzenie kulombowskie)
- Metoda pomiaru funkcji nasilenia dipolowego (analiza masy niezmienniczej)

Układ i metoda pomiarowa

Wytwarzanie i identyfikacja wiązki

Układ i metoda pomiarowa

Wzbudzenie kulombowskie w zderzeniu peryferyjnym

Dobrze ugruntowana teoria

Interpretacja ilościowa w modelu absorpcji fotonów wirtualnych. Dla wzbudzeń czysto dipolowych zachodzi:

$$\frac{dB}{dE}(E1,0 \rightarrow E) \sim \frac{1}{n_{E1}(E)} \frac{d\sigma_{Coulomb}}{dE}(E)$$

$$\sigma_{\gamma}^{E1}(E) \sim E \frac{dB}{dE}(E1,0 \rightarrow E) \sim \frac{E}{n_{E1}(E)} \frac{d\sigma_{Coulomb}}{dE}(E)$$

C.A.Bertulani and G.Baur, Phys. Rep. 163 (1988) 299-408

Układ i metoda pomiarowa Pomiar masy niezmienniczej

Identyfikacja ciężkiego fragmentu

Detektor neutronów LAND (Large Area Neutron Detector)

3n

0.5

10.3

28.8

Nucl. Instr. Meth. A314 (1992) 136

Pomiar energii promieniowania γ Darmstadt-Heidelberg Crystal Ball

Detektor Crystal Ball geometria 4π 160 kryształów Nal

- Wydajność kalorymetryczna ~ 0.7
- rozdzielczość energetyczna ~ 15 % (po korekcie dopplerowskiej)

Pomiar całkowitej energii promieniowania γ zaburzony znacznym promieniowaniem tła od procesów atomowych i wzbudzeń tarczy:

W analizie "off line" tylko przednia półsfera detektora: 50% redukcji tła przy utracie 15% kwantów γ emitowanych z jądra pocisku.

Wyniki dla ^{130,132}Sn znalezione parametry PDR i GDR

	PDR			GDR		
	E _{centr} [MeV]	FWHM [MeV]	EWSR [% of TRK]	E _{centr} [MeV]	Г [MeV]	EWSR [% of TRK]
¹²⁴ Sn	-	-	-	15.3	4.8	116
130cn	10.1	- 2 1	7.0	15.9	4.8	145
	(0.7)	< 3.4	(3.0)	(0.5)	(1.8)	(19)
132cm	9.8	- 25	4.0	16.1	4.7	125
31	(0.7)	< 2.5	(3.1)	(0.8)	(2.2)	(32)

- PDR o nasileniu odpowiadającym kilku % wartości reguły TRK
- PDR przy energii ~2 MeV powyżej energii wiązania neutronu
- Energetyczna zdolność rozdzielcza: σ=0.8MeV dla 9MeV σ≈2MeV dla 15MeV

GDR – zgodnie z systematyką

Wyniki dla ^{130,132}Sn

porównanie z przewidywaniami teoretycznymi

EWSR(PDR) EWSR(GDR)							
	Ten eksperyment	RQRPA N. Paar et al., Phys. Rev. C67(2003) 34312	RPA-PC D. Sarchi et al., Phys. Lett. B601 (2004) 27				
¹³⁰ Sn	0.05(2)	0.055	-				
¹³² Sn	0.03(2)	0.05	0.04				

Sprzeczne interpretacje natury teoretycznie znalezionego nasilenia przy niskich energiach:

- >RQRPA koherentna superpozycja wielu konfiguracji 1p-1h. Drganie skórki neutronowej.
- >RPA-PC brak wzbudzeń kolektywnych przy energiach poniżej GDR.

Wyniki dla ^{130,132}Sn PDR w kontekście "klastrowych" reguł sumacyjnych

Reguły stosowalne tylko w przypadku słabo związanych nukleonów walencyjnych

neutronów walencyjnych względem środka masy rdzenia

Wniosek:

Mała wartość R_v zgadza się z modelem drgającej skórki neutronowej uformowanej z neutronów walencyjnych równomiernie otaczających rdzeń jądra

Perspektywy izotopy o masach nieparzystych ^{129,131}Sn

mierzony kulombowski przekrój czynny wydedukowany przekrój czynny na fotoabsorpcję

Perspektywy: inne izotopy (Wyniki wstępne)

Nasilenie poniżej GDR także obserwowane

Perspektywy: nasilenie dipolowe w jądrach Ni

N. Paar et al., Phys. Rev. C67(2003) 34312

- Eksperyment przeprowadzony na przełomie maja i kwietnia 2005, z użyciem tej samej aparatury i metody
- badano nasilenie dipolowe w izotopach ⁵⁸Ni, ⁶⁸⁻⁷²Ni
- Pomiar w ⁶⁸Ni wykonany również przez kolaborację Rising w kwietniu 2005

Podsumowanie

- Zmierzono nasilenie dipolowe poniżej energii GDR w jądrach ¹²⁹⁻¹³²Sn wysycające kilka % wartości reguły sumacyjnej TRK
 - zgodnie z przewidywaniami obliczeń teoretycznych
- Natura tych niskoleżących wzbudzeń jest nieustalona (sprzeczne interpretacje obliczeń teoretycznych)
- Wyniki otrzymane dla GDR w jądrach ¹²⁹⁻¹³²Sn pozostają w zgodzie ze znanymi systematykami
- Pomiary nasilenia dipolowego są kontynuowane (niedawne eksperymenty z izotopami niklu) i planuje się dalsze eksperymenty po rozbudowie układu pomiarowego (projekt R3B) i akceleratorowego (projekt FAIR)

Przedstawione wyniki otrzymała

Kolaboracja LAND-FRS (S221)

T. Aumann, K. Boretzky, H. Emling, M. Fallot, H. Geissel, M.Hellström, K. L. Jones, Y. Leifels, U. Datta Pramanik, K. Sümmerer GSI Darmstadt

H. Simon Technical University Darmstadt

> Th. W. Elze, R. Palit University Frankfurt/M

P. Adrich, A. Klimkiewicz, R. Kulessa, G. Surówka, W. Waluś Jagiellonian University, Kraków, Poland

> J.V. Kratz, C. Nociforo University Mainz

D. Cortina-Gil University Santiago de Compostela, Spain

Moje wrażenia...

Złożoność eksperymentu
Precyzja pomiarów:

E_{kin}≈73,000 MeV

 $\sigma_{\text{E}^{\star}} \approx 1 \text{ MeV}$

Zapraszamy na kawę i herbatę na korytarz ZFJA

Poza ciastkami, dyskusja na temat perspektyw zakładu ...