Low-dimensional systems and nanostructures 1100-4INZ'LDSN
Jacek Szczytko, tel. 22-55.32.764
recommended textbooks:
- John H. Davies, "The physics of low dimensional semiconductors"
- M. Balkanski, R.F. Wallis "Semiconductor physics and applications",
- L. Solymar, D. Walsch, "Electrical properties of materials"
plan
- Introduction - semiconductor heterostructures [3262 kB]
Revision of solid state physics: Born-Oppenheimer approximation, Hartree-Fock method and one electron Hamiltonian, periodic potential, Bloch states, band structure, effective mass. - Nanotechnology [3676 kB].
Revision of solid state physics: tight-binding approximation, Linear Combination of Atomic Orbitals (LCAO). Nanotechnology. Semiconductor heterostructures. Technology of low dimensional structures. Bandgap engineering: straddling, staggered and broken gap. Valence band offset. - Quantum wells (1) [4068 kB]
Infinite square quantum well. Finite square quantum well. Quantum well in heterostructures: finite square well with different effective masses in the well and barriers. - Quantum wells (2) [2397 kB]
Harmonic potential (parabolic well). Triangular potential. Wentzel - Krammers - Brillouin (WKB) method. Band structure in 3D, 2D. Coulomb potential in 2D - Quantum dots, Quantum wells in 1D, 2D and 3D [7776 kB]
Quantum wells in 1D, 2D and 3D. Quantum wires and quantum dots. Bottom-up approach for low-dimensional systems and nanostructures. Energy gap as a function of the well width. - ARTICLE. Tomasz Kazimierczuk, work on the article about quantum dots
Students have to read the article (Phys. Rev. Lett., Nature, Science, etc.) and answer questions. Discussion.Optical transitions in nanostructures [1470 kB]
Time-dependent perturbation theory, Fermi golden rule, interband and intraband transitions in semiconductor heterostructures.
Students have to read the article (Phys. Rev. Lett., Nature, Science, etc.) and answer questions. Discussion. - Carriers in heterostructures [2052]
Density of states of low dimensional systems. Doping of semiconductors. Heterojunction, p-n junction, metal-semiconductor junction, Schotky barrier - Tunneling transport (1) [2030 kB]
Continuity equation. Potential step. Tunneling through the barrier. Transfer matrix approach. Resonant tunneling. Quantum unit of conductance. - Tunneling transport (2) [1541 kB], Quantized conductance [1450 kB]
Quantized conductance. Coulomb blockade, one-electron transistor. - Tunneling transport (3) [5160 kB], Quantized conductance [1450 kB]
Quantized conductance. Coulomb blockade, one-electron transistor. - Electric field in low-dimensional systems [1597 kB]
Scalar and vector potentials. Carriers in electric field: scalar and vector potential in Schrodinger equation. Schrodinger equation with uniform electric field. Local density of states. Franz-Kieldysh effect. - Magnetic field in low-dimensional systems [5232 kB]
Carriers in magnetic field. Schrodinger equation with uniform magnetic field - symmetric gauge, Landau gauge. Landau levels, degeneracy of Landau levels. - Electric and magnetic fields in low-dimensional systems [3341 kB]
Schrodinger equation with uniform electric and magnetic field. Hall effect. Shubnikov-de Haas effect. Quantum Hall effect. Fractional Quantum Hall Effect. Hofstadter butterfly. Fock-Darvin spectra - Revision [4108 kB]
Revision and preparing for the exam.
- Polaritony ekscytonowe w mikrownękach półprzewodnikowych dr Barbara Piętka, cz. 1 [26086 kB]
- Polaritony ekscytonowe w mikrownękach półprzewodnikowych dr Barbara Piętka, cz. 2 [33970 kB]
Strona USOS 1100-4INZ16
egzamin
Egzamin 2015/16, link do pracy Quantum Hall Transition in Real Space: From Localized to Extended States, K. Hashimoto et al. Phys. Rev. Lett. 101, 256802 (2008)
acknowledgements
Wykład został stworzony w ramach projektu POKL 04.01.01-00-100/10-00 "Chemia, fizyka i biologia na potrzeby społeczeństwa XXI wieku: nowe makrokierunki studiów I, II i III stopnia"