Lasers lecture 9

Czesław Radzewicz

self-phase modulation

For high light intensities the index of refraction is not constant – it depends on light intensity. In most practical cases it suffices to include a term proportional to the light intensity :

$$n(I) = n_0 + n_2 I$$

The values of n_2 coefficient are small. For example, for quartz glass (SiO₂) $n_2 \cong 2 \cdot 10^{-16} \text{cm}^2/\text{W}$. For very high light intensity $I = \frac{100\text{GW}}{\text{cm}^2} = 10^{11}\text{W/cm}^2$ we have $\Delta n = n_2 I \cong 2 \cdot 10^{-5}$.

Nonlinear index of refraction influences: (1) pulse phase and (2) pulse wavefront.

1. Self-phase modulation Consider 1-D case (plane wave, or fiber): $E_{in}(t) = E_0 e^{i\omega_0 t}$. At the output $E_{out}(t, z) = E_0 e^{i(\omega_0 t - kl)}$ with

$$k = k(I) = \frac{n(I)\omega_0}{c} = \frac{n_0\omega}{c} + \frac{n_2I\omega_0}{c} = k_0 + \frac{n_2\omega_0}{c}I$$
 which leads to

$$E_{out}(t,z) = E_0 e^{i(\omega_0 t - k_0 z)} e^{i\frac{n_2 \omega_0 l}{c}I(t)}$$

resulting in time-dependent phase and frequency

$$\varphi(t) = \omega_0 t + \frac{n_2 \omega l}{c} I(t), \qquad \omega(t) = \omega_0 + \frac{n_2 \omega l}{c} \frac{dI}{dt}$$

- pulse envelope remains the same
- spectrum is broadened

self-focusing

Assume a Gaussian beam with its waist at z = 0:

$$E(r, z = 0) = E_0 e^{-\frac{r^2}{w_0^2}}$$

for $l \ll z_0$ we have

$$E_{out}(r,l) = E(r,z=0)e^{-ikl} = E_0 e^{-\frac{r^2}{w_0^2}} e^{-ik_0 l} e^{-i\frac{n_2\omega_0 l}{c}I(r,z=0)}$$
(1)

If $n_2 > 0$ the phase fronts are delays at the peripheral regions – a plane wavefront bends.

Let's look at the region close to the beam axis

$$I(r, z = 0) = I_0 e^{-\frac{2r^2}{w_0^2}} \cong I_0 \left(1 - \frac{2r^2}{w_0^2}\right)$$

We put this into equation (1)

$$E_{out}(r,l) = E_0 e^{-\frac{r^2}{w_0^2}} e^{-ik_0 l} e^{-i\frac{n_2\omega_0 l}{c}I_0} e^{i\frac{n_2\omega_0 lI_0}{c}\frac{2r^2}{w_0^2}}$$

Gauss constant spherical wavefront phase
$$\frac{1}{R_{sf}} = \frac{4n_2 l}{n_0 w_0^2} I_0$$

self-focusing – critical power

from the previous slide

Two effects: diffraction increases beam diameter but self-phocusing decreases it. Fro lecture 5

$$\frac{1}{R_{diff}} \cong \frac{l}{z_0^2} = \frac{\lambda^2 l}{\pi^2 n_0^2 w_0^4}$$

The beam will self-phocus if

$$R_{sf} < R_{diff} \Leftrightarrow \frac{4n_2l}{n_0 w_0^2} I_0 > \frac{\lambda^2 l}{\pi^2 n_0^2 w_0^4} \Rightarrow I_0 > I_{cr} = \frac{\lambda^2}{4n_2 \pi^2 n_0 w_0^2}$$

Critical power P_{cr} , for powers higher the P_{cr}

$$P_{cr} = 2\pi I_{cr} \int_0^\infty r e^{-\frac{2r^2}{w_0^2}} dr = \frac{\lambda^2}{4\pi n_0 n_2}$$

the beam collapses.

Note: the exact form of self focusing depends on many parameters: pulse duration, dispersion, the nature of medium, ...

an example: filaments in air

Fig. 1. Profile of the beam. Intensity recorded at the output of the compressor.

Available online at www.sciencedirect.com

Optics Communications

Optics Communications 247 (2005) 171-180

www.elsevier.com/locate/optcom

Range of plasma filaments created in air by a multi-terawatt femtosecond laser

G. Méchain ^{a,*}, C.D'Amico ^a, Y.-B. André ^a, S. Tzortzakis ^{a,1}, M. Franco ^a, B. Prade ^a, A. Mysyrowicz ^a, A. Couairon ^b, E. Salmon ^c, R. Sauerbrey ^d

Fig. 8. Evolution of the length of filamentation by varying the initial chirp of the laser pulse. The pulse without chirp has a duration of 100 fs. The black lines and black points refer to locations where air ionisation could be detected, grey lines to distances where bright light channels are observed.

self-focusing inside the laser cavity

With Kerr lensing any piece of material inside the cavity (for example. a plane parallel glass plate) may act as a lens. The focusing power of the lens scales approx. linearly with the instantaneous light intensity. This extra lens changes the properties of the resonator. If we want to promote short pulse operation of the laser we should make the resonator such that the Kerr lens decreases diffraction losses inside the cavity. Such a cavity mimics a saturable absorber – we call it an artificial saturable absorber.

Kerr Lens Mode-locking (KLM)

intra-cavity dispersion control

Group delay dispersion (GDD), how can we control it?

1. chirped mirrors

interference of waves reflecting from different parts of the structure leads to oscillations in reflectivity vs wavelength function

intra-cavity dispersion control, 2

Effective mode-locking requires a well defined dispersion of the lasers cavity. We quantize it by group Delay Dispersion $GDD(\omega)$ or $GDD(\lambda)$.

methods to control GDD:

Gires-Tournois interferometer

An analog of the Fabry-Perot interferometer with one mirror fully reflecting R = 1. no transmitted beam

$$r = -\frac{r_1 - e^{-i\delta}}{1 - r_1 e^{-i\delta}}$$

with

$$\delta = \frac{4\pi}{\lambda} nd \cos \Theta$$

Assuming that r_1 is real we have the phase φ of the reflected wave

 $\tan\left(\frac{\varphi}{2}\right) = \frac{1+r_1}{1-r_1}\tan\left(\frac{\delta}{2}\right)$

intra-cavity dispersion control, 3

commercial chirped mirrors (Layertech)

broadband negative GDD

selected femtosecond oscillators

Ti:Sapphire (Ti³⁺:Al₂O₃) crystal.

typical specs

Orientation	Optical axis C normal to rod axis
Ti ₂ O ₃ concentration	0.03-0.25 wt %
Figure of Merit	> 150 (> 300 available on special requests)
Size	up to 20 mm dia and up to 130 mm length
End configurations	flat/flat or Brewster/Brewster
Parallelism	10 arcsec
Surface finishing	10/5 scratch/dig
Wavefront distortion	$\lambda/4$ inch

The quality of crystal is quantized by Figure of Merit: $FOM \equiv \frac{\alpha(\lambda_p)}{\alpha(\lambda_l)}$, with α standing for absorption coefficient,

własności fizyczne

Chemical formula	Ti ³⁺ :Al ₂ O ₃	
Crystal structure	Hexagonal	
Lattice constants	a = 4.748, c = 12.957	
Density	3.98 g/cm ³	
Mohs hardness	9	
Thermal conductivity	0.11 cal (°C x sec x cm)	
Specific heat	0.10 cal/g	
Melting point	2050 °C	
Laser action	4-Level Vibronic	
Fluorescence lifetime	3.2 μs (T = 300 K)	
Tuning range	660-1050 nm	
Absorption range	400-600 nm	
Emission peak	795 nm	
Absorption peak	488 nm	
Refractive index	1.76 @ 800 nm	

Ti:Sap fs oscillators – examples of designs

"old" design Ti:Sap with prisms

 P_{1}, P_{2}

k

S

advantages:

one can tune GDD one can tune wavelength high power (several W)

disadvantage:

long pulse(50-100fs)

- output coupler
- prisms (quartz glass, Brewster)
- sapphire crystal (Brewster)
- a slit

Spectra Physics (USA), model Mai Tai eHP

Mai Tai <i>e</i> HP		
Peak Power ²	er ² >450 kW	
Pulse Width ² , ₃ <70 fs ⁹		
Tuning Range⁴	690–1040 nm	
Average Power ²	>2.5 W	
Peak Power, Alternative Wavelengths⁵	>70 kW at 690 nm >240 kW at 710 nm >240 kW at 920 nm >38 kW at 1040 nm	
Beam Roundness ²	0.9–1.1	
Astigmatism ²	<10%	
Repetition Rate ^{2, 6}	80 MHz ±1 MHz	
Beam Pointing Stability	<50 µrad/100 nm	
Noise ^{2, 7} <0.15%		
Stability ⁸	<±1%	
Spatial Mode ²	TEMoo, M ² <1.1	
Polarization ²	>500:1 horizontal	
Beam Divergence ²	<1 mrad	
Beam Diameter (1/e²)²	<1.2 m	

Ti:Sap fs oscylators – examples of designs, 2

"new" Ti:Sap oscillator design – no prisms

advantage:

short pulses

disadvantage:

lower power no tuning

- sapphire crystal (Brewster)

IdestaQE (USA), model Octavius

	Ocatvius-1G	Octavius-1G-HP
Pulse width	< 6 fs	
Bandwidth @-10 dB	300 nm	
Average out power	300 mW @6 W pump	750 mW @ 8W pump
Divergence	< 2 mrad	
Polarization	> 90:1	
Power stability over 1h	+/- 1%	
Dimensions	10.0" x 7.7" (255 mm x 196 mm)	

ytterbium fs oscillators - some designs

ytterbium doped crystals: Yb:KY(WO₄)₂ - Yb:KYW Yb:KGd(WO₄)₂ - Yb:KGW

advantages:

- very small Stokes shift little heat generated
- convenient pump wavelength 980 nm (laser diodes)
- good quality commercial SESAMs are available

ytterbium fiber fs oscillators

SiO₂ glass fibers doped with Yb:

- classical single mode
- Photonic crystals fibers

pulsed regime is forced by:

- Nonlinear Polarization Evolution, NPE
- similaritons
- ANDi

Generation of 36-femtosecond pulses from a ytterbium fiber laser

F. Ö. Ilday, J. Buckley, L. Kuznetsova, and F. W. Wise Department of Applied Physics, Cornell University, Ithaca, NY 14853

Received November 14, 2003; Revised December 11, 2003 29 December 2003 / Vol. 11, No. 26 / OPTICS EXPRESS 3550

Kruglov et al.

similariton

Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers

Pulse propagation in a fiber is described by the nonlinear Schrodinger equation:

ytterbium fiber fs oscillators - designs

All-normal-dispersion femtosecond fiber laser

1030nm filter QWP QWP Andy Chong, Joel Buckley, Will Renninger and Frank Wise collimator collimator Department of Applied Physics, Cornell University, Ithaca, New York 14853 Received 14 July 2006; revised 12 August 2006; accepted 23 August 2006 isolator HWP PBS 16 October 2006 / Vol. 14, No. 21 / OPTICS EXPRESS 10095 Yb-doped **WDM** fiber 1.0b) a) 0.8-Signal (A.U.) 3 ntensity (A.U.) 980nm pump 0.6-2-0.4-0.2-AC 0.0 0--0.2 -4000 -2000 2000 1020 1030 1040 1050 4000 Ò 1010 170fs, 3 nJ Delay (fs) Wavelength (nm) 8 3 8 d) c) 6 AC Signal (A.U.) AC Signal (A.U.) 6 2 -1000 0 1000 2 0 -2000 -1000 1000 -1500-1000 -500 500 1000 1500 Ó -3000 0 Delay (fs) Delay (fs)

All-Normal-Dispersion (ANDi)

output

NPE method

ytterbium fiber fs oscillators – designs, 2

3500 Vol. 40, No. 15 / August 1 2015 / Optics Letters

Optics Letters

Simple all-PM-fiber laser mode-locked with a nonlinear loop mirror

Jan Szczepanek,¹ Tomasz M. Kardaś,¹ Maria Michalska,² Czesław Radzewicz,¹ and Yuriy Stepanenko^{1,3,*}

Fig. 3. Output spectra of two different laser designs—configuration with 30% OC (black) and configuration with 70% OC (red). Inset: the same spectra in logarithmic scale.

ytterbium fiber fs oscillators – designs, 3

J. Szczepanek et al., *Ultrafast laser mode-locked using nonlinearpolarization evolution in polarization maintaining fibers*, Opt. Lett. 42,575-577 (2017)

amplification femtosecond pulses

Issues specific for short pulse amplifiers:

- broad band
- high intensities B inetgral
- high intensities damage

$$B = \frac{2\pi}{\lambda} \int n_2(z) I(z) dz$$

Chirped Pulse Amplification (CPA) technique

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses", Opt. Commun. 56, 219 (1985)

nj \rightarrow mJ, regenerative amplifier

idea:

- an amplifier with a cavity
- the amplified pulse is shorter than the roundtrip time
- cycle: capture-amplify-extract

amplifier cavity modelling

• the *q* parameter equation:

$$q = \frac{Aq + B}{Cq + D}$$

with $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$ - the matrix of elementary cell

G. Fox, T. Li, Resonant Modes in a Maser Interferometer, Bell Syst. Tech. J. **40**, 453 (1961)

• solution:

$$\frac{1}{q} = -\frac{A-D}{2B} \pm i \frac{\sqrt{1 - \frac{1}{4}(A+D)^2}}{B}$$

• the resonator is stable when

$$-2 \le A + D \le 2$$

amplifier cavity modeling – fundamental mode size

method:

- elementary cell R3-R2-R1-R2-R3
- calculate q at mirror R3
- propagate the beam in the resonator till the mirror R1
- separate calculations for the tangential and sagittal planes

• more than 34% of the pump power is converted into heat:

•
$$1 - \eta = \frac{h\nu_p - h\nu_l}{h\nu_p} \approx 0.34$$
 for $\lambda_p = 527$ nm i $\lambda_l = 800$ nm, η – quantum efficiency

- the heat is generated in a small volume (< 1 mm diameter)
- large temperature gradient
- thermal lensing, stress-induced birefringence

Finite Element Method (FEM) modeling – we know the spatial distribution of heat generated by the pump beam. We know the temperature at the cylindrical surface of the crystal (cooler). The crystal is pumped from both ends.

P = 50 W, $w_x = w_y = 0.3 mm$, $T_{cooler} = 283 K$

The optical effects are expressed in the ABCD matric language:

from experiment

$$\Delta n = \frac{\partial n}{\partial T} \Delta T + o(\Delta T^2)$$

approximate Δn by a parabola

$$n(r) = n_0 \left(1 - \frac{r^2}{2b^2} \right)$$

The matrix ABCD for a slice of thickness d:

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} \cos\left(\frac{d}{b}\right) & b\sin\left(\frac{d}{b}\right) \\ -\frac{1}{b}\sin\left(\frac{d}{b}\right) & \cos\left(\frac{d}{b}\right) \end{bmatrix}$$

results:

what happens if we cool the crytsal?

thermal conductivity:

28.6 W·m⁻¹·K⁻¹ at 300 K

1094 W·m⁻¹·K⁻¹ at 77 K

$$\frac{dn}{dT} = 9.87 \cdot 10^{-6} \text{ K}^{-1}$$
 at 300 K
 $\frac{dn}{dT} = 4.48 \cdot 10^{-6} \text{ K}^{-1}$ at 77 K

experimental set-up

pulse dynamics inside the cavity

spectrum

