Lasers lecture 4

Czesław Radzewicz

Dicke effect

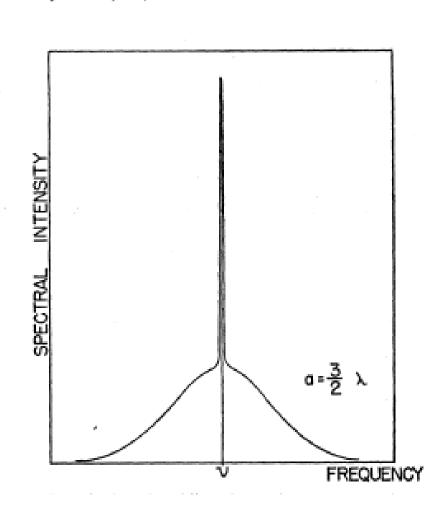
The Effect of Collisions upon the Doppler Width of Spectral Lines

R. H. Dicke Palmer Physical Laboratory, Princeton University, Princeton, New Jersey (Received September 17, 1952)

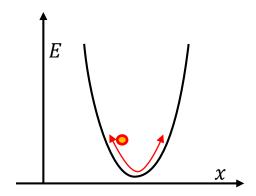
- Atomic gas, collisions change the velocity of atom but do not interrupt the phase of
- assume $a < \lambda$, with a being mean free path of the atom and λ is the wavelength

$$I(\alpha) = I_0 \frac{2\pi D/\lambda^2}{(\alpha - \nu)^2 + (2\pi D/\lambda^2)^2}$$

D – diffusion constant

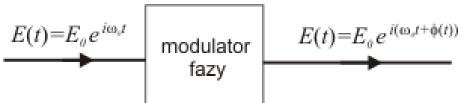


Dicke effect in optical lattice



- \square an atom is radiating em wave of frequency ω measured at its own reference system
- The atom moves in the x direction: $x(t) = a \sin(\Omega t)$, $v(t) \equiv \frac{dx}{dt} = \Omega a \cos(\Omega t)$, harmonic oscillations
- \Box classical approach, linear Doppler effect, the observer is located on the x axis
- \square $\omega'(t) = (1 + v(t)/c)\omega$ with v(t) being the velocity of atom
- \Box the phase $\phi(t) = \int \omega'(t) dt = \omega t \frac{2\pi a}{\lambda} \sin(\Omega t)$

Dicke effect in optical lattice, 2



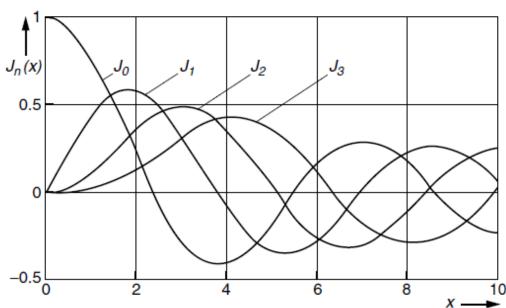
$$\phi(t) = \omega t - \frac{2\pi a}{\lambda} \sin(\Omega t)$$

$$E_{out}(t) = E_0 e^{-i[\omega t - \delta \sin(\Omega t)]\omega t}, \delta = \frac{2\pi a}{\lambda}$$

$$E_{out}(t) = E_0 \sum_{n=-\infty}^{\infty} J_n(\delta) e^{-i(\omega t - n\Omega)t}$$

 J_n - Bessel function type 1 order n

If $\delta \ll 1$ then $J_n(\delta) \ll J_0(\delta)$ for n = 1,2,3...



mixed line-broadening, 1

Voigt's profile is a convolution of Lorentz and Gauss functions

$$g_{V}(x) = \int_{-\infty}^{\infty} dx' G(x'; \sigma) L(x - x'; \gamma)$$

$$G(x; \sigma) \equiv \frac{e^{\frac{x^{2}}{(2\sigma^{2})}}}{\sigma\sqrt{\pi}}, L(x; \gamma) \equiv \frac{\gamma}{\pi(x^{2} + \gamma^{2})}$$

$$0.30$$

$$-\sigma = 1.53 \quad \gamma = 0.00$$

$$-\sigma = 1.30 \quad \gamma = 0.50$$

$$-\sigma = 1.00 \quad \gamma = 1.80$$

$$0.20$$

$$0.15$$

$$0.10$$

$$0.05$$

$$0.00$$

$$-10$$

$$0.5$$

mixed line-broadening, 2

Doppler broadening: $\alpha \propto p$

pressure broadening: $\alpha \propto p \times 1/p = \text{const}$

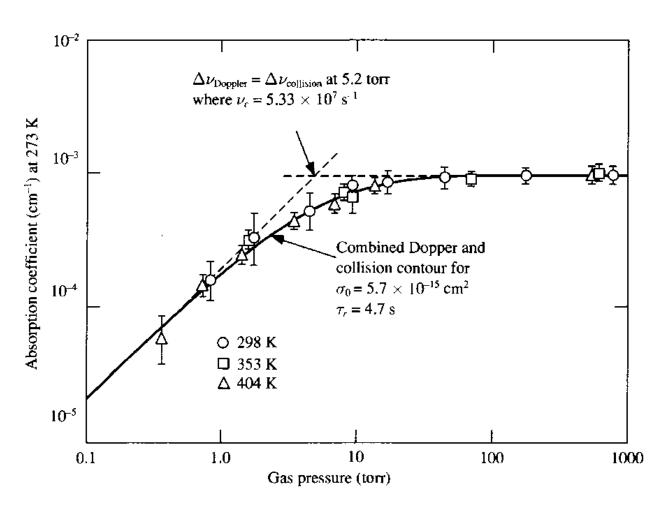


FIGURE 7.9. Absorption coefficient in CO₂ at 10.6 μ m as a function of CO₂ pressure. (After E. T. Gerry and D. A. Leonard, *Appl. Phys. Lett.* 8, 227, 1966.)

"typical" linewidths

	effect	gas	liquid	condensed matter
homogenous	natural	0.001Hz-10MHz	n *	n
	atomic collision	tomic collision 5-10MHz/mbar ≈ 3		
	phonons			≈ 10 cm ⁻¹
inhomogeneous	Doppler	50MHz-1GHz	n	
	Local fields		≈ 500 cm ⁻¹	1-500 cm ⁻¹

*n - negligible

cm⁻¹ units are often used in spectroscopy

$$\tilde{v} \equiv \frac{1}{\lambda [\text{cm}]}$$

$$\tilde{v} \equiv \frac{1}{\lambda} [\text{cm}^{-1}] = \frac{v}{c \left[\frac{\text{cm}}{\text{s}}\right]} = 10^{-2} \frac{v}{c}$$

numbers: $\lambda = 1 \,\mu\text{m} \Leftrightarrow 10\,000\,\text{cm}^{-1}$

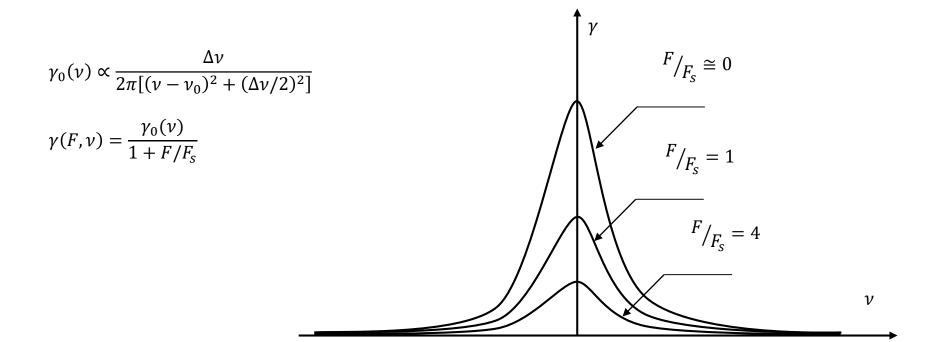
for $\lambda = 1 \, \mu \text{m}$: $1 \, \text{cm}^{-1} = 30 \, \text{GHz}$

gain saturation in media with different line broadening

We will concentrate on the case $\tau_p\gg T_1$. Similar reasoning can be extende to other cases as well.

$$\gamma(F) = \frac{\gamma_0}{1 + F/F_s}$$

□ Homogenous broadening dominates. As the population inversion decreases the gain drops for all frequencies because all atoms interact with the em wave in the same way. – Saturation requires higher intensities for frequencies far away for the resonance.



gain saturation in media with different line broadening, 2

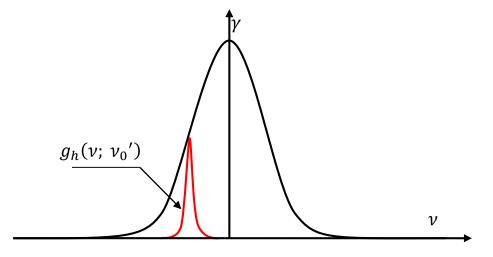
inhomogeneous broadening dominates. A monochromatic em wave of frequency ν inetracts only with atoms that have their resonant frequencies close to ν (closer than homogenous linewidth). The saturation affects only this selected group of atoms – other groups "do not see" the em field.

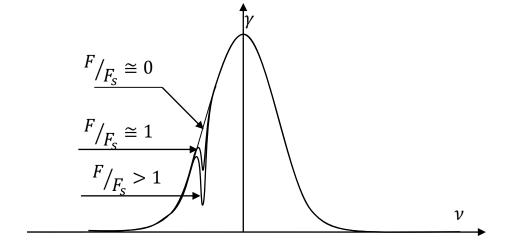
$$\gamma_0(\nu) \propto \int_{-\infty}^{\infty} d\nu_0' \frac{\Delta \nu}{2\pi [(\nu - \nu_0')^2 + (\Delta \nu/2)^2]} g(\nu_0')$$

$$g_h(\nu, \nu_0')$$

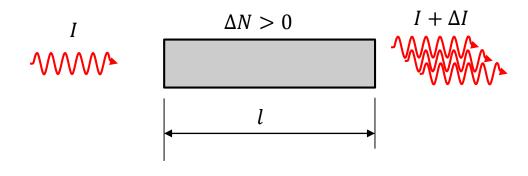
 $g_j(v, v_0')$ homogenously broaden line centered at v_0' .

Saturation "burns a hole" in the gain profile. Its width corresponds to the homogenous linewidth. The depth of the hole scales with saturation (em field intensity).





laser amplifier efficiency



Definition:

surface energy density (energy stored in the amplifier per unit area of its cross-section)

$$\mathcal{E} \equiv \hbar \omega_{12} \Delta N l = \frac{\hbar \omega_{12}}{\sigma} \sigma \Delta N l = E_s \cdot \gamma_0 \cdot l \qquad \text{for } \tau_p \gg \tau_1$$

$$\mathcal{E} \equiv E_s \cdot \gamma_0 \cdot \frac{l}{2} \qquad \text{for } \tau_p \ll \tau_1$$

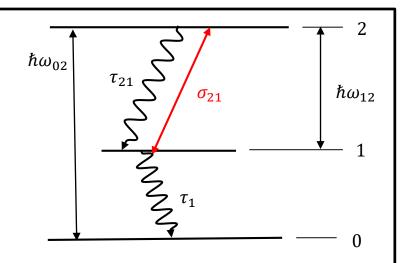
surface power density (power that can be extracted from the amplifier per unit area of its cross-section)

$$\mathcal{P} \equiv \frac{\hbar \omega_{12} \Delta N l}{\tau_{21}} = I_{s} \cdot \gamma_{0} \cdot l$$

with

$$E_S = \frac{\hbar \omega_{12}}{\sigma_{21}},$$
 $I_S = \hbar \omega_{12} / (\sigma_{21} \tau_{21})$

saturating fluence saturating intensity



minimum energy density needed to create population inversion ΔN :

$$\hbar\omega_{02}\Delta N$$

useful energy density>

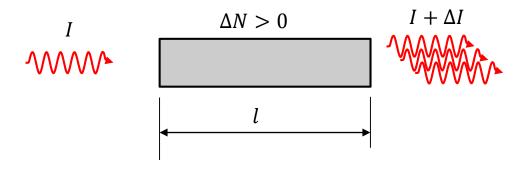
$$\hbar\omega_{12}\Delta N$$

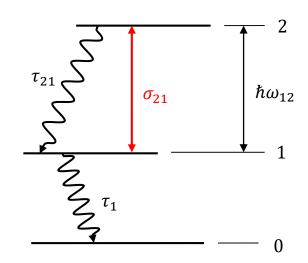
quantum defect

$$\frac{\omega_{02}-\omega_{12}}{\omega_{02}}$$

the smaller the better

laser amplifier efficiency, 2





The definition of efficiency depends on the pulse duration:

 \blacksquare for short pulse $\tau_p << \tau_{21}$ we use surface energy density

$$\eta = \frac{\mathcal{E}_{out} - \mathcal{E}_{in}}{\mathcal{E}}$$

 \square long pulse $\tau_p \gg \tau_{21}$

The medium can adiabatically follow the photon flux – we should consider intensity. For simplicity, let's assume stationary case

$$\eta = \frac{I_{out} - I_{in}}{\mathcal{P}}$$

"in" and "out" correspond to the input and output of the amplifier, respectively.

long pulse laser amplifier efficiency

A note that is always valid:

The stronger the saturation the higher the efficiency.

Let's take the eqs. describing long pulse amplifier:

$$\ln \frac{I_{out}}{I_{in}} + \frac{I_{out} - I_{in}}{I_{s}} = \gamma_0 l$$

calculate

$$I_{out} - I_{in} = I_s \left(\gamma_0 l - \ln \frac{I_{out}}{I_{in}} \right)$$

in deep saturation we have in $I_{out} \cong I_{in}$ and thus

$$I_{out} - I_{in} \cong I_s \gamma_0 l = \mathcal{P}$$

and

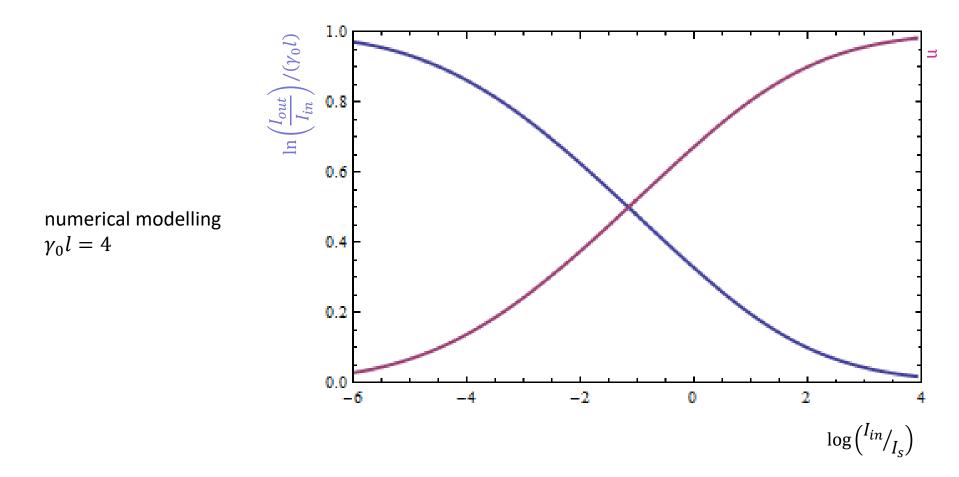
$$\eta = \frac{I_{out} - I_{in}}{\mathcal{P}} \cong 1$$

The other limit (unsaturated amplifier):

$$I_{in}$$
, $I_{out} \ll I_s \Longrightarrow I_{out} = e^{\gamma_0 l} I_{in}$

$$\eta = \frac{I_{out} - I_{in}}{\mathcal{P}} = \frac{\gamma_0 l - \ln \left(\frac{I_{out}}{I_{in}}\right)}{\gamma_0 l} = 0$$

long pulse laser amplifier efficiency, 2

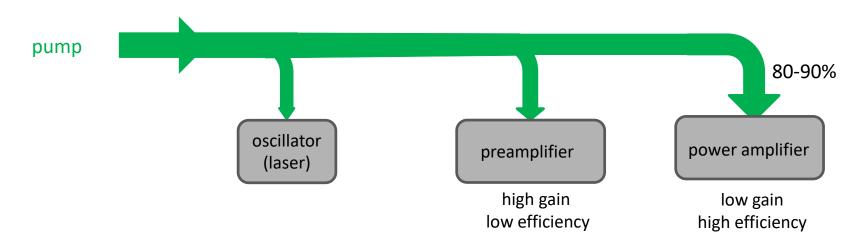


the dilemma of a laser master: gain or efficiency?

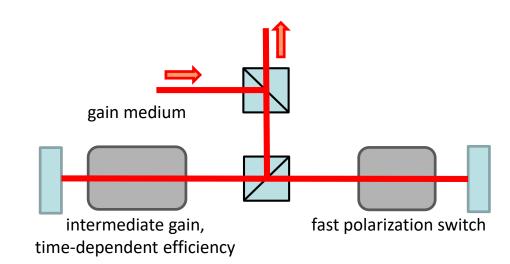
laser amplifier efficiency, practical remarks

Can you eat the cake and keep it? Yes, you can have both in laser amplifiers!

ns and longer pulses:MOPA (Master Oscillator Power Amplifier)

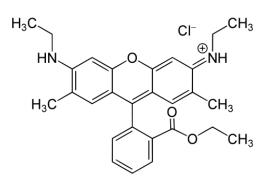


- > sub-ns and shorter pulses regenerative amplifier, pulsed operation amplifier cycle:
- ☐ pumping of the gain medium
- ☐ seeding the pulse is locked in the cavity
- ☐ amplification; a few up to few tens of round-trips
- ☐ the pulse is ejected from the cavity



examples of amplifying media

name	formula	$\sigma[10^{-19}\mathrm{cm}^2]$	λ[μm]	$τ_{21}$ [μs]	$\mathcal{E}[J/cm^2]$	\mathcal{P} [10 6 W/cm 2]
Rhodamine 6G	$C_{28}H_{31}N_2O_3CI$	2000	≅ 0.59	0.022	0.002	0.33
Nd:YAG	Nd ³⁺ :Y ₃ Al ₅ O ₁₂ 1% - 1.38×10 ²⁰ /cm ³	2.8	1.064	230	0.89	
Ti:Sapphire	Ti ³⁺ :Al ₂ O ₃	3.8	0.75 ÷ 1.1	2.4	0.66	0.2
LiSAF	Cr ^{3+:} LiSrAlF ₆	0.5	$0.8 \div 0.9$	67	5.2	0.08
Yb:KYW	Yb ³⁺ :KY(WO ₄) ₂ 0.5-100%	0.3	1.03 ÷ 1.06	300	7	
alexandrite	Cr ^{3+:} BeAl ₂ O ₄	0.1	0.75	~200	26	0.13



structure of Rhodamine 6G molecule

Nd:YAG

alexandrite

Ti:Sapphire

pumping of gain media

we need population inversion: $N_2 > N_1$. In thermodynamic equilibrium we have Boltzman distribution of the populations: $\frac{N_2}{N_1} = \exp\left(-\frac{\hbar\omega_{12}}{kT}\right) < 1$. Heating of the medium does not work because temperature increase can, at most, equalize the populations. We need to put energy selectively so it results in mowing the atom/ion to the upper level of the laser transition. The methods:

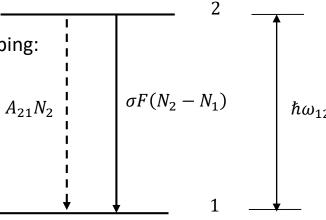
- electric current
- em radiation light
- exothermic chemical reaction

2-level system, let's consider optical pumping:

$$\frac{dN_2}{dt} = -A_{21}N_2 - \sigma F(N_2 - N_1)$$

$$N_2 - N_1 = 2N_2 - N$$

$$\frac{dN_2}{dt} = -(A_{21} + 2\sigma F)N_2 + \sigma FN$$



stationary solution:

$$N_2 = \frac{\sigma F N}{(A_{21} + 2\sigma F)}$$
 in the high intensity limit
$$\lim_{F \to \infty} N_2 = N/2$$

3-level system

assumptions:

•
$$\tau_{21} = 1/A_{21}$$
,

•
$$\tau_{32} \ll \tau_{21}$$

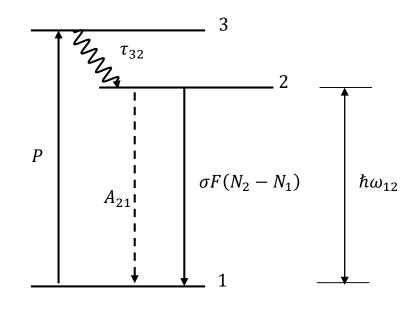
•
$$\frac{dN_3}{dt} = P \cdot N_1$$

rate equations:

$$N_3 = 0$$

$$\frac{dN_2}{dt} = PN_1 - A_{21}N_2 - \sigma F(N_2 - N_1)$$

$$N_1 = N - N_2$$



stationary solutions $\left(\frac{dN_2}{dt} = \frac{dN_1}{dt} = 0\right)$

for small light intensity (we neglect the term $\sigma F(N_2 - N_1)$):

$$N_2 = \frac{P\tau_{21}}{1 + P\tau_{21}} N$$

$$N_1 = \frac{1}{1 + P\tau_{21}} N$$

population inversion:

$$\Delta N_0 = \frac{P\tau_{21} - 1}{1 + P\tau_{21}} N$$

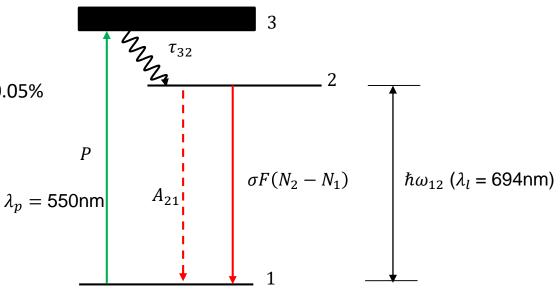
gain possible for :
$$\Delta N_0 > 0 \Leftrightarrow P > \frac{1}{\tau_{21}} = A_{21}$$

3-level system, an example

ruby – Cr³⁺:Al₂O₃ chromium concentration 0.05%

$$N \cong 2 \times 10^{19} \text{cm}^{-3}$$

 $\tau_{21} \cong 2 \times 10^{-3} \text{s}$



minimum pump rate:

$$P_{min} = \frac{1}{\tau_{21}} \cong 500 \text{s}^{-1}$$

pump power density needed to reach $\Delta N > 0$:

$$\mathcal{P} = P_{min} \cdot N \cdot \hbar \omega_{12} \cong (0.5 \times 10^{-3} \text{s}^{-1})(2 \times 10^{19} \text{cm}^{-3})(3.6 \times 10^{-19} \text{J}) = 3.6 \text{kW/cm}^3$$

heat dissipation:

$$\mathcal{P}_{ciepło} = \frac{\omega_{p} - \omega_{21}}{\omega_{p}} \mathcal{P} \cong 0.8 \text{kW/cm}^{3}$$

pulsed operation

3-level system, saturation

population equations with light

$$\frac{dN_2}{dt} = PN_1 - A_{21}N_2 - \sigma F(N_2 - N_1) = 0$$

$$N_1 = N - N_2$$

gives

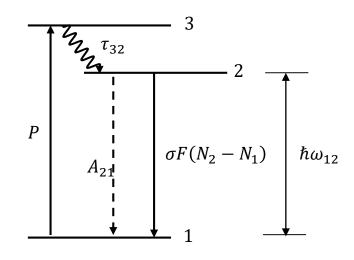
$$P(N - N_2) - A_{21}N_2 - \sigma F(2N_2 - N) = 0$$

algebra...

$$\Delta N = \frac{A_{21} + \sigma F}{P + A_{21} + 2\sigma F} N$$

more algebra...

$$\Delta N = \Delta N_0 \frac{1}{1 + F/F_s}$$



remember this formula

$$\gamma(\nu, I, P) = \gamma_0 \frac{1}{1 + F/F_s}$$

$$\gamma_0 = \sigma(\nu) \frac{P\tau_{21} - 1}{P\tau_{21} + 1} N$$

$$F_{S}(\nu, P) = \frac{1}{\sigma(\nu)\tau_{21}} \frac{1 + P\tau_{21}}{2}$$
$$I_{S}(\nu, P) = \frac{\hbar\omega_{12}}{\sigma(\nu)\tau_{21}} \frac{1 + P\tau_{21}}{2}$$

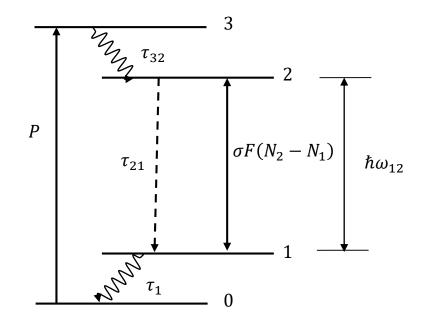
4-level system

Assume:

- $\tau_{21} = 1/A_{21}$,
- $au_{32} \ll au_{21}$
- $\bullet \quad \frac{dN_3}{dt} = P \cdot N_1$

rate equations again:

$$\begin{split} N_3 &= 0 \\ \frac{dN_2}{dt} &= PN_1 - A_{21}N_2 - \sigma F(N_2 - N_1) \\ \frac{dN_1}{dt} &= A_{21}N_2 - \frac{1}{\tau_1}N_1\sigma + F(N_2 - N_1) \\ N_0 &+ N_1 + N_2 = N \end{split}$$



Stationary solutions for small light intensity:

$$\Delta N_0 = \frac{P(\tau_{21} - \tau_1)}{1 + P(\tau_{21} + \tau_1)} N$$

gain possible if:

$$\Delta N_0 > 0 \Leftrightarrow \tau_{21} > \tau_1$$

independently of the pumping rate

4-level system, gain saturation

Assumptions:

- $au_{21} = 1/A_{21}$,
- $\tau_{32} \ll \tau_{21}$
- $\frac{dN_3}{dt} = P \cdot N_1$

rate eqs.:

$$\begin{split} N_3 &= 0 \\ \frac{dN_2}{dt} &= PN_0 - A_{21}N_2 - \sigma F(N_2 - N_1) \\ \frac{dN_1}{dt} &= A_{21}N_2 - \frac{1}{\tau_1}N_1\sigma + F(N_2 - N_1) \\ N_0 &+ N_1 + N_2 &= N \end{split}$$

Stationary solutions:

$$\gamma(\nu, F, P) = \gamma_0(\nu) \frac{1}{1 + F/F_S}$$

$$\gamma_0(\nu) = \sigma(\nu) \Delta N_0$$

$$F_S(\nu, P) = \frac{1}{\sigma(\nu)} \frac{1 + P(\tau_{21} + \tau_1)}{1 + 2P\tau_1}$$

