Lasers

Czesław Radzewicz

optical frequency comb (OFC)

typical numbers: $T \cong 10^{-9}$ s, $\delta t \cong 10^{-14}$ s

a series of identical pulses

ere the pulses from a fs oscillator identical?

$$E_n(t) = A(t)e^{i\omega_0 t}$$

$$E_{n+1}(t) = A(t-T)e^{i\{\omega_0(t-T)+\Delta\varphi\}}$$

$$T = \frac{L}{v_g}, \Delta\varphi = \omega_0 \left(\frac{L}{v_g} - \frac{L}{v_p}\right) \mod 2\pi$$

$$v_g \text{ - group velocity}$$

 v_p - phase velocity

if $\Delta \phi \neq 0$ then we have a constant phase shift between two consecutive pulses

the consequences of phase shift

$$\omega_n = n\omega_r + \omega_{CE}$$

$$\tilde{E}(\omega) = \tilde{E}_p(\omega) \sum_{n=-\infty}^{n=\infty} \delta(\omega - n\omega_r - \omega_{CE})$$

$$\omega_{CE} = \frac{\Delta \varphi}{2\pi} \omega_r$$

 $f_r = \frac{\omega_r}{2\pi}$ - laser repetition rate is easy to measure, all we need is a photodiode and an electronic counter

$$f_{CE} = \frac{\omega_{CE}}{2\pi}$$
 determination is not simple

f-2f method for f_{CE} detrmination

- ? frequency doubling
- ? octave spanning spectrum

spectral broadening

photonic crystal fiber:

- zero dispersion
- small core

4-wave mixing

$$\omega = \omega_1 + \omega_2 - \omega_3$$
$$= (n_1 + n_2 - n_3)\omega_r + \omega_{CE}$$

phase locked loop (PLL)

phase detector

application example: electronics frequency multiplier

OFC locked to RF reference

we can measure laser frequency

optical atomic clock

laser (micro)machining and fabrication

Process	Resolution µm	Surface Roughness μm	Side Effects
Mechanical	100	6.3-1.6	Burring, requires polishing
EDM	100	4.75-1.6	Electrode wear, rough finish, slow and unclean process
Chemical Etch	250	6.3-1.6	Undercutting
LIGA	5	1-2	Synchrotron source: very expensive
Nd: YAG Laser	50	1	Redeposition
Excimer Laser	5	> 1 μm (nm range)	Recast Layer, aspect ratios
Ti:sapphire Ultrafast Laser	< 1	nm range	Higher power ranges may require vacuum environment

long vs short pulse micromachining

The main **advantages** of femtosecond micro machining:

- no thermal damage: high machining quality, heat sensitive material machining possible
- unmatched accuracy: down to 100nm (very well defined ablation threshold)
- no wavelength dependence: any material can be machined with the same laser

threshold effect in laser micromachining

Because high-order nonlinear-optical processes are responsible for cutting, there is effectively a threshold for cutting. This means that careful control of the intensity can yield a hole with the diameter smaller than the laser beam diameter

laser micromachining system architecture for a flat work area

- laser
- routing optics (stability)
- beam size control (focus size)
- focal plane position control
- galvo-scanner (kHz rate scanning)
- f theta lens
- flat workpiece

F - theta lens

advantages, features

advantages of picosecond/femtosecond laser micromachining:

- Non-contact
- No pre/post processing of material
- Wide range of materials: fragile, ultra-thin and highly reflective surfaces
- Process can be fully automated
- Very high peak powers in the range 10¹³W/cm² provide for minimal thermal damage to surroundings
- Very clean cuts with high aspect ratios
- Sub-micron feature resolution
- Possible to machine transparent materials like glass, sapphire etc

examples of ps/fs micromachining

Ceramics

Diamond

Teeth

Polymers

High Explosives

nitinol stent – ps laser, tube diameter 4.25 mm, wall thicknes 45μ m

bio-absorbable poly-L-lactic acid (PLLA) machined by femtosecond laser pulses

stainless steel foil, hole diameter $100\mu m$

more examples

rapid prototyping/manufacturing

laser additive manufacturing, 1

laser additive manufacturing, 2

coaxial metal powder feeding

applications:

- parts regeneration
- manufacturing of complex shapes, especially hollow parts

laser additive manufacturing, 3

applications:

- rapid prototyping
- manufacturing of complex metallic shapes

retinal laser surgery

excimer laser ablation

excimer lasers

excimer	wavelength	
F ² (fluorine)	157 nm	
ArF (argon fluoride)	193 nm	
KrF (krypton fluoride)	248 nm	
XeBr (xenon bromide)	282 nm	
XeCl (xenon chloride)	308 nm	
XeF (xenon fluoride)	351 nm	

UV ablation of organic materials:

- penetration depth a few micrometers
- physical effect of UV photon absorption – breaking chemical bond
- no debris photodissociated products are in gas form
- negligible thermal effects

Laser-Assisted in situ Keratomileusis (LASIK)

more of laser cleaning

Professional teeth cleaning and laser removal for dark gum pigmentation.

cleaning of art with laser beam, 1

cleaning of art with laser beam, 2

