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Abstract. Two canonical transformations related to the theory of conventional and high-
temperature superconductivity are performed in detail. The BCS Hamiltonian is deduced from the
Frohlich Hamiltonian, and the ¢ — J model with attraction from the Hubbard model in the limit of
large on-site Coulomb repulsion. The underlying approximations are pointed out.

Herleitung anziehender Elektron-Elektron-Wechselwirkungen
fiir Supraleitung mittels kanonischer Transformationen

Inhaltsiibersicht. Zwei kanonische Transformationen, die mit der Theorie der konventionellen
und der Hochtemperatur-Supraleitung in Zusammenhang stehen, werden ausgefuhrt. Der BCS-
Hamilton-Operator wird aus dem Frshlich-Operator hergeleitet und das ¢ — J -Modell mit Anziehung
aus dem Hubbard-Modell im Limes groer Coulomb-Abstoung am Gitterplatz. Die zugrunde liegen -
den Naherungen werden aufgezeigt.

1. Introduction

The canonical transformation (CT) [1—6] from an original to an approximate effec-
tive Hamiltonian permits to isolate those interactions which dominate the dynamics
of the system. In the theory of the conventional superconductivity [7] such a CT can
be used [4] to eliminate the electron-phonon interaction at the cost of an attractive
electron-electron interaction, giving rise to Cooper pairing. Recently, the CT [5, 6] plays
a key role to explain high-7', superconductivity (see, e.g., [8, 9]) in going over from a
large on-site electron-electron repulsion to an effective attraction (kinetic exchange).
Such a non-phonon mechanism has been already suggested in connection with heavy-
fermion superconductivity [10].

In this paper we perform, within a unified framework, the CT’s along both lines
mentioned above: from the Frohlich to the BCS Hamiltonian (Section 3) as well as from
the Hubbard model in the large-U limit to the ¢-J model (Section 4). The purpose is to
make transparent in detail the assumptions and approximations used to derive the effec-
tive attractive interactions.

2. Concept of the Canonical Transformation

Let us start from a Hamiltonian
H=H,+H, 1)
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decomposed into the unperturbed part H, and the perturbation H,. The CT is defined
by (cf. analogous forms in [1—6])

H' = e SHeS (2)

with the anti-Hermitean operator S+ = —.8. The transformed Hamiltonian A’ can be
expanded as

1 i
H':(1_s+ﬁs2—...>H(1+S+ﬁsz+...)
1
:H—{—[H,S]+7[[H,S],S]+... (3)

1 1
= Hy -+ (H, + [Ho, SD) -+ — [(Hy + [Hy, 81,81+ 5 [y, 81+ -
The aim of the CT is to eliminate H, to first order. This can be achieved by choosing
the generator S to satisfy the condition

Then, in the lowest order, H’ is well approximated by
~ 1 -
H'=H0+-2—[H1,S]- (O)

The last step consists in replacing H' by a suitable effective Hamiltonian H., describing

a new physical situation. Two realizations of the chain H — H' — H’ — H are given
in the following.

3. Transformation of the Frihlich- to the BCS-Hamiltonian

Consider an electron-phonon system. According to (1) we decompose H = H, + Hy,
+ H,,, into

H():Hc + th’ H1:Heph- (6)
More explicitly, in the sense of the Frohlich model, one has
H, = 3 e4CiusCho> (7
ko
+ 1
Hy, = 3 hwg (bibg + | (8)
q
Ileph - Z W’chtack—qd(bq + biq), (9)
kqo

where ¢;i,(cs,) are creation (annihilation) operators for electrons in Bloch states with the
wave vector k and spin ¢; b; , by denote the phonon operators at momentum g, &,
is the one-electron energy and w, the phonon frequency. For simplicity, only longitudinal
acoustical phonons are taken into account. The matrix element of the electron-phonon
interaction reads

- AN \U2
g — — <§m7) oq- <k [Tk — g (10a)
q

h 1/2
= — <§-m) 1:(1 . ququ (10b)
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with the total number N of atoms (of lattice sites), the ionic mass M, the polarization
unit vector e, (= e_,), and the electron-ion interaction potential W. There holds
qu — Wi au—
On the other ha.nd Wyq in (10b) is connected with the double Fourier transform of
the three-centre 1ntegral
1 ik, (RO — R(DY 4 ik, (R(O)— R(0)
G W — BY)| s =25 3 Wy @5 L0 (1)
Nz Foky 1R
where R!® denotes the equilibrium position of the ¢-th ion. The matrix element (11)
enters the electron-phonon interaction
Hypw = — 3 G|V W — RO 5> - wyeiscio (12)
ijmo
written down in Wannier representation instead of (9). The vector

B 12 WR(O)
e = 2 (2Mqu)

represents a small displacement of the m-th ion from its equilibrium position.
Adopting now the procedure outlined in Section 2, we make in view of (9) the ansatz

(4]

(by + T g) (13)

8 == 3 WigthoCe—qolobg + BbE4). (14)

kqo

The coefficients x and f must be determined by (4) on the basis of (6) to (9). By employ-
ing the fermionic anticommutator {c,,, cf,} = O 65 and the bosonic commutator

[by, by 5= Ogq’ relations, from (4) one finds

Z quckack—qa{bq + b~q + (8k - 8k—q) (o‘bq + lgbiq) (15)

kgo

— hwgaby + Bw_gfibT g} = 0.
This yields

o = —(gp — Ep_q — heg) 1,

f=—(ex — er_q + gL,
provided that w, = w_g.

(16)

Next the commutator — [Hg S] is needed. From (9), (14), and (16) one obtains

phs

[Heph’ S] 2 qu Wk’q'{cl;rck--vqacizha’ck’ —q’o’(bq + b'—q) (o‘lbq’ + ﬁ,biq’)

kqa

Kq'c’

- CZ' Chr— —q’c’ cli_a(’k qo(o‘lb + ﬂ/b+q ) (b + b+q)} (17)
where &' = a4 and ' = B4 o. In the following we retain only terms with ¢’ = —gq,

i.e. two electrons are scattered from states with k — g and k' + ¢ into such with k
and k', implying momentum conservation. Thus (17) can be reduced to

[Heph: S] Z quwk’,—q(/g’ - “l)lq':—q Cli-ack—qac;’a’ck’ rqe’ (]8)
kkq
+ 3 Wi Wie g, q(ko — M- qo) (%n—q,—gb—g + Br-g,~gbd ) (bg + bLy),
q 6

where n,, = ¢i,Cp,- Thus we arrive at H = a, 4 H, 5 [H,pn> S]-

Because we are interested in terms which describe the electron subsystem with effec-
tive interaction induced by phonons, we neglectin H' the free phonon part H;, as well
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as the second term in (18). This results in
I{eff = Z z‘:Ek(:;z‘l_acka J(“ Z <k’ K lU[ kE— q, L4 + ¢1> C;Zxclj'c’ck’—&qc'ckch’
ko

kk'q

oa’ (19)

where heg (20)

tn=tnt S WeaWoog_ ,

TR e R g g — ) — (g
Wig Wi, - gling

<€k’ - 8k’4-(1)2 - (kwq)2 )

e K U k—q, K +q) =

(a1)

By additional assumptions H.; can be reduced to the BCS Hamiltonian [7]. Restrict-

ing ourselves in (19) to terms with " = —k only (aimed at Cooper pairing}), we get
— 5 ek + ot
Heyp == 3 p650tho + X UkkrCiaCl korC_kioCrrs s (22)
ko kR’
h aag’
w > £, ;
ere l Wee—w | i e

Upw =<k, —k |U| K, —k'> =

. 23
(e — o) — (hoog )
This involves effective attraction between electrons since U, << 0if |g — epr| << A -
Hence, H,; given in (22) makes contact to the well-known BCS model

Hyos = 3 euiotos + > Urw¢EpiT gy cpCorss (24)
ko kEk’

where g, is simplified to the Bloch energy and U, is parametrized by
—~U U>0), ifsegp—lop<eper <ep+ oy
U = '

. (25)
0 otherwise.

Here a narrow shell of the width 2hwy,(i.e., mg_ g is characterized by the Debye frequency
wp) around the Fermi energy ep contributes to the attractive electron-electron inter-
action which is responsible for weak-coupling superconductivity [7].

4. From the Hubbard- to the t —J-Model

The Hubbard model Hamiltonian
H = —i Z C{‘(;Cio- + UZ nMnN = Ht "{”' IIU (26)
i

(4,0
describes the motion of tightly bound electrons on a lattice as an interplay between the
hopping term 7, and the electron-electron interaction Hy. Here ¢ (c;;) creates (anni-
hilates) an electron in the Wannier state at site ¢ with spin o; n;, = ¢j¢;, is the local
particle number operator. The summation (%, j> runs over all nearest neighbour {n.n.)
sites; £ is the n.n. hopping integral. U denotes the strength of the on-site Coulomb
repulsion between electrons with opposite spins.

From the very beginning we suppose the following situation: the strong correlation
limit U/t > 1 and the nearly-half-filled band case (1 — n) <€ 1 with the mean value
n = {nuy + ;> (number of electrons per site). As a consequence the band splits into
two Hubbard subbands. Correspondingly, one can rewrite identically the hopping part
by }It = Ht,h + H&,d +‘ ]]t,mi:w where [5]

Hy;, = —t 3 (1 —n o) cizcio(l — 15 ), (27)
@@, e
Hyg = —t > % o%:Cis"j,—o> (28)

{i,i)o

H, iz = ‘—t(Z’)‘ {n; _gtibcioll — 5 o) + (1 — 15 _g) €5 ¢, — o} - (29)
i)
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H,, (H,;) is ascribed to the transport of holes (double occupied sites), and H, p;, is the
mixing term. In other words, H, , (H, ;) belongs to the lower (upper) subband, whereas
H, .;x mixes the different Hubbard bands.

In the large-U limit real doubly occupied sites are energetically unfavourable [6].
Virtual doubly occupied sites can be handled by a CT. The aim is to eliminate high-
energy hopping processes which change the total number of doubly occupied sites.
Therefore, we choose for (26) to (29) the decomposition

Hy=H,,+Hg4+ Hy, H, =H; (30)

according to (1). Thus, H,, includes the low-energy hopping processes which do not change
the number of doubly occupied sites.
Applying the CT scheme from Section 2 we make in view of (29) the ansatz

8= —t Z {“ni’_aC£de(1 - n]',——o') + ﬂ(l - ni,——a) cit'cy'ani,-—a}' (31)
(o
In fulfilling (4) the coefficients x and § must be chosen so that H, ;, + [(H,; + H, 4 -+
Hy), 8]= 0. This leads to

—t 2 {(1 + O‘U) ni,—ac{z;cja(l - 'ni,~o') + (1 - ﬂU) (1 - ni,—o') O’E’L;cfﬂnj,“d}

(o
+ terms O{«t?, §t2) = 0 (32)
having used the anticommutator relations {c;, ¢j} = 0;; 35 and {c;4, ¢} = {cif, ¢}
= 0. In (32) the terms of order «t? and 2 are originated from [(H, , + H, ), 8], the terms
proportional to U stem from [Hy, 8], and the remainder comes from H, ;. With
respect to the large-U limit we drop in (32) the terms O(at?, f12) which involve also three-

site contributions. Then one obtains x = —f = —1/U and (31) becomes (cf. [5])

t

8 = —_<2 {ni,—acwﬂt;cja(l - n)',—o) - (1 - ni,——o') cit'cjo'ni,—o‘} . (33)
nie

To construct H; one has to evaluate the commutator

12
@'(_Z_)' y Z; [{nm,—a’c;ln_a'cna'(l - nn,-—o") (34)
1,1)6 {m,n)c’

1
"2‘"[Ht,mix’ ‘S] = -
+ (1 - nm,—u’) c;w'cna’nn,Aa’}’
{ng — 05 Cio(1 — mj_g) — (1 — 4 _4) €i5ei5m5 _o}]-

As an intermediate step of the calculation we quote the expression

£ .
- ﬁ(z}: } 21) , {(1 — 2nm,—a’) [(C;;ocia 5i'n - citcnu(s;'m)
1,7y (m,n)o’

1

5 [H, mix» 81 =
X nn,—a’ni,—u 666' + c:h-a"cna’czrt;cioni,——a(ain - 67n) 60’,'—'6'

+ Czﬂz;oiac;rto'cno’nn,-‘a'(ain - 6@1") 50,-—-0"] - zcﬁrciuni,—acrﬁd%n’nﬂ,—a’ (35)
X (61, - 61'm) aa’,—-—d’ - (1 - znn,-—-o') [(c;r;uciu 6in - 62:'1;6110' 67‘m) 'ﬂm,—a'nj,~a 600’

+
-+ c;;a’cna’cﬂ;cjani,——a(aim - 67m) 60‘,—-0’ + cz‘t—rciacma'cna’nm,—a'(ain - 67'm) 6a,~o']

+
+ 201?:; Ciani,-ucmo’cna’nm,vo’(din - 61n) 60,-—0’} .
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Neglecting the three-centre contributions (such terms are retained in [2, 6]), (35) can
be cast in the form

1
> [Ht,mix’ ‘S =

2U Z {nwnz —0 + n)a 0 niani,-—a - n’jani,*cr
(i,f)o

+ (1 - 2nw> (cwcw,—u—) ( j,— 0 10) Ni—o + (] - 2”7,0') ( C'Et_—o) (cj,—u 7'0) ni —0c
-+ (1 - Znia) ( o i,-—fo) (Cj,AaCic) Nig + ( - 2nw) (cj;c —a) (01 -0 70) Nig

A 2n; g (CihCi o) (€= 6Cis) Mig + 21y o (e et o) (65— oCis) Mo (36)
+ (l - 2”’&0’) (cwcz,—~a) (Cq 40676) n] —c + ( 2n7a) (C+CZ_G) ( j—acia) i,—o
+ (L - 2nia) (C- ’I:,*U) (C1+~acyu) nw —I— (1 - 2"76) ( ~o) (07,—0610) Nig

+ 2”7 -0 (C;Cl —u) (C] —0 ]u) Njg + 2”’7,40’ (‘ z,—o‘) (07,—0670) nw}

The contributions on the r.h.s. of (36) can be classified as follows. The first and the
second terms, namely

H}{ 2U(1%, (nwnz —0 + nwn],—zr) (37)
reflect a repulsive Hubbard-type interaction. The third and fourth terms,
I7H gy i) = 2 5 (88, — (38)
T2 = e———— 23 . . . == m—— . . — — n. . 3
s, oU o nwny,—a ;mnz,—o' U & 2"z 4 (142

describe a nonloeal (n. n.) attractive Hubbard-type interaction which can be interpreted
as longitudinal spin-spin coupling. The symbol {ij> refers to pairs of n. n. sites (links).
The six spin-flip terms, which can be summarized as

4 £ 52 o
Hs,l? U (cw 3,—6) (C) —¢' ]6) - Z (Sm:‘sn, '\L S Syy); (39)
(z g U G
produce a transverse spin-spin coupling [3]. The last six terms, which can be reduced to
’ th - .
Hygie = 37 2 iyl ey (40)
(@.1)

represent, in agreement with [3], the hopping of pairs of electrons.
Altogether, the result of the CT becomes H' = H' 4- O(13/U?) + ... with

H = H, )+ H,4 Hy + Hy + H l -+ Hs -+ flpalr (41)

corresponding to (5). For large U and {1 — =) <€ 1, one can exclude the doubly occupied
states in (41). Then, we are left with the effective Hamiltonian

Heypy = -+ Hyy 4 Hyy, {42)

acting only on the states with no doubly occupied sites. More explicitly, on the basgis of
{27), {38), and (39) one obtains

. 1
Heff ==~} \ (1 - 'I’L,’ ~c) 6366?6(1 - 1, —c;} + J 2: (s S - -——?2 7?‘3) = Hé -F
('a, 7\6 an
(43)
with the exchange parameter J = 442/U; the itinerant spin vector operator §; = (S,
) 1
8, Si,) expressed via S;" = ¢jic;, S =cjfe; by S = —;—— (S + 877, Sy == o5 (S —
1 —
877 ), and S, = — (g — ny)); and ny = ngy - ny = 3 eife,. To sum completely over

2 a
links (25> instead partially over {7, />, the first summand in (43) must be augmented
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by its Hermitean conjugate. The final form (43) represents the so-called ¢-J model being
valid in the non-doubly occupied subspace, i.e. in the lower Hubbard band. Especially,
(43) involves an antiferromagnetic exchange interaction (J > 0) of the Heisenberg-type
arising from virtual transitions into states with doubly occupied sites [10}. H, , can
serve as a starting point [8, 9] to study high-7', superconductivity, in particular by
means of the resonating valence bond (RVB) concept [8].

5. Coneclusion

The method of the CT was used to establish within a unified framework two differént
Hamiltonians with effective attraction of electrons on the basis of electron-phonon or
purely repulsive electron-electron interactions, respectively. The underlying approxima-
tions were pointed out. The resulting Hyog and H, _; are significant models within the
theories for conventional and high-7', superconductivity, respectively. Let us summarize
the analogy of the two CT schemes (BCS/t — J, respectively) by means of the

(i) formulation: k-space/real space (lattice);
(ii) original model: Frohlich/Hubbard (U/¢t > 1);
(iii) elimination: electron-phonon interaction H,,,/cross-subband hopping H, ;. ;
{(iv) subsystem neglected (due to decoupling): phonon/upper Hubbard band;
(v) final model: BCS/t — J;
(vi) result of the attraction: Cooper pair/n. n. singlet pair.

Note that the two-body term of Hpeg in (24) takes the form —U 3 b b, with b =
K
cgrely, creating a Cooper pair; while the J-term of H,_; in (43) can be written as [8]

1 ‘ . . ;
—J 3 biiby, where bf = 1/_5(6"%% — cif¢cf) creates a singlet spin pair on the n. n.
(M
“valence” bond (7j).
The BCS model applies mainly to superconductivity in simple metals, whereas the
Cu0, planes in high-7', superconductors can be treated by the { — J model with states
centred on Cu sites.
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