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On a New Method in the Theory. of Superconductivity.

N. N. BogorJuBov
Joint Institute for Nuclear Research - Dubna, USSR

(ricevuto il 14 Novermbre 1957)

Summary. — A generalization of the method elaborated by the author
for the theory of superconductivity is presented. It is shown that the
original Frohlich model possesses the property of superconductivity. The
ground state and its fermion excitations are considered.

After the discovery of the isotope effect it is generally accepted that inter-
action between electrons and the lattice should play an important role in super-
conductivity.

We shall show in the present paper that such a system really does exhibit
superconductive properties.

Some very interesting investigations of a system of electrons interacting
with a phonon field have been performed (*-*) along this line. In the present
paper it will be shown that by extending the method previously proposed
by us for the study of superfluidity one may develop a consistent theory of the
superconductive state. In particular this theory yields results which confirm
those of Bardeen’s theory (3).

For sake of simplicity we shall base our considerations on the model pro-
posed by FrouLICH (*); Coulomb interaction is not introduced explicitly, the

(Y) H. FrouvLicu: Phys. Rev., 79, 845 (1950); Proc. Roy. Soc. (London), A 215,
291 (1952).

(2) J. BARDEEN: Rev. Mod. Phys., 23, 261 (1951); Handb. der Phys. (Berlin, 1956),
15, 274; J. BARDEEN and D. PiNEs: Phys. Rev., 99, 1140 (1950).

(3) J. BArDEEN, L. N. CopPER and J. R. SCHRIEFFER: Phys. Rev., 108, 162 (1957).

() D. PiNves: Phys. Rev. (in print).
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ON A NEW METIIOD IN THE THEORY OF SUPERCONDUCTIVITY 795

dynamical system being characterized by the Hamiltonian (*)
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where E(k) is the electron energy, w(g) the phonon energy, ¢ a coupling con-
stant and V the volume.

As is now well known, conventional perturbation theory expressed in powers
of the coupling constant is not valid due to the circumstance that the electron-
phonon interaction, despite its smallness, is very significant near the Fermi
surface.

Thus as a preliminary step we shall perform a canonical transformation
on the basis of the following considerations.

First of all it will be noted that matrix elements corresponding to virtual
« particle» creation in vacuum always involve energy denominators of the
form

k.
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in which e(k) ~|[E(k) — E,| is the particle energy of an electron (E(k) > E.,),
or of a hole (K(k) << E,) which becomes small near the Fermi surface.

Such denominators are in general not « dangerous » and integration over
the momenta k,, ..., Ky, ¢, ..., ¢ does not lead to divergences, an exception
being the case of virtual creation of a single pair without phonons. In virtue of
the congervation law the momenta of this pair will be oppositely directed
and the energy denominator

{2e(k)}~

will then be « dangerous » during integration.

It may also be mentioned that the particle spins will likewise have oppo-
site directions.

Thus in choosing a canonical transformation one should keep in mind the
necessity of ensuring mutual compensation of graphs leading to virtual ereation
in vacuum of a pair of particles with opposite momenta and spins (+).

(*) The wunit system in which #=1 is employed here.

(") Tt is to be stressed that in the ordinary perturbation theory applied directly
to the normal state these graphs cannot appear because of conservation of the number
of real electrons.

But if we mix electron and hole states by a canonical transformation the con-
servation principle does not help and such graphs appear.
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796 N. N. BOGOLJUBOV

It might be pertinent to point out the analogy between the present si-
tuation and that encountered in our theory of superfluidity (*) of a non-ideal
Bose gas; in the latter case the same role was played by virtual creation from
the condensate of a pair of particles with momenta 4 k. In this theory ()
we employed a linear transformation of Bose amplitudes which « mixes » b,
with b_,.

Generalizing this transformation we introduce in the case under consi-
deration new Fermi amplitudes «

.
Opo = Uy, — 004 _y

4
Oy = W@y + v 1L
or
— . py
Uy = Uy 5 U Oy

.
Ay g = Ul — V) Uy
where u,, v, are real numbers which are related as follows
2 2
U, +v, =1.

It is not difficult to verify that this transformation retains all commutation
properties of Fermi operators and is therefore canonical. It may also be noted
that it is a generalization of the usual fransformation employed to introduce
creation and annihilation operators for holes inside the Fermi surface or for
electrons outside this surface.

Indeed, if we put

=1, v=0 (B(k) > E,)
W =0, w=1 (B(k) < E,)
we obtain
By = Gy %y = A, _, (E(k) > E,)
Gy = — Oy gy gy = Oy, (E(k) < B,)

so that «;, for example, will be the annihilation operator of an electron having
momentum % and spin } outside the Fermi sphere and the annihilation ope-
rator of a hole with a momentum — %k and spin —3} inside it.

(®) N. N. BocorsuBov: Journ. of Phys. USSR, 9, 23 (1947); Vestnik MGU, no. 7,
43 (1947).
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ON A NEW METIOD IN THE THEORY OF SUPERCONDUCTIVITY 797

In the general case, when (u;, )+ (0,1) superposition of a hole and
electron is encountered.

Returning to the Frohlich Hamiltonian we note that for technical reasons
it will be more convenient for us not to be tied up with the relation

o+ T
z Ayslps = AO ’
ks

where N, is the total number of electrons, but to proceed in a manner which
is usual in such cases, and choose a parameter 1 which plays the role of a
chemical potential.

Thus instead of H, we shall deal with the Hamiltonian

(2) H=H,—JN.

The value of parameter 1 will be found from the condition that in the
state under consideration

(3) N=N,.
Transforming H to new Fermi amplitudes we get
H =V +H,+H_
H, , =H +H,+ H,,
where V is a constant
V =23 Ek)yv;—21> v;

HO - z (E(k) - 2)(1‘1% - 7’2)(&%“7«0 + ;51;10%1)

!
w + o+ + +
H, = 2 g l/ 2(5){?%%'051:0%’1 A R Y

+
+ U Crlg X + U Vg ’Xvko}bq —coe.

/
w(q) - +
H, = Z g ‘/};}7 {ukuk’ﬁxko“k’o T+ U g U g O gy Oy —
x ’ 7o .
— Ul 18 — V0 %y, OOLI;o}ba e

H;=2 z (E(k) - l)uk}?k(kal“ko + &kog‘kl) .

We now introduce the occupation numbers

+ +
Vo == Ao Xro 5 Vie = Xp1 %1
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798 N. N. BOGOLJUBOV

for the new quasi particles created by the operators.
Evidently the state

Cu = H 6(”1«0) 6(”1:1) )

with zero » will be a «non-interaction vacuum » that is, a state for which

It may be pointed out that 1 should be close to E, since in the absence
of interaction A=, The expression

*xa e(k) = (B(k) — A)(u? — o)

2, . thus should vanish on a surface close to
the Fermi surface.

We can now see that as regards the
criterion given above a « dangerous process »
will be one of virtual creation of a pair of quasi-particles v, v;; in vacuum
without phonons since the corresponding energy denominator will be

{2e(k)}.

The Hamiltonian H, directly leads to this * B ,
type of process; forthe vacuum this Hamilton- "e h N
ian yields the graph (*) shown in Fig. 1. \
The joint action of H,, H, can also yield @, - ! y
this process. @) '

Thus, for example, in the second order in + . -

the coupling constant ¢ we have the graphs
sliown in Fig. 2a.
At higher orders graphs of the type shown b
in Fig. 2b are obtained; the circle denotes
a connected part which cannot be divided

into two connected parts linked only by two +

lines of the single pair under consideratiomn. " S
In virtue of the principle of compensa- S ‘i

tion of dangerous graphs proposed above

we are obliged to equate to zero the sum of . Fig. 2.

(*) Application of the graph technigue to the many body problem can be found
in a detailed paper by HucENHOLTZ (5).
() N. M. HueeNHOLTZ: Plysica, 28, 481 (1957).
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ON A NEW METHOD IN THE THEORY OF SUPERCONDUCTIVITY 799

the contributions from the graph in Fig. 1 and from those in Fig. 2. An equation
for u,, v, is thus obtained.

It will now be unnecessary to take into account the graphs in Fig. 1 and 2
(and their conjugates) and hence no expressions involving dangerous energy
denominators will appear in the perturbation theory expansions.

We now set up an equation for u;, v, in the second order. In this approx-
imation the graphs in Fig. 1 should be compensated by those in Fig. 2.

We get

where 0, is the coefficient of &ko&kl C, in the expression
— H,H'H,C, .

In the expanded form we finally obtain

~ 1 olk — k'
4 {Ek&)— 2w, = (uf—0)) 57 g g? ok = IE’J)( i e(k)) o) Wy
where
-~ wlk—k
(5) E(k) = Z g )( ek ))" o) (e — i)

Without leaving the limits of the chosen approximation we can replace
e(k) = {H(k) — A}(u; —
in the denominator of the right hand part by

(k) = {B() ~ A}(uf —v}) .

Asguming

E(k) — 4 = &(k),
we may then rewrite the equation obtained in the following form

ok —k')

) T 2(k) + 5k " IF

1
(6) E(k)uor = (ui — vi) 2(271)3[92 ok — k'
This equation evidently possesses the trivial solution

u =0, (uyv):(071)7
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800 N. N. BOGOLJUBOV

which corresponds to the « normal state ». However it also possesses a ditfferent
type of solution which goes over into the trivial one on moving away from the
Fermi surface.

Putting
. 1 ) 3 7”7”790ik: kl) L ) ;
Otk) = (2n)ng olh — &) - 5(R) & 500 " Uk
we find from (6)
; . 1 £ ) L _1J £
k= 5 1 Pl B k= = 1 S O |
(7) u 2{ +ng+§zj =51 \/CZ+§2}
whence
1 O(k) = &2(k)
e — 5 ﬁ Ig L - .
YTAEm EmT T VO® T e

Thus our equation reduces to the following

1 . ok —T) O o
®) Otk) = 2(2n)3f‘q w(k — k') +Ek) +EE) v/ C2(k) - E(5') dk".

It should be noted that this equation possesses a peculiar feature: for
g*— 0 the solution C tends to zero like exp [— A/¢%], A being a positive constant
because near the surface, &£(k)= 0 and the integral in the right hand part
of (8) becomes logarithmically divergent if ¢ = 0.

Under these conditions it is not difficult to derive the asymptotic form of
the solution for small values of ¢:

1}1[1 o{kV2l—1} dt,

9 k) =
© Olk) = @ exp of{kV2(1 — 1)} + | £(k)

where

g * ) Bk,) = 1
27:2((1 B(k)ak/)e-x, (ko) = 4,

{10) 1nca:flni 3{ ) o{kV2(1 — 1)} dtldE
_lw{kox/Zl—t}—\-f f

Taking into account the auxiliary condition (3) and the expressions (7), (9)
found for #, v it may be seen that

ky=F,.
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ON A NEW METHOD IN THE THEORY OF SUPERCONDUCTIVITY 801

It is furthermore evident that the corrections to expression (5) which result
from the substitution of %, an v, with the « normal » values

’ il, [k|> k,
= O,(k) =
0’ [ki<k14‘
= i 0, [k,
| v = 0.(k) = ,
| 1, |(k|<k,

will be exponentially small.

Thus, without loss of precision we may replace by E(k) in formula (10)
the corresponding expression for the normal state and we may interpret the
factor

1<k2" 1 Z,,“ﬂkzd’"l
272 dEdk)m Viene dE |,

as the relative density dn/dE of the number of electron levels in an infinitely
narrow energy gap near the Fermi surface. Then

dn
(12 ) Q — gz'(TE .
We shall now proceed to calculate the ground state energy in a second
approximation.
From the total H,, only H, should now be taken into account. We thus
agssume that for the eigenvalue of H in the ground state

V= (CHHH\C,» =2 3{B(k) — A} ol — % A,;g "("lﬁ(’kj—k k{)u f jfuf ’55" ))’ ’

Ingerting the expression for w,, v, previously found we calculate the dif-
ference AE between the energy of the ground state and that of the normal
state.

We get

(14) [ —— ; exp

It is interesting to note that this result is the same as that of BARDEEN
and co-workers (*). This can easily be seen if Bardeen’s parameters o, V are

=
(=3
D



802 N. N. BOGOLJUBOV

chosen as follows

(15) 20 = &, V=g2.

We shall now set up in the accepted approximation the formula for the
energy of an elementary excitation. For this purpose we consider the excited
state

+ 1
Cy = o C’p

and apply to it the perturbation theory in the usual manner. For the energy
of an elementary excitation with momentum % we obtain the following ex-
pression

E.(k) = e(k) — {CFH,, (H, — e(k)) " H,1, 1) conpecten

int 1

which in the expanded form is

N g . uku,+vaﬁ l
(16) E.(k) = ¢ek) 11 Vv Z ok — [(/) (k— %" J *

E

e, wk—k)( (k—k>+e( )
L 2uy kz — k) Lok jz k Ut -

The first term which is proportional to Z(%k) does not possess any singular
properties and vanishes on the Fermi surface. However on this surface the
second term is

ok —k . 1
T’ 2t 2 ok — &) —&—)a(k )%z v = 2u 0, C(k) = C(kp) = & exp {— Z’] .
Thus the energy values of states with fermion excitations are separated
from the energy of the ground state by the gap

(17) A:Jexp[—l}.

It should be mentioned that an expression of the same type as (17) is
contained in BARDEEN’s paper and is interpreted there as the energy required
for the destruction of a « pair ».

It is interesting to note that contrary to Bardeen’s theory our « vacuum »
or the lowest energy state is formed by fermions. These fermions characterized
by creation and annihilation amplitudes «* and o« correspond to a kind of
superposition of the electron and the hole.
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Consider now the « ground current state », that is, a state possessing the

lowest energy among possible estates with a given momentum P.

Thus our task is to determine the eigenvalue of H with the auxiliary

condition

z k&ksaksrz P .

k.s

Instead of doing this we shall introduce in the usual manner not only the
scalar parameter A, but also.a vector parameter u which plays the role of a

mean velocity, and take the complete Hamiltonian in the form

(18) H=H,— i3 tytse— 3 (uk) s, =
k.s

= z {E(k) — (u k) — 1} Zlksak-s + Z o(q) qua"’ H,.

The value of k is determined from the condition

S ka,a,=P.
k,s

Since we have been dealing only with a small area in the vicinity of the

Fermi surface we may put, for sake of simplicity,

E(k) = ke + D D=k ki
T 2m ! T om
and in the final formulae we may assume
m = ( ko
~ \dE/dk koip
However in this case
2
B(k)— (uk)= E(k — mu) — mZ“

and therefore if we perform in momentum space the translation
(19) k—k-+um, Oy = O s

and make the substitution

mu?
S

-

A= I+
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804 N. N. BOGOLJUBOV

the hamiltonian (18) will have the same form as (2) and will not contain the
vector u. We again arrive at the case of a ground state with zero momentum.
Thus there is no necessity of carrying out a special investigation of the current
flow state; it should be sufficient to apply the inverse transformation of (19) to
the formulae previously obtained.

In this manner, for example, one may verify that the energy of the ground
current state with a mean velocity u differs from the energy of a ground state
with no current by N(mu?/2).

Excitations are separated from the energy of the ground current state by
the gap

Ay=A—ku>A—Fk_,|ul.
Hence if

k,lul<A,

the current state will nevertheless be stable with respect to excitations, despite
the fact that the energy of this state is greater than that of the non-current
state (neglecting the effects of the magnetic field).

We thus see that superconductivity is really an intrinsic property of the
considered model.

Some additional remarks may be made.

In order to be able to restrict our considerations to asymptotic approxim-
ations it was necessary to assume that the parameter ¢ was small. However
V. V. TormaCEV and 8. V. TJABLIKOV (7) have shown, by applying a method
which does not assume the smallness of g, that for ¢ >} the velocity of sound
is imaginary. This means that the lattice is unstable. If the lattice is so rigid
that the electron-phonon interaction does not appreciably affect the phonon
energy, the parameter ¢ should be small. Already for o=1, exp[— 1/0] equals
1/65. In our opinion this explains the small magnitude of the energy gap and
hence of the critical temperature.

It may also be pointed out that if a Coulomb interaction term is explicitly
introduced in the Frohlich Hamiltonian, summation over electron-hole graphs
of the Gell-Mann-Brueckner type should be performed in order to ensure the
appearance cof screening.

One can thus easily verify that Coulomb interaction counteracts the ap-
pearance of superconductivity (*).

(") V. V. ToLmal¢ev and 8. V. TsaBLikov: Zu. Exper. Teor. Fiz. (in print).

(*) Note added in proof. — The detailed study of the Coulomb interaction shows (%)
that its efficiency is essentially reduced due to its «long range » in momentum space.

(]} N. N. Bocorjusov, D. V. Surrov and V. V. TorMaCEV: preprint of the
Joint Institute for Nuclear Research.
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In conclusion the author considers it a pleasant duty to express his ap-
preciation to D. N. ZUBAREY, V. V. ToLMACEv, 8. V. TJABLIKOV and YU.
A. TsErkovNIKOV for valuable discussions.

RIASSUNTO (*)

Si presenta una generalizzazione del metodo elaborato dall’autore per la teoria
della superconduttivitia. Si dimostra che il modello originale di Frohlich possiede la
proprietd di essere superconduttivo. Si prendono in considerazione lo stato fonda-
mentale e le eccitazioni dei suoi fermioni.

(*) Traduzione « cura della Redazione.



