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C∗-ALGEBRAS

DEFINITION

A C∗-algebra is a Banach algebra A with norm ‖ · ‖ and

involution

A ∋ a 7−→ a∗ ∈ A,

(antilinear & antimultiplicative) such that

‖a∗a‖ = ‖a‖2

for all a ∈ A.

Examples:

• B(H ) for H — a Hilbert space,

• C(X) for X — a compact (Hausdorff) space

or

• K(H ) i.e. the compact operators,

• C0(X) for X — locally compact.
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GELFAND DUALITY

THEOREM

The map

{

compact

spaces

}

∋ X 7−→ C(X) ∈

{

commutative and

unital C∗-algebras

}

extends to an anti-equivalence of categories of

• compact spaces and continuous maps

and

• C∗-algebras and unital ∗-homomorphisms.

• Analogous statement is true for locally compact

spaces and all commutative C∗-algebras with

appropriate definition of a morphism of C∗-algebras.
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QUANTUM SPACES

DEFINITION

A quantum space is an object of the category dual to the

category of C∗-algebras.

Duality

Quantum spaces

Loca
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NOTATION & TERMINOLOGY FOR QUANTUM SPACES

• Let X be a quantum space. The corresponding

C∗-algebra will be denoted by C0(X).

• X is called compact if C0(X) is unital. In this case we

write C(X) for C0(X).
From now on we restrict attention to this case.

• X is called finite if C(X) is finite-dimensional (in this

case X is automatically compact).

• Let X and Y be quantum spaces. By definition, a

continuous map X → Y is a ∗-homomorphism

C(Y) −→ C(X).

• If X and Y are compact spaces then

C(X × Y ) ∼= C(X) ⊗ C(Y )

(minimal tensor product of C∗-algebras).
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CLASSICAL FAMILIES OF MAPS

THEOREM (J.R. JACKSON, 1952)

Let X, Y and E be topological spaces such that X is

Hausdorff and E is locally compact. For ψ ∈ C(X × E,Y )
define σ(ψ) as the mapping from E to C(X ,Y ) given by

[(

σ(ψ)
)

(e)
]

(x) = ψ(x ,e).

Then σ is a homeomorphism of C(X × E,Y ) onto

C
(

E,C(X ,Y )
)

with all spaces of maps topologized by their

respective compact-open topologies.

In other words:

• a (continuous) family of maps X → Y parametrized by

points of E is encoded in a single map E → C(X ,Y ).
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WHAT IS A QUANTUM FAMILY OF MAPS?

DEFINITION

Let X, Y and E be quantum spaces. A continuous

quantum family of maps X → Y parametrized by E is a

∗-homomorphism

Ψ: C(Y) −→ C(X) ⊗ C(E).

• If X = X , Y = Y and E = E are classical spaces then a

quantum family of maps

Ψ: C(Y) −→ C(X) ⊗ C(E)

defines uniquely a continuous family of maps X → Y

parametrized by points of E.

• Examples are plentiful!
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COMPOSITION OF QUANTUM FAMILIES OF MAPS

• Let X1,X2,X3,D1 and D2 be quantum spaces.

• Consider families of maps

Ψ1 : C(X2) −→ C(X1) ⊗ C(D1),

Ψ2 : C(X2) −→ C(X1) ⊗ C(D2)

(so D1 parametrizes maps X1 → X2 and D2

parametrizes maps X2 → X3).

• Define the new quantum family of maps

Ψ1 △Ψ2 = (Ψ1⊗ id)◦Ψ2 : C(X3) → C(X1)⊗C(D1)⊗C(D2).

• Ψ1 △Ψ2 is called the composition of Ψ1 and Ψ2.

• In classical situation Ψ1 △Ψ2 corresponds to the

family of compositions of all maps from the two

families Ψ1 and Ψ2.
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ILLUSTRATION OF COMPOSITION

• Using graphical notation for Ψ1 and Ψ2:

C(X2)

C(X1) C(D1)

Ψ1

C(X3)

C(X2) C(D2)

Ψ2

We can represent Ψ1 △Ψ2 as
C(X3)

C(X1) C(D1) C(D2)

Ψ2

Ψ1

• Associativity: (Ψ1 △Ψ2)△Ψ3 = Ψ1 △(Ψ2 △Ψ3).
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QUANTUM FAMILIES OF ALL MAPS

Let X and Y, E be quantum spaces and let

Φ: C(Y) → C(X) ⊗ C(E) be a quantum family of maps. We

say that

• Φ is the quantum family of all maps from X to Y

and

• E is the quantum space of all maps from X to Y

if

• for any quantum space D and

• any quantum family Ψ: C(Y) → C(X) ⊗ C(D)

there exists a unique Λ: C(E) → C(D) such that

C(Y)
Φ

C(X) ⊗ C(E)

id⊗Λ

C(Y)
Ψ

C(X) ⊗ C(D)
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EXISTENCE

• The quantum space of all maps X → Y often does not

exists

(or rather, it is not locally compact).

• In 1979 S.L. Woronowicz stated

THEOREM

Let X and Y be quantum spaces such that C(X) is finite

dimensional and C(Y) is finitely generated and unital.

Then the quantum space of all maps X → Y exists.

Moreover this quantum space is compact.

• When the quantum space of all maps from X to Y

exists, it is unique.

• Very interesting case: X = Y = M with C(M)
finite-dimensional.
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EXAMPLE 1

• Let M be the classical two point space:

M =
{

•, •
}

(i.e. C(M) = C
2).

• The classical space o all maps M → M is {•, •, •, •}.

• The quantum space E of all maps M → M is such

that

C(E) =
{

f ∈ C
(

[0,1],M2(C)
)

f (0), f (1) are diagonal
}

.

• The quantum family of all maps M → M is

Φ: C
2 → C

2 ⊗ C(E)

Φ
([

1
0

])

=
[

1
0

]

⊗ P +
[

0
1

]

⊗ Q,

where

P(t) =

[

0 0

0 1

]

, Q(t) = 1
2

[

1 − cos 2πt i sin 2πt

−i sin 2πt 1 + cos 2πt

]

.
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QUANTUM SEMIGROUP STRUCTURE

• Let M be a finite quantum space.

• Let E be the quantum space of all maps M → M and

let

Φ: C(M) −→ C(M) ⊗ C(E)

be the quantum family of all maps M → M.

• The universal property of (E,Φ) gives a

∆: C(E) −→ C(E) ⊗ C(E)

such that Φ△Φ = (id ⊗ ∆)◦Φ:

C(M)
Φ

C(M) ⊗ C(E)

id⊗∆

C(M)
Φ△Φ

C(M) ⊗ C(E) ⊗ C(E)
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PROPERTIES

THEOREM

Let M be a finite quantum space and let E be the quantum

space of all maps M → M. Let

Φ: C(M) −→ C(M) ⊗ C(E),

∆: C(E) −→ C(E) ⊗ C(E)

be as above. Then

1. ∆ is coassociative: (∆ ⊗ id)◦∆ = (id ⊗ ∆)◦∆.

2. There exists a unique character ǫ of C(E) such that

(id ⊗ ǫ)◦Φ = id.

3. We have: (id ⊗ ǫ)◦∆ = (ǫ⊗ id)◦∆ = id.

4. The spectrum of C(M) coincides with the compact

space of ∗-homomorphisms C(M) → C(M).
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EXAMPLE 1 CONTINUED

• For C(M) = C
2 the quantum space E of all maps

M → M is

C(E) =
{

f ∈ C
(

[0,1],M2(C)
)

f (0), f (1) are diagonal
}

.

• We have

∆(P) = P ⊗P +(1−P)⊗Q, ∆(Q) = Q⊗P +(1−Q)⊗Q.

(Recall: P(t) =
[

0 0
0 1

]

, Q(t) = 1
2

[

1−cos 2πt i sin 2πt
−i sin 2πt 1+cos 2πt

]

. )

• The co-unit ǫ is given by

ǫ(P) = 1, ǫ(Q) = 0.

• E is not a quantum group.
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QUANTUM GROUPS

DEFINITION

• A compact quantum space G is a compact quantum

semigroup if there exists ∆: C(G) → C(G) ⊗ C(G)
such that (∆ ⊗ id)◦∆ = (id ⊗ ∆)◦∆.

• G is called a compact quantum group if

∆
(

C(G)
)(

1⊗ C(G)
)

= C(G) ⊗ C(G),
(

C(G) ⊗ 1
)

∆
(

C(G)
)

= C(G) ⊗ C(G).

• If M is a finite quantum space and E is the quantum

semigroup of all maps M → M then E is not a

quantum group unless M = {•}.

• If M = {•, •} then E is a quantum group with:

∆(P) = (P − 1) ⊗ P + 1⊗ 1 + P ⊗ (P − 1),

∆(Q) = (Q − 1) ⊗ Q + 1⊗ 1 + Q ⊗ (Q − 1).
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DIGRESSION: QUANTUM GROUPS

• Compact quantum groups were defined by

S.L. Woronowicz in 1987.

• They have Haar measures.

• Appropriate notion of representations can be

introduced.

• The Peter-Weyl theory has been developed in full

generality.
• Examples include:

• quantum deformations like SqU(2),
• “free” compact quantum groups,
• quantum isometry groups of spectral triples,
• many more...

• Locally compact quantum groups are object of

current research.

• Theory of actions of quantum groups on quantum

spaces is being studied (many mysteries still to be

solved there).
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SEMIGROUP OF ALL MAPS — SUMMARY

• Let M be a finite quantum space.

• Let E be the quantum space of all maps M → M.

• E carries a canonical stricture of a compact quantum

semigroup.

• The quantum family of all maps M → M

Φ: C(M) −→ C(M) ⊗ C(E)

is an action of E on M:

(Φ ⊗ id)◦Φ = (id ⊗ ∆)◦Φ.

• Classical analogy:
• M — space,
• E — semigroup of all maps M → M.
• φ : M × E → M describes the action: φ(m, λ) = λ(m).

Then Φ corresponds to the map

C(M) ∋ f 7−→ f ◦φ ∈ C(M × E).
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QUANTUM FAMILIES PRESERVING A STATE

• Let M be a finite space and let µ be a measure on M .

• Let E be the semigroup of all maps M → M .

• The set of all maps M → M preserving µ is a

subsemigroup of E.

DEFINITION

Let M be a finite quantum space and let ω be a state on

C(M) (positive linear functional of norm 1). Let D be

another quantum space and let Ψ: C(M) → C(M) ⊗ C(D)
be a quantum family of maps M → M.

We say that Ψ preserves ω if

(ω ⊗ id)
(

Ψ(x)
)

= ω(x)1,

for all x ∈ C(M).
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QUANTUM SEMIGROUP PRESERVING A STATE

THEOREM

Let M be a finite q. space and ω a state on C(M). Then

• there exists a unique quantum family

Φω : C(M) −→ C(M) ⊗ C(W)

such that for any quantum family

Ψ: C(M) −→ C(M) ⊗ C(D)

preserving ω there exists a unique Λ: C(W) → C(D)
such that

C(M)
Φω

C(M) ⊗ C(W)

id⊗Λ

C(M)
Ψ

C(M) ⊗ C(D)
• Φω preserves ω,

• W is a compact quantum semigroup (canonically).
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EXAMPLE

• Let C(M) = M2(C), ωq

([

a b
c d

])

= a+q2d

1+q2 (q ∈]0,1]).

• The quantum semigroup W of all maps M → M

preserving ωq looks as follows:

• C(W) is generated by β, γ and δ s.t.

q4δ∗δ + γ∗γ + q4δδ∗ + ββ∗ = 1, βγ = −q4δ2,

β∗β + δ∗δ + γγ∗ + δδ∗ = 1, γβ = −δ2,

γ∗δ − q2δ∗β + βδ∗ − q2δγ∗
= 0, βδ = q2δβ,

q4δδ∗ + ββ∗
+ q2γγ∗

+ q2δδ∗ = 1, δγ = q2γδ

q4δ∗δ + γ∗γ + q2β∗β + q2δ∗δ = q2
1.

• The comultiplication ∆: C(W) → C(W) ⊗ C(W) is

∆(β) = q
4
δγ

∗

⊗ δ − q
2
βδ

∗

⊗ δ + β ⊗ β + γ
∗

⊗ γ − q
2
δ
∗

β ⊗ δ + γ
∗

δ ⊗ δ,

∆(γ) = q
4
γδ

∗

⊗ δ − q
2
δβ

∗

⊗ δ + γ ⊗ β + β
∗

⊗ γ − q
2
β
∗

δ ⊗ δ + δ
∗

γ ⊗ δ,

∆(δ) = −q
2
γ
∗

γ ⊗ δ − q
2
δδ

∗

⊗ δ + δ ⊗ β + δ
∗

⊗ γ + β
∗

β ⊗ δ + δ
∗

δ ⊗ δ.

• The counit ǫ maps γ and δ to 0 and β to 1.
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A SMALL IMPROVEMENT

• Consider M with C(M) = M2(C) and ωq as before.

• The semigroup W described above contains the

largest quantum group preserving ωq.

• This quantum group turns out to be the quantum

SO(3) group defined in 1989 by P. Podleś via

representation theory.

• C
(

SqO(3)
)

was originally known to be generated by
A, C, G, K, L satisfying

L
∗

L = (1 − K)(1 − q
−2

K),

LL
∗

= (1 − q
2

K)(1 − q
4

K),

G
∗

G = GG
∗

,

K
2

= G
∗

G,

A
∗

A = K − K
2
,

AA
∗

= q
2

K − q
4

K
2
,

C
∗

C = K − K
2
,

CC
∗

= q
2

K − q
4

K
2
,

LK = q
4

KL,

GK = KG,

AK = q
2

KA,

CK = q
2

KC,

LG = q
4

GL,

LA = q
2

AL,

AG = q
2

GA,

AC = CA,

LG
∗

= q
4

G
∗

L,

A
2

= q
−1

LG,

A
∗

L = q
−1

(1 − K)C,

K
∗

= K.
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QUANTUM COMMUTANTS

• Let M be a finite space and let F be a family of maps

M → M .

• Let E be the semigroup of all maps M → M .

• The set of all maps M → M commuting with elements

of F is a subsemigroup of E.

DEFINITION

Let M be a finite quantum space and let

Ψ1 : C(M) → C(M) ⊗ C(D1), Ψ2 : C(M) → C(M) ⊗ C(D2)

be two quantum families of maps. We say that Ψ1 and Ψ2

commute if

(id ⊗ σ)◦(Ψ1 △Ψ2) = Ψ2 △Ψ1,

where σ is the flip C(D1) ⊗ C(D2) → C(D2) ⊗ C(D1).
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ILLUSTRATION OF COMMUTATION

Quantum families

Ψ1 : C(M) −→ C(M) ⊗ C(D1),

Ψ2 : C(M) −→ C(M) ⊗ C(D2)

commute if

C(M) C(M)

C(M) C(D2) C(D1) C(M) C(D2) C(D1)

Ψ2 Ψ1

Ψ1

Ψ2

σ

=
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QUANTUM COMMUTANT

THEOREM

Let M be a finite q. space and Ψ: C(M) → C(M) ⊗ C(D) a

quantum family of maps M → M. Then

• there exists a unique quantum family

ΦΨ : C(M) −→ C(M) ⊗ C(U)

such that for any quantum family

Θ: C(M) → C(M) ⊗ C(P) commuting with Ψ there

exists a unique Λ: C(U) → C(P) such that

C(M)
ΦΨ

C(M) ⊗ C(U)

id⊗Λ

C(M)
Θ

C(M) ⊗ C(P)

• ΦΨ commutes with Ψ,

• U is a compact quantum semigroup (canonically).
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EXAMPLE

• As before let M be such that C(M) = M2(C).

• Let U be the commutant of the (classical) family of

maps M → M consisting of the single automorphism

of C(M):
ψ :

[

a b
c d

]

7−→
[

d c
b a

]

.

• This family is described in our language by

Ψ: C(M) −→ C(M) ⊗ C

given by Ψ(m) = ψ(m) ⊗ 1.

• Let U be the quantum commutant of Ψ.
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EXAMPLE

• The C∗-algebra C(U) is generated by α, β and γ with

β = β∗, γ = γ∗

and

α∗α+ γ2 + αα∗ + β2 = 1, α2 + βγ = 0,

α∗β + γα∗ + αγ + βα = 0, αβ + βα∗ = 0,

γα+ α∗γ = 0.

• The comultiplication is

∆(α) = 1⊗ α+ (α∗α+ γ2) ⊗ (α∗ − α) + α⊗ β + α∗ ⊗ γ,

∆(β) = (αγ + βα) ⊗ (α− α∗) + β ⊗ β + γ ⊗ γ,

∆(γ) = (βα+ αγ) ⊗ (α∗ − α) + γ ⊗ β + β ⊗ γ,

• U is not a compact quantum group (with this ∆).
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ALL MAPS INTO A QUANTUM SEMIGROUP

• Let S be a finite set and S a quantum semigroup.

• The quantum space of all maps S → S can be

endowed with structure of a quantum semigroup H.

• If S is a quantum group then so is H.

• If H is a quantum group then so is S.

• Weird things happen when S is taken to be a

quantum space.

• For more see: P.M. Sołtan ”On quantum maps into

quantum semigroups”, to appear in Houston Journal

of Mathematics.

•

• THANK YOU!
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