QUANTUM FAMILIES OF MAPS

Piotr M. Sołtan

Department of Mathematical Methods in Physics, Faculty of Physics, University of Warsaw

15th International Workshop for Young Mathematicians "Functional Analysis" Kraków, July 09, 2012

TALK OUTLINE

C*-ALGEBRAS

DEFINITION

A $\mathbf{C^*}\text{-algebra}$ is a Banach algebra A with norm $\|\cdot\|$ and involution

$$\mathsf{A} \ni a \longmapsto a^* \in \mathsf{A},$$

(antilinear & antimultiplicative) such that

$$\|a^*a\| = \|a\|^2$$

for all $a \in A$.

Examples:

- $B(\mathscr{H})$ for \mathscr{H} a Hilbert space,
- C(X) for X a compact (Hausdorff) space

or

- $\mathcal{K}(\mathscr{H})$ i.e. the compact operators,
- $C_0(X)$ for X locally compact.

Gelfand duality

THEOREM

The map

$$\left(egin{array}{c} compact \ spaces \end{array}
ight\}
ightarrow \mathrm{C}(X) \in \left\{ egin{array}{c} commutative and \ unital \mathrm{C}^* \mbox{-algebras}\end{array}
ight\}$$

extends to an anti-equivalence of categories of

compact spaces and continuous maps

and

- C*-algebras and unital *-homomorphisms.
- Analogous statement is true for locally compact spaces and all commutative C*-algebras with appropriate definition of a morphism of C*-algebras.

QUANTUM SPACES

DEFINITION

A **quantum space** is an object of the category dual to the category of C^* -algebras.

NOTATION & TERMINOLOGY FOR QUANTUM SPACES

- Let $\mathbb X$ be a quantum space. The corresponding $C^*\text{-algebra}$ will be denoted by $C_0(\mathbb X).$
- $\mathbb X$ is called compact if $C_0(\mathbb X)$ is <u>unital</u>. In this case we write $C(\mathbb X)$ for $C_0(\mathbb X).$

From now on we restrict attention to this case.

- X is called **finite** if C(X) is finite-dimensional (in this case X is automatically compact).
- Let $\mathbb X$ and $\mathbb Y$ be quantum spaces. By definition, a continuous map $\mathbb X\to\mathbb Y$ is a *-homomorphism

$$C(\mathbb{Y}) \longrightarrow C(\mathbb{X}).$$

• If *X* and *Y* are compact spaces then

$$\mathcal{C}(X \times Y) \cong \mathcal{C}(X) \otimes \mathcal{C}(Y)$$

(minimal tensor product of C*-algebras).

CLASSICAL FAMILIES OF MAPS

THEOREM (J.R. JACKSON, 1952)

Let X, Y and E be topological spaces such that X is Hausdorff and E is locally compact. For $\psi \in C(X \times E, Y)$ define $\sigma(\psi)$ as the mapping from E to C(X, Y) given by

 $[(\sigma(\psi))(e)](x) = \psi(x, e).$

Then σ is a homeomorphism of $C(X \times E, Y)$ onto C(E, C(X, Y)) with all spaces of maps topologized by their respective compact-open topologies.

In other words:

• a (continuous) family of maps $X \to Y$ parametrized by points of *E* is encoded in a single map $E \to C(X, Y)$.

WHAT IS A QUANTUM FAMILY OF MAPS?

DEFINITION

Let X, Y and \mathbb{E} be quantum spaces. A continuous **quantum family of maps** $X \to Y$ parametrized by \mathbb{E} is a *-homomorphism

$$\Psi\colon \operatorname{C}(\operatorname{\mathbb{Y}})\longrightarrow\operatorname{C}(\operatorname{\mathbb{X}})\otimes\operatorname{C}(\operatorname{\mathbb{E}}).$$

• If $\mathbb{X} = X$, $\mathbb{Y} = Y$ and $\mathbb{E} = E$ are classical spaces then a quantum family of maps

$$\Psi\colon \mathbf{C}(\mathbb{Y})\longrightarrow \mathbf{C}(\mathbb{X})\otimes \mathbf{C}(\mathbb{E})$$

defines uniquely a continuous family of maps $X \to Y$ parametrized by points of E.

• Examples are plentiful!

COMPOSITION OF QUANTUM FAMILIES OF MAPS

- Let $\mathbb{X}_1,\mathbb{X}_2,\mathbb{X}_3,\mathbb{D}_1$ and \mathbb{D}_2 be quantum spaces.
- Consider families of maps

$$\begin{split} \Psi_1 \colon & C(\mathbb{X}_2) \longrightarrow C(\mathbb{X}_1) \otimes C(\mathbb{D}_1), \\ & \Psi_2 \colon & C(\mathbb{X}_2) \longrightarrow C(\mathbb{X}_1) \otimes C(\mathbb{D}_2) \end{split}$$

(so \mathbb{D}_1 parametrizes maps $\mathbb{X}_1 \to \mathbb{X}_2$ and \mathbb{D}_2 parametrizes maps $\mathbb{X}_2 \to \mathbb{X}_3$).

• Define the new quantum family of maps

 $\Psi_1 \vartriangle \Psi_2 = (\Psi_1 \otimes id) \circ \Psi_2 \colon \ C(\mathbb{X}_3) \to C(\mathbb{X}_1) \otimes C(\mathbb{D}_1) \otimes C(\mathbb{D}_2).$

- $\Psi_1 \bigtriangleup \Psi_2$ is called the **composition** of Ψ_1 and Ψ_2 .
- In classical situation $\Psi_1 \triangle \Psi_2$ corresponds to the family of compositions of all maps from the two families Ψ_1 and Ψ_2 .

ILLUSTRATION OF COMPOSITION

• Using graphical notation for Ψ_1 and Ψ_2 :

• Associativity: $(\Psi_1 \land \Psi_2) \land \Psi_3 = \Psi_1 \land (\Psi_2 \land \Psi_3).$

QUANTUM FAMILIES OF ALL MAPS

Let $\mathbb X$ and $\mathbb Y,\,\mathbb E$ be quantum spaces and let $\Phi\colon C(\mathbb Y)\to C(\mathbb X)\otimes C(\mathbb E)$ be a quantum family of maps. We say that

- Φ is the **quantum family of all maps** from $\mathbb X$ to $\mathbb Y$ and
- + $\mathbb E$ is the quantum space of all maps from $\mathbb X$ to $\mathbb Y$ if
 - for any quantum space $\mathbb D$ and
- any quantum family $\Psi \colon C(\mathbb{Y}) \to C(\mathbb{X}) \otimes C(\mathbb{D})$ there <u>exists</u> a unique $\Lambda \colon C(\mathbb{E}) \to C(\mathbb{D})$ such that

$$\begin{array}{ccc} C(\mathbb{Y}) & & \stackrel{\Phi}{\longrightarrow} C(\mathbb{X}) \otimes C(\mathbb{E}) \\ \\ \| & & & & & \\ \| & & & & \\ C(\mathbb{Y}) & & \stackrel{\Psi}{\longrightarrow} C(\mathbb{X}) \otimes C(\mathbb{D}) \end{array}$$

EXISTENCE

- The quantum space of all maps X → Y often does not exists
 (or rather, it is not locally compact).
- In 1979 S.L. Woronowicz stated

THEOREM

Let X and Y be quantum spaces such that C(X) is finite dimensional and C(Y) is finitely generated and unital. Then the quantum space of all maps $X \to Y$ exists. Moreover this quantum space is compact.

- When the quantum space of all maps from $\mathbb X$ to $\mathbb Y$ exists, it is unique.
- Very interesting case: $\mathbb{X} = \mathbb{Y} = \mathbb{M}$ with $C(\mathbb{M})$ finite-dimensional.

EXAMPLE 1

 $\bullet\,$ Let $\mathbb M$ be the classical two point space:

$$\mathbb{M} = \left\{ullet, ullet
ight\}$$

(i.e. $C(\mathbb{M}) = \mathbb{C}^2$).

- The **classical** space o all maps $\mathbb{M} \to \mathbb{M}$ is $\{\bullet, \bullet, \bullet, \bullet\}$.
- The quantum space $\mathbb E$ of all maps $\mathbb M\to\mathbb M$ is such that

 $\mathbf{C}(\mathbb{E}) = \big\{ f \in \mathbf{C}\big([0,1], \mathit{M}_2(\mathbb{C})\big) \, \big| f(0), f(1) \text{ are diagonal} \big\}.$

• The quantum family of all maps $\mathbb{M}\to\mathbb{M}$ is $\Phi\colon\mathbb{C}^2\to\mathbb{C}^2\otimes C(\mathbb{E})$

$$\Phi\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\0\end{bmatrix} \otimes P + \begin{bmatrix}0\\1\end{bmatrix} \otimes Q,$$

where

$$P(t) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \quad Q(t) = \frac{1}{2} \begin{bmatrix} 1 - \cos 2\pi t & i \sin 2\pi t \\ -i \sin 2\pi t & 1 + \cos 2\pi t \end{bmatrix}$$

QUANTUM SEMIGROUP STRUCTURE

- Let \mathbb{M} be a finite quantum space.
- Let $\mathbb E$ be the quantum space of all maps $\mathbb M\to\mathbb M$ and let

 $\Phi\colon \, C(\mathbb{M}) \longrightarrow C(\mathbb{M}) \otimes C(\mathbb{E})$

be the quantum family of all maps $\mathbb{M} \to \mathbb{M}$.

• The universal property of (\mathbb{E}, Φ) gives a

$$\Delta\colon\operatorname{C}(\operatorname{\mathbb{E}})\longrightarrow\operatorname{C}(\operatorname{\mathbb{E}})\otimes\operatorname{C}(\operatorname{\mathbb{E}})$$

such that $\Phi \bigtriangleup \Phi = (id \otimes \Delta) \circ \Phi$:

PROPERTIES

THEOREM

Let \mathbb{M} be a finite quantum space and let \mathbb{E} be the quantum space of all maps $\mathbb{M} \to \mathbb{M}$. Let

$$\begin{split} \Phi \colon \mathbf{C}(\mathbb{M}) &\longrightarrow \mathbf{C}(\mathbb{M}) \otimes \mathbf{C}(\mathbb{E}), \\ \Delta \colon \mathbf{C}(\mathbb{E}) &\longrightarrow \mathbf{C}(\mathbb{E}) \otimes \mathbf{C}(\mathbb{E}) \end{split}$$

be as above. Then

- 1. Δ is *coassociative*: $(\Delta \otimes id) \circ \Delta = (id \otimes \Delta) \circ \Delta$.
- 2. There exists a unique character ϵ of $C(\mathbb{E})$ such that

$$(\mathrm{id}\otimes\epsilon)\circ\Phi=\mathrm{id}.$$

- 3. We have: $(id \otimes \epsilon) \circ \Delta = (\epsilon \otimes id) \circ \Delta = id$.
- $\begin{array}{ll} \text{4. The spectrum of $C(\mathbb{M})$ coincides with the compact} \\ \text{space of }*\text{-homomorphisms $C(\mathbb{M})\to C(\mathbb{M})$.} \end{array} \end{array}$

Example 1 continued

- For $C(\mathbb{M})=\mathbb{C}^2$ the quantum space $\mathbb E$ of all maps $\mathbb M\to\mathbb M$ is

 $\mathbf{C}(\mathbb{E}) = \big\{ f \in \mathbf{C}\big([0,1], \mathit{M}_2(\mathbb{C})\big) \, \big| f(0), f(1) \text{ are diagonal} \big\}.$

• We have

 $\Delta(P) = P \otimes P + (\mathbb{1} - P) \otimes Q, \quad \Delta(Q) = Q \otimes P + (\mathbb{1} - Q) \otimes Q.$ (Recall: $P(t) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \quad Q(t) = \frac{1}{2} \begin{bmatrix} 1 - \cos 2\pi t & i \sin 2\pi t \\ -i \sin 2\pi t & 1 + \cos 2\pi t \end{bmatrix}.$) • The **co-unit** ϵ is given by

$$\epsilon(P) = 1, \qquad \epsilon(Q) = 0.$$

• \mathbb{E} is <u>not</u> a quantum group.

QUANTUM GROUPS

DEFINITION

- A compact quantum space \mathbb{G} is a **compact quantum semigroup** if there exists $\Delta \colon C(\mathbb{G}) \to C(\mathbb{G}) \otimes C(\mathbb{G})$ such that $(\Delta \otimes id) \circ \Delta = (id \otimes \Delta) \circ \Delta$.
- ${\mathbb G}$ is called a **compact quantum group** if

$$\overline{\Delta \big(\mathrm{C}(\mathbb{G}) \big) \big(\mathbbm{1} \otimes \mathrm{C}(\mathbb{G}) \big)} = \mathrm{C}(\mathbb{G}) \otimes \mathrm{C}(\mathbb{G}), \ \overline{\big(\mathrm{C}(\mathbb{G}) \otimes \mathbbm{1} \big) \Delta \big(\mathrm{C}(\mathbb{G}) \big)} = \mathrm{C}(\mathbb{G}) \otimes \mathrm{C}(\mathbb{G}).$$

- If M is a finite quantum space and E is the quantum semigroup of all maps M → M then E is not a quantum group unless M = {•}.
- If $\mathbb{M} = \{\bullet, \bullet\}$ then \mathbb{E} is a quantum group with:

$$\Delta(P) = (P-1) \otimes P + 1 \otimes 1 + P \otimes (P-1),$$

 $\Delta(Q) = (Q-1) \otimes Q + 1 \otimes 1 + Q \otimes (Q-1).$

DIGRESSION: QUANTUM GROUPS

- Compact quantum groups were defined by S.L. Woronowicz in 1987.
- They have Haar measures.
- Appropriate notion of representations can be introduced.
- The Peter-Weyl theory has been developed in full generality.
- Examples include:
 - quantum deformations like $S_qU(2)$,
 - "free" compact quantum groups,
 - quantum isometry groups of spectral triples,
 - many more...
- **Locally** compact quantum groups are object of current research.
- Theory of actions of quantum groups on quantum spaces is being studied (many mysteries still to be solved there).

Semigroup of all maps — summary

- Let \mathbb{M} be a finite quantum space.
- Let $\mathbb E$ be the quantum space of all maps $\mathbb M\to\mathbb M.$
- \mathbbm{E} carries a canonical stricture of a compact quantum semigroup.
- The quantum family of all maps $\mathbb{M} \to \mathbb{M}$

$$\Phi\colon\operatorname{\mathbf{C}}(\operatorname{\mathbb{M}})\longrightarrow\operatorname{\mathbf{C}}(\operatorname{\mathbb{M}})\otimes\operatorname{\mathbf{C}}(\operatorname{\mathbb{E}})$$

is an action of \mathbb{E} on \mathbb{M} :

$$(\Phi \otimes id) \circ \Phi = (id \otimes \Delta) \circ \Phi.$$

• Classical analogy:

• *M* — space,

• *E* — semigroup of all maps $M \rightarrow M$.

• $\phi: M \times E \to M$ describes the action: $\phi(m, \lambda) = \lambda(m)$. Then Φ corresponds to the map

 $C(M) \ni f \longmapsto f \circ \phi \in C(M \times E).$

QUANTUM FAMILIES PRESERVING A STATE

- Let *M* be a finite space and let μ be a measure on *M*.
- Let *E* be the semigroup of all maps $M \rightarrow M$.
- The set of all maps $M \rightarrow M$ preserving μ is a subsemigroup of *E*.

DEFINITION

Let \mathbb{M} be a finite quantum space and let ω be a state on $C(\mathbb{M})$ (positive linear functional of norm 1). Let \mathbb{D} be another quantum space and let $\Psi \colon C(\mathbb{M}) \to C(\mathbb{M}) \otimes C(\mathbb{D})$ be a quantum family of maps $\mathbb{M} \to \mathbb{M}$. We say that Ψ **preserves** ω if

$$(\omega \otimes \mathrm{id})(\Psi(\mathbf{x})) = \omega(\mathbf{x})\mathbb{1},$$

for all $x \in C(\mathbb{M})$.

QUANTUM SEMIGROUP PRESERVING A STATE

THEOREM

Let \mathbb{M} be a finite q. space and ω a state on $C(\mathbb{M})$. Then

there exists a unique quantum family

$$\Phi_\omega\colon \mathbf{C}(\mathbb{M})\longrightarrow \mathbf{C}(\mathbb{M})\otimes \mathbf{C}(\mathbb{W})$$

such that for any quantum family

 $\Psi\colon \, C(\mathbb{M}) \longrightarrow C(\mathbb{M}) \otimes C(\mathbb{D})$

preserving ω there exists a unique $\Lambda\colon C(\mathbb{W})\to C(\mathbb{D})$ such that

- Φ_{ω} preserves ω ,
- \mathbb{W} is a compact quantum semigroup (canonically).

EXAMPLE

• Let
$$C(\mathbb{M}) = M_2(\mathbb{C}), \ \omega_q\left(\left[\begin{smallmatrix}a&b\\c&d\end{smallmatrix}
ight]\right) = rac{a+q^2d}{1+q^2}$$
 $(q\in]0,1]$).

- The quantum semigroup \mathbb{W} of all maps $\mathbb{M} \to \mathbb{M}$ preserving ω_q looks as follows:
 - C(W) is generated by β , γ and δ s.t.

$$\begin{split} q^4 \delta^* \delta + \gamma^* \gamma + q^4 \delta \delta^* + \beta \beta^* &= \mathbb{1}, \qquad \beta \gamma = -q^4 \delta^2, \\ \beta^* \beta + \delta^* \delta + \gamma \gamma^* + \delta \delta^* &= \mathbb{1}, \qquad \gamma \beta = -\delta^2, \\ \gamma^* \delta - q^2 \delta^* \beta + \beta \delta^* - q^2 \delta \gamma^* &= 0, \qquad \beta \delta = q^2 \delta \beta, \\ q^4 \delta \delta^* + \beta \beta^* + q^2 \gamma \gamma^* + q^2 \delta \delta^* &= \mathbb{1}, \qquad \delta \gamma = q^2 \gamma \delta \\ q^4 \delta^* \delta + \gamma^* \gamma + q^2 \beta^* \beta + q^2 \delta^* \delta &= q^2 \mathbb{1}. \end{split}$$

- The comultiplication $\Delta : \mathbb{C}(\mathbb{W}) \to \mathbb{C}(\mathbb{W}) \otimes \mathbb{C}(\mathbb{W})$ is $\Delta(\beta) = q^4 \delta \gamma^* \otimes \delta - q^2 \beta \delta^* \otimes \delta + \beta \otimes \beta + \gamma^* \otimes \gamma - q^2 \delta^* \beta \otimes \delta + \gamma^* \delta \otimes \delta,$ $\Delta(\gamma) = q^4 \gamma \delta^* \otimes \delta - q^2 \delta \beta^* \otimes \delta + \gamma \otimes \beta + \beta^* \otimes \gamma - q^2 \beta^* \delta \otimes \delta + \delta^* \gamma \otimes \delta,$ $\Delta(\delta) = -q^2 \gamma^* \gamma \otimes \delta - q^2 \delta \delta^* \otimes \delta + \delta \otimes \beta + \delta^* \otimes \gamma + \beta^* \beta \otimes \delta + \delta^* \delta \otimes \delta.$
- The counit ϵ maps γ and δ to 0 and β to 1.

A SMALL IMPROVEMENT

- Consider \mathbb{M} with $C(\mathbb{M}) = M_2(\mathbb{C})$ and ω_q as before.
- The semigroup \mathbb{W} described above contains the largest quantum group preserving ω_q .
- This quantum group turns out to be the **quantum SO(3) group** defined in 1989 by P. Podleś via representation theory.
- $C(S_qO(3))$ was originally known to be generated by A, C, G, K, L satisfying

$$\begin{array}{ll} L^*L = (1-K)(1-q^{-2}K), & CC^* = q^2K - q^4K^2, \\ LL^* = (1-q^2K)(1-q^4K), & LK = q^4KL, & AG = q^2GA, \\ G^*G = GG^*, & GK = KG, \\ K^2 = G^*G, & AK = q^2KA, \\ A^*A = K - K^2, & CK = q^2KC, \\ AA^* = q^2K - q^4K^2, & LG = q^4GL, \\ C^*C = K - K^2, & LA = q^2AL, \\ \end{array}$$

QUANTUM COMMUTANTS

- Let *M* be a finite space and let \mathscr{F} be a family of maps $M \to M$.
- Let *E* be the semigroup of all maps $M \rightarrow M$.
- The set of all maps $M \to M$ commuting with elements of \mathscr{F} is a subsemigroup of *E*.

DEFINITION

Let $\mathbb M$ be a finite quantum space and let

$$\Psi_1\colon \, C(\mathbb{M}) \to C(\mathbb{M}) \otimes C(\mathbb{D}_1), \qquad \Psi_2\colon \, C(\mathbb{M}) \to C(\mathbb{M}) \otimes C(\mathbb{D}_2)$$

be two quantum families of maps. We say that Ψ_1 and Ψ_2 **commute** if

$$(\mathrm{id}\otimes\sigma)\circ(\Psi_1\,\vartriangle\,\Psi_2)=\Psi_2\,\vartriangle\,\Psi_1,$$

where σ is the flip $C(\mathbb{D}_1) \otimes C(\mathbb{D}_2) \to C(\mathbb{D}_2) \otimes C(\mathbb{D}_1)$.

ILLUSTRATION OF COMMUTATION

Quantum families

$$\begin{split} \Psi_1 \colon C(\mathbb{M}) &\longrightarrow C(\mathbb{M}) \otimes C(\mathbb{D}_1), \\ \Psi_2 \colon C(\mathbb{M}) &\longrightarrow C(\mathbb{M}) \otimes C(\mathbb{D}_2) \end{split}$$

commute if

QUANTUM COMMUTANT

THEOREM

Let \mathbb{M} be a finite q. space and $\Psi \colon C(\mathbb{M}) \to C(\mathbb{M}) \otimes C(\mathbb{D})$ a quantum family of maps $\mathbb{M} \to \mathbb{M}$. Then

• there exists a unique quantum family

 $\Phi_{\Psi}\colon \, \mathbf{C}(\mathbb{M}) \longrightarrow \mathbf{C}(\mathbb{M}) \otimes \mathbf{C}(\mathbb{U})$

such that for any quantum family $\Theta \colon C(\mathbb{M}) \to C(\mathbb{M}) \otimes C(\mathbb{P})$ commuting with Ψ there exists a unique $\Lambda \colon C(\mathbb{U}) \to C(\mathbb{P})$ such that

- Φ_{Ψ} commutes with Ψ ,
- \mathbb{U} is a compact quantum semigroup (canonically).

EXAMPLE

- As before let \mathbb{M} be such that $C(\mathbb{M}) = M_2(\mathbb{C})$.
- Let $\mathbb U$ be the commutant of the (classical) family of maps $\mathbb M\to\mathbb M$ consisting of the single automorphism of $C(\mathbb M)$:

$$\psi \colon \begin{bmatrix} a & b \\ c & d \end{bmatrix} \longmapsto \begin{bmatrix} d & c \\ b & a \end{bmatrix}.$$

• This family is described in our language by

$$\Psi\colon \operatorname{C}(\operatorname{\mathbb{M}})\longrightarrow\operatorname{C}(\operatorname{\mathbb{M}})\otimes \operatorname{\mathbb{C}}$$

given by $\Psi(m) = \psi(m) \otimes 1$.

• Let \mathbb{U} be the quantum commutant of Ψ .

EXAMPLE

• The C*-algebra $\mathbf{C}(\mathbb{U})$ is generated by α,β and γ with

$$\beta = \beta^*, \quad \gamma = \gamma^*$$

and

$$\begin{aligned} \alpha^* \alpha + \gamma^2 + \alpha \alpha^* + \beta^2 &= \mathbb{1}, \quad \alpha^2 + \beta \gamma = \mathbf{0}, \\ \alpha^* \beta + \gamma \alpha^* + \alpha \gamma + \beta \alpha &= \mathbf{0}, \quad \alpha \beta + \beta \alpha^* = \mathbf{0}, \\ \gamma \alpha + \alpha^* \gamma &= \mathbf{0}. \end{aligned}$$

• The comultiplication is

$$\Delta(\alpha) = \mathbb{1} \otimes \alpha + (\alpha^* \alpha + \gamma^2) \otimes (\alpha^* - \alpha) + \alpha \otimes \beta + \alpha^* \otimes \gamma,$$

$$\Delta(\beta) = (\alpha\gamma + \beta\alpha) \otimes (\alpha - \alpha^*) + \beta \otimes \beta + \gamma \otimes \gamma,$$

$$\Delta(\gamma) = (\beta\alpha + \alpha\gamma) \otimes (\alpha^* - \alpha) + \gamma \otimes \beta + \beta \otimes \gamma,$$

• \mathbb{U} is not a compact quantum group (with this Δ).

ALL MAPS INTO A QUANTUM SEMIGROUP

- Let S be a finite set and \mathbb{S} a quantum semigroup.
- The quantum space of all maps $S \to \mathbb{S}$ can be endowed with structure of a quantum semigroup \mathbb{H} .
- If $\mathbb S$ is a quantum group then so is $\mathbb H.$
- If \mathbb{H} is a quantum group then so is \mathbb{S} .
- Weird things happen when *S* is taken to be a quantum space.
- For more see: P.M. Sołtan "On quantum maps into quantum semigroups", to appear in *Houston Journal of Mathematics*.
- . 🍯
- THANK YOU!