QUANTUM GROUP ACTIONS ON DISCRETE QUANTUM SPACES AND QUANTUM CLIFFORD THEORY

OBERSEMINAR C*-ALGEBREN, MATHEMATISCHES INSTITUT WWU MÜNSTER

Piotr M. Sołtan (joint work with K. De Commer, P. Kasprzak, & A. Skalski)

> Department of Mathematical Methods in Physics Faculty of Physics, University of Warsaw

April 25, 2017

P.M. SOLTAN (WARSAW)

QUANTUM CLIFFORD THEORY

ACTIONS ON DISCRETE QUANTUM SPACESOrbits of an action

2 QUANTUM CLIFFORD THEORY

- Discrete quantum group with a quantum subgroup
- Restricting representations of quantum groups
- Quantum Clifford's theorem
- Dimensions in Kac case

OTHER APPLICATIONS

- Torsion freeness and connectedness
- Vergnioux relation

4 ERGODIC ACTIONS • Actions on $M_n(\mathbb{C}) \oplus \widetilde{N}$

- $M = \prod_{i \in \mathcal{I}} M_i$ product of von Neumann algebras,
- G compact quantum group,
- $\alpha : \mathsf{M} \longrightarrow \mathsf{M} \bar{\otimes} L^{\infty}(\mathbb{G})$ action of \mathbb{G} on M :
 - α is an injective, unital, normal *-homomorphism,

•
$$(\alpha \otimes \mathrm{id}) \circ \alpha = (\mathrm{id} \otimes \Delta_{\mathbb{G}}) \circ \alpha.$$

•
$$\boldsymbol{p}_i : \mathsf{M} \longrightarrow \mathsf{M}_i$$
 — canonical projection.

DEFINITION

We say that $i, j \in \mathcal{I}$ are α -related (writing $i \sim_{\alpha} j$) if

$$\exists x \in \mathsf{M}_i \quad (\mathbf{p}_i \otimes \mathrm{id}) \alpha(x) \neq 0.$$

• Define
$$\alpha_{j,i} : \mathsf{M}_i \longrightarrow \mathsf{M}_j \bar{\otimes} L^{\infty}(\mathbb{G})$$
 by
 $\alpha_{j,i}(\mathbf{x}) = (\mathbf{p}_j \otimes \mathrm{id})\alpha(\mathbf{x}), \qquad \mathbf{x} \in \mathsf{M}_i.$

Then $\alpha_{j,i}$ is a normal *-homomorphism. Moreover for each $x \in M_i$

$$\alpha(\mathbf{x}) = \sum_{j \in \mathcal{I}} \alpha_{j,i}(\mathbf{x}).$$

Fact

T.F.A.E. for $i, j \in \mathcal{I}$:

$$1 i \sim_{\alpha} j,$$

2
$$\alpha_{j,i} \neq 0$$
,

• We say that α is **implemented** if there exist

- a Hilbert space \mathscr{H} ,
- a faithful normal representation π of M on \mathcal{H} ,
- a unitary $U \in B(\mathscr{H}) \bar{\otimes} L^{\infty}(\mathbb{G})$

such that

$$(\pi \otimes \mathrm{id})\alpha(y) = U(\pi(y) \otimes \mathbb{1})U^*, \qquad y \in \mathsf{M}.$$

• Any action can be implemented:

EXAMPLE

- π_0 faithful representation of M on \mathcal{H}_0 ,
- $W^{\mathbb{G}} \in \ell^{\infty}(\widehat{\mathbb{G}}) \bar{\otimes} L^{\infty}(\mathbb{G})$ the Kac-Takesaki operator of \mathbb{G} ,

• Define:

$$\begin{array}{l} \bullet \ \ \mathcal{H} = \mathcal{H}_0 \otimes L^2(\mathbb{G}), \\ \bullet \ \ \pi = (\pi_0 \otimes \mathrm{id}) \circ \alpha : \mathsf{M} \longrightarrow \mathsf{B}(\mathcal{H}_0) \, \bar{\otimes} \, L^{\infty}(\mathbb{G}) \subset \mathsf{B}(\mathcal{H}), \\ \bullet \ \ U = \mathsf{W}^{\mathbb{G}}_{23} \in \mathsf{B}(\mathcal{H}_0) \, \bar{\otimes} \, \ell^{\infty}(\widehat{\mathbb{G}}) \, \bar{\otimes} \, L^{\infty}(\mathbb{G}) \subset \mathsf{B}(\mathcal{H}) \, \bar{\otimes} \, L^{\infty}(\mathbb{G}) \end{array}$$

- Assume α is implemented (\mathscr{H}, π, U as before).
- We can assume further that $U \in B(\mathcal{H}) \bar{\otimes} L^{\infty}(\mathbb{G})$ is a representation of \mathbb{G} :

$$(\mathrm{id}\otimes\Delta_{\mathbb{G}})U=U_{12}U_{13}.$$

For each *i* let *p_i* be the unit of M_i (as a projection in M)
Define *H_i* = π(*p_i*)*H*. We have

$$\mathscr{H} = \bigoplus_{i \in \mathcal{I}} \mathscr{H}_i \quad \text{and} \quad \pi(y) = \bigoplus_{i \in \mathcal{I}} \pi_i \big(\boldsymbol{p}_i(y) \big),$$

where $\pi_i : \mathsf{M}_i \longrightarrow \mathsf{B}(\mathscr{H}_i)$ is a faithful representation.

- For $k, l \in \mathcal{I}$ let $U_{k,l} = (\pi(p_k) \otimes \mathbb{1}) U(\pi(p_l) \otimes \mathbb{1}).$
- Implementation of α by *U* means:

$$(\pi_j \otimes \mathrm{id}) \alpha_{j,i}(\mathbf{x}) = U_{j,i} (\pi_i(\mathbf{x}) \otimes \mathbb{1}) U_{j,i}^* \qquad i, j \in \mathcal{I}, \ \mathbf{x} \in \mathsf{M}_i.$$

• Since $(\pi_j \otimes \mathrm{id})(\alpha_{j,i}(\mathbb{1}_{\mathsf{M}_i})) = U_{j,i}U_{j,i}^*$, for all $i, j \in \mathcal{I}$ we have $(i \sim_{\alpha} j) \iff (U_{j,i} \neq 0).$

PROPOSITION The relation \sim_{α} is symmetric.

PROOF.

Assume α is implemented by a representation. We have $i \sim_{\alpha} j$ iff $U_{j,i} \neq 0$ iff there are $\xi \in \mathscr{H}_j$ and $\eta \in \mathscr{H}_i$ such that $(\omega_{\xi,\eta} \otimes \mathrm{id})U \neq 0$. Now $(\omega_{\xi,\eta} \otimes \mathrm{id})U \in D(S)$ (domain of antipode) and

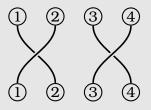
$$0 \neq \mathbf{S}((\omega_{\xi,\eta} \otimes \mathrm{id})U) = (\omega_{\xi,\eta} \otimes \mathrm{id})(U^*).$$

This means that $0 \neq (U^*)_{j,i} = U_{i,j}^*$, so $U_{i,j} \neq 0$ and $i \sim_{\alpha} j$.

Remark

The relation \sim_{α} need not be transitive. For example take

• $M = L^{\infty}(\{1, 2, 3, 4\}) = L^{\infty}(\{1\}) \oplus L^{\infty}(\{2, 3\}) \oplus L^{\infty}(\{4\}),$ • $\mathbb{G} = \mathbb{Z}_2$ acting by



• Then $\{1\} \sim_{\alpha} \{2,3\}$ and $\{2,3\} \sim_{\alpha} \{4\}$, but $\{1\} \not\sim_{\alpha} \{4\}$.

PROPOSITION

If M_i is a factor for each *i* then \sim_{α} is an equivalence relation.

PROOF.

From $(id \otimes \Delta_{\mathbb{G}}) \circ \alpha = (\alpha \otimes id) \circ \alpha$ it follows that

$$(\mathrm{id}\otimes\Delta_{\mathbb{G}})(\alpha_{j,i}(x)) = \sum_{k\in\mathcal{I}} (\alpha_{j,k}\otimes\mathrm{id})(\alpha_{k,i}(x)), \qquad i,j\in\mathcal{I}, \ x\in\mathsf{M}_i.$$

Since each M_i is a factor, for any $a, b \in \mathcal{I}$ we have $a \sim_{\alpha} b$ iff ker $\alpha_{a,b} = \{0\}$. Assume $i \sim_{\alpha} l$ and $l \sim_{\alpha} j$. We have

$$(\mathrm{id}\otimes\Delta_{\mathbb{G}})\big(\alpha_{j,i}(\mathbb{1}_{\mathsf{M}_i})\big)=\sum_{k\in\mathcal{I}}(\alpha_{j,k}\otimes\mathrm{id})\big(\alpha_{k,i}(\mathbb{1}_{\mathsf{M}_i})\big)$$

(sum of orthogonal projections).

PROOF CONT'D.

- Since $i \sim_{\alpha} l$, we have $\alpha_{l,i}(\mathbb{1}_{\mathsf{M}_i}) \neq 0$,
- since $j \sim_{\alpha} l$, we have ker $\alpha_{j,l} = \{0\}$.

It follows that

$$egin{aligned} (\mathbf{id}\otimes\Delta_{\mathbb{G}})ig(lpha_{j,i}(\mathbb{1}_{\mathsf{M}_l})ig)&=\sum_{k\in\mathcal{I}}(lpha_{j,k}\otimes\mathbf{id})ig(lpha_{k,i}(\mathbb{1}_{\mathsf{M}_l})ig)\ &\geq (lpha_{j,l}\otimes\mathbf{id})ig(lpha_{l,i}(\mathbb{1}_{\mathsf{M}_l})ig)
eq \mathbf{0}, \end{aligned}$$

so
$$\alpha_{j,i}(\mathbb{1}_{\mathsf{M}_i}) \neq 0$$
, i.e. $i \sim_{\alpha} j$.

Finally, for any *i* there is *j* such that $i \sim_{\alpha} j$ (otherwise α would not be injective). Thus by symmetry and transitivity we get reflexivity of \sim_{α} .

DEFINITION

The classes of \sim_{α} will be called **orbits** of α .

Let A ⊂ I be an equivalence class of ~_α. Then α restricts to an action on ∏_{i∈A} M_i.

• Moreover, the projection $p_A = \sum_{i \in A} p_i$ is invariant:

$$\alpha(p_A)=p_A\otimes \mathbb{1}.$$

COROLLARY 1

If α is ergodic then \sim_{α} is the total relation.

COROLLARY 2

If $M_i = M_{n_i}(\mathbb{C})$ for all $i \in \mathcal{I}$ then all orbits of α are finite.

THEOREM

Let α be an ergodic action of a compact quantum group \mathbb{G} on a von Neumann algebra N of the form $N = M_n(\mathbb{C}) \oplus \widetilde{N}$. Then $\dim N < +\infty$.

Sketch of proof of Corollary 2.

- \rightsquigarrow Restrict to one class: $\forall i, j \quad i \sim_{\alpha} j$,
- \rightsquigarrow take a minimal projection p in $M^{\alpha} = \{m \in M \mid \alpha(m) = m \otimes \mathbb{1}\},\$
- $\rightsquigarrow \alpha$ restricts to an action on *p*M*p* which is ergodic,
- $\rightsquigarrow \ p\mathsf{M}p$ is itself a product of matrix algebras, so by Theorem $\dim p\mathsf{M}p < +\infty,$
- \rightsquigarrow thus $\mathcal{I}_p = \{i \in \mathcal{I} \mid p_i p \neq 0\}$ is finite,
- \rightsquigarrow take $i \in \mathcal{I}_p$ and $j \in \mathcal{I} \setminus \mathcal{I}_p$. We have $p_i p \neq 0$, and

 $\alpha_{j,i}(p_ip) = (\boldsymbol{p}_j \otimes \mathrm{id}) \big(\alpha(p_ip) \big) \leq (\boldsymbol{p}_j \otimes \mathrm{id}) \big(\alpha(p) \big) = \, \boldsymbol{p}_j(p) \otimes \mathbb{1} = 0.$

But
$$i \sim_{\alpha} j$$
, so ker $\alpha_{j,i} = \{0\}$ — a contradiction.

 \rightsquigarrow Thus $\mathcal{I} = \mathcal{I}_p$ is finite.

• Let $\[\]$ be a discrete quantum group:

$$\ell^\infty(\mathbb{\Gamma}) = \prod_{\gamma \in \operatorname{Irr} \widehat{\mathbb{\Gamma}}} M_{n_\gamma}(\mathbb{C}),$$

- and let \wedge be a quantum subgroup of Γ :
- Put $\ell^{\infty}(\mathbb{A}\backslash\mathbb{F}) = \{x \in \ell^{\infty}(\mathbb{F}) \mid (\pi \otimes \mathrm{id})\Delta_{\mathbb{F}}(x) = \mathbb{1} \otimes x\}.$
- Let $\mathbb{G} = \widehat{\mathbb{F}}$. We have

$$W^{\mathbb{G}}\big(\ell^{\infty}(\mathbb{A}\backslash\mathbb{F})\otimes\mathbb{1}\big)W^{\mathbb{G}^{*}}\subset\ell^{\infty}(\mathbb{A}\backslash\mathbb{F})\,\bar{\otimes}\,\,L^{\infty}(\widehat{\mathbb{F}})$$

which yields an action of $\mathbb G$ on $\ell^\infty(\mathbb A\backslash\mathbb F)$:

$$\alpha(\boldsymbol{x}) = \mathbf{W}^{\mathbb{G}}(\boldsymbol{x} \otimes \mathbb{1}) \mathbf{W}^{\mathbb{G}^*}, \qquad \boldsymbol{x} \in \ell^{\infty}(\mathbb{A} \backslash \mathbb{F}).$$

EXAMPLE

Consider a special case:

• let $\mathbb{H} \subset \mathbb{G}$ be a normal closed quantum subgroup,

• let
$$\Gamma = \widehat{\mathbb{G}}$$
 and $\Lambda = \widehat{\mathbb{G}}/\widehat{\mathbb{H}}$.

Then \mathbb{G} acts on $\ell^{\infty}(\mathbb{A}\backslash\mathbb{F}) = \ell^{\infty}(\mathbb{F}/\mathbb{A}) = \ell^{\infty}(\widehat{\mathbb{H}}).$

• $\ell^{\infty}(\mathbb{A}\backslash\mathbb{F})$ is a product of matrix algebras:

$$\ell^{\infty}(\mathbb{A}\backslash\mathbb{F}) = \prod_{i\in\mathcal{I}}\mathsf{M}_{i}$$

with each $M_i = M_{m_i}(\mathbb{C})$.

• The action of $\mathbb{G} = \widehat{\mathbb{F}}$ on $\ell^{\infty}(\mathbb{A} \setminus \mathbb{F})$ defines the equivalence relation \sim_{α} on \mathcal{I} .

• Representations of $\mathbb{G}=\widehat{\mathbb{F}}$ are all of the form

 $U = (\varphi \otimes \mathrm{id}) \mathrm{W}^{\mathbb{G}},$

where φ is a representation of $\ell^{\infty}(\mathbb{F})$.

• Irreps correspond to matrix blocks in the decomposition

$$\ell^{\infty}(\mathbb{F}) = \prod_{\gamma} M_{n_{\gamma}}(\mathbb{C}).$$

- Since $\ell^{\infty}(\mathbb{A}\backslash\mathbb{F}) \subset \ell^{\infty}(\mathbb{F})$, representations of $\ell^{\infty}(\mathbb{F})$ can be restricted to $\ell^{\infty}(\mathbb{A}\backslash\mathbb{F})$.
- When $\mathbb{A} = \widehat{\mathbb{G}}/\widetilde{\mathbb{H}}$ for a normal $\mathbb{H} \subset \mathbb{G}$ this is exactly restricting representations of \mathbb{G} to \mathbb{H} ($\ell^{\infty}(\mathbb{A} \setminus \mathbb{\Gamma}) = \ell^{\infty}(\widehat{\mathbb{H}})$).
- Classical theorem of Clifford says that an irrep of *G* restricted to a normal *H* ⊂ *G* is equivalent to a direct sum of irreps of *H* forming precisely one orbit of the action of *G* on Irr *H* by conjugation.

P.M. SOŁTAN (WARSAW)

QUANTUM CLIFFORD THEORY

• Denote by $\mathbb{1}_j$ the unit of $M_j \subset \ell^{\infty}(\mathbb{A} \setminus \mathbb{F})$ viewed as a projection in $\ell^{\infty}(\mathbb{F})$.

THEOREM

For any $i \in I$ the element

$$\sum_{j\sim_{\alpha}i}\mathbb{1}_{j}\in\ell^{\infty}(\mathbb{A}\backslash\mathbb{F})\subset\ell^{\infty}(\mathbb{F})$$

is the central support $z(\mathbb{1}_i)$ in $\ell^{\infty}(\mathbb{F})$ of the projection $\mathbb{1}_i$. Moreover $z(\mathbb{1}_i)$ is orthogonal to $z(\mathbb{1}_j)$ if *i* is not equivalent to *j* (i.e. *i* and *j* are not in the same orbit).

In particular for any κ ∈ Irr Î there exists i ∈ I such that
1) for all j ∈ I we have p_κ 1_j ≠ 0 if and only if j ~_α i,
2) we have p_κ (∑_{j~αi} 1_j) = p_κ.

EXAMPLE REVISITED

- When $\mathbb{A} = \widehat{\mathbb{G}/\mathbb{H}}$ for a closed normal subgroup \mathbb{H} of \mathbb{G} , the theorem says that for an irrep κ of \mathbb{G} (or $\ell^{\infty}(\widehat{\mathbb{G}})$) the restriction of κ to \mathbb{H} (or $\ell^{\infty}(\widehat{\mathbb{H}})$) is a direct sum of irreps of \mathbb{H} constituting one class of the equivalence relation \sim_{α} on $\mathcal{I} = \operatorname{Irr} \mathbb{H}$.
- For classical groups *G* and *H* the irreps of *H* in one orbit of the action of *G* (by conjugation) all have the same dimension.

THEOREM

Let \mathbb{G} be a compact quantum group of Kac type and let \mathbb{H} be a closed normal quantum subgroup of \mathbb{G} . Then any two irreducible representations σ and τ of \mathbb{H} in the same orbit have the same dimension. Moreover, if π is any irreducible representation of \mathbb{G} with $\pi(\mathbb{1}_{\sigma}) \neq 0$, then also the multiplicity of σ in π is the same as the multiplicity of τ in π .

THEOREM

Consider the following three conditions

- **(1)** $\widehat{\mathbb{G}}$ is torsion free,
- **2** \mathbb{G} is satisfies the (TO)-condition,
- ③ G is connected.

Then

$$1 \Longrightarrow 2 \Longrightarrow 3.$$

In general neither of the implications can be reversed.

P.M. SOŁTAN (WARSAW)

All actions of $\mathbb G$ on finite dimensional C^* -algebras are direct sums of actions Morita equivalent to trivial action on $\mathbb C$

For any action of $\mathbb G$ on a product of matrix algebras the orbits are trivial

There is no finite quantum group $\mathbb H$ such that $\text{Pol}(\mathbb H)\subset\text{Pol}(\mathbb G)$ as a Hopf *-subalgebra

DEFINITION

Let \mathbb{A} be a quantum subgroup of a discrete quantum group \mathbb{F} . For $\sigma, \tau \in \operatorname{Irr} \widehat{\mathbb{F}}$ we say that σ and τ are \mathbb{A} -**related** if there exists $\gamma \in \operatorname{Irr} \widehat{\mathbb{A}}$ such that $\tau \subset \sigma \oplus \gamma$.

- Recall that in this situation we have an action α of \mathbb{G} on $\ell^{\infty}(\mathbb{A}\backslash\mathbb{F}) = \prod_{i\in\mathcal{I}} M_i$.
- For $i \in \mathcal{I}$ define \mathbb{F} -supp $(\mathbb{1}_i) = \{ \kappa \in \operatorname{Irr} \widehat{\mathbb{F}} \mid p_{\kappa} \mathbb{1}_i \neq 0 \}.$

THEOREM

- ① For $i, j \in \mathcal{I}$ we have $i \sim_{\alpha} j$ iff \mathbb{F} -supp $(\mathbb{1}_i) = \mathbb{F}$ -supp $(\mathbb{1}_j)$,
- 2 two elements $\sigma, \tau \in \operatorname{Irr} \widehat{\Gamma}$ are \wedge -related iff there exists $i \in \mathcal{I}$ such that $\sigma, \tau \in \Gamma$ -supp $(\mathbb{1}_i)$.

- Let $\alpha : \mathsf{N} \to \mathsf{N} \bar{\otimes} L^{\infty}(\mathbb{G})$ be an **ergodic** action,
- assume $N = M_n(\mathbb{C}) \oplus \widetilde{\mathsf{N}}$.
- There is a unique invariant state φ on N, let $L^2(N)$ be the associated G.N.S. space.
- Define $\mathcal{G}: L^2(\mathsf{N}) \otimes L^2(\mathsf{N}) \longrightarrow L^2(\mathsf{N}) \otimes L^2(\mathbb{G})$ by extending

$$\mathbf{x} \otimes \mathbf{y} \longmapsto \alpha(\mathbf{y})(\mathbf{x} \otimes \mathbb{1}), \qquad \mathbf{x}, \mathbf{y} \in \operatorname{Pol}(\mathsf{N}),$$

where Pol(N) is the algebraic core (or Podleś subalgebra or polynomial subalgebra) of N.

• One can show that $\mathcal{G} \in \mathbb{N} \otimes \mathbb{B}(L^2(\mathbb{N}), L^2(\mathbb{G}))$, so for $\omega \in \mathbb{N}_*$ we have

$$L_{\omega} = (\omega \otimes \mathrm{id})(\mathcal{G}^*) \in \mathrm{B}(L^2(\mathbb{G}), L^2(\mathsf{N})).$$

• Put

$$\mathbf{c}_{0}(\widehat{\mathsf{N}}) = \overline{\left\{L_{\omega} \,\middle|\, \omega \in \mathsf{N}_{*}\right\}}$$

 $\bullet\ c_0(\widehat{N})$ can be shown to be a Hilbert $C^*\text{-module}$ over $c_0(\widehat{\mathbb{G}})$ of the form

$$\mathbf{c}_{0}(\widehat{\mathsf{N}}) = \bigoplus_{\kappa \in \operatorname{Irr} \mathbb{G}} M_{m_{\kappa}, n_{\kappa}}(\mathbb{C})$$

for some non-negative integers $\{m_{\kappa}\}_{\kappa \in \operatorname{Irr} \mathbb{G}}$ (c₀-direct sum).

- Finiteness of each m_{κ} follows from ergodicity of α .
- In fact the summand $M_{m_{\kappa},n_{\kappa}}(\mathbb{C})$ is

 $\left\{L_{\varphi(\cdot x)} \middle| x \in \mathsf{N} \text{ transforms according to } \kappa\right\}$

 $(x \in Pol(N)^{\kappa}).$

• If N is infinite dimensional then so is $c_0(\widehat{N})$.

Let η : N = M_n(C) ⊕ N → M_n(C) be the canonical projection.
Define η_{i,j} ∈ N_{*} by

$$\eta(\mathbf{x}) = \sum_{i,j} \eta_{i,j}(\mathbf{x}) e_{i,j}, \qquad \mathbf{x} \in \mathsf{N},$$

- and let $L_{\eta} = \sum_{i,j} e_{i,j} \otimes L_{\eta_{i,j}} \in M_n(\mathbb{C}) \otimes c_0(\widehat{\mathsf{N}}).$
- If dim $N = +\infty$ there are infinitely many different κ with $L_{\varphi(\cdot x_{\kappa})}p_{\kappa} = L_{\varphi(\cdot x_{\kappa})}$ for some non-zero $x_{\kappa} \in Pol(N)^{\kappa}$.
- Then, via somewhat complicated calculations, we get

$$\|L_{arphi(\cdot \, oldsymbol{x}_\kappa)}\| = ig\|(\mathbbm{1} \otimes p_\kappa) L_\eta^{\,*}(\mathbbm{1} \otimes L_{arphi(\cdot \, oldsymbol{x}_\kappa)})ig\| \leq ig\|L_\eta(\mathbbm{1} \otimes p_\kappa)ig\|\|L_{arphi(\cdot \, oldsymbol{x}_\kappa)}\|,$$

so $\|L_{\eta}(\mathbb{1} \otimes p_{\kappa})\| \geq 1$ for infinitely many different κ .

• This is a contradiction with $L_{\eta} \in M_n(\mathbb{C}) \otimes c_0(\widehat{N})$.

Thank you for your attention.

P.M. SOŁTAN (WARSAW)

QUANTUM CLIFFORD THEORY

April 25, 2017 24 / 24