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\D ACTIONS ON DISCRETE QUANTUM SPACES
o Orbits of an action

(@ QUANTUM CLIFFORD THEORY
o Discrete quantum group with a quantum subgroup
o Restricting representations of quantum groups
o Quantum Clifford’s theorem
o Dimensions in Kac case

(3 OTHER APPLICATIONS
o Torsion freeness and connectedness
o Vergnioux relation

\4) ERGODIC ACTIONS _
o Actions on M,(C) ® N
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QUANTUM GROUP ACTIONS ON DISCRETE QUANTUM SPACES ORBITS OF AN ACTION

o M =[] M; — product of von Neumann algebras,
i€l
o G — compact quantum group,

oa:M— M® L*(G) — action of G on M:
o « is an injective, unital, normal *-homomorphism,
o (a®id)oa = (Id ® Ag)oa.

o p,: M — M; — canonical projection.

DEFINITION
We say that i,j € 7 are a-related (writing i ~,, j) if

JxeM; (p;®id)a(x) # 0.
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QUANTUM GROUP ACTIONS ON DISCRETE QUANTUM SPACES ORBITS OF AN ACTION

o Define Qji: Mi — MJ® LOO(G) by

aji(x) = (p; ® id)a(x), x € M;.
Then «j; is a normal *-homomorphism. Moreover for each
x € M;
a(x) = ) agi(x).
J€zT
FAacT
T.F.AEE. fori,jeZ:
@D i~al.
@ o #0,
@ «ji(1pm,) #O.
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QUANTUM GROUP ACTIONS ON DISCRETE QUANTUM SPACES ORBITS OF AN ACTION

o We say that « is implemented if there exist

o a Hilbert space 7,
o a faithful normal representation = of M on 7,
o aunitary U € B(%7) ® L>=(G)

such that

(m ®id)a(y) = U(n(y) ® 1)U, yeM.
9 Any action can be implemented:
EXAMPLE
o mp — faithful representation of M on /%,
o Wb ¢ éoo(@) ® L>°(G) — the Kac-Takesaki operator of G,

o Define:

o H = L*(G),
0 ™= (m®id)oa: M — B(J%)® L=(G) C B(#),
o U=WC;3 e B(s4)® (2(G)® L=(G) C B(+#) & L=(G).
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QUANTUM GROUP ACTIONS ON DISCRETE QUANTUM SPACES ORBITS OF AN ACTION

o Assume « is implemented (77, 7, U as before).

o We can assume further that U € B(J¢) ® L>=(G) is a
representation of G:

(id ® Ag)U = Uy Uss.

o For each i let p; be the unit of M; (as a projection in M)
o Define .74 = n(p;)7¢. We have

= @}ﬁ and n(y) = @Wi(Pi(y)),

ieZ ez
where 7; : M; — B(J%) is a faithful representation.

o For k,l €I let Ug; = (m(pr) @ 1) U(r(p1) @ 1).
o Implementation of o by U means:

(7Tj & id)aJ',i(X) = []jﬂ'(ﬂ'i(X) & ]l)[[j’i* iLjel, x e M;.
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QUANTUM GROUP ACTIONS ON DISCRETE QUANTUM SPACES ORBITS OF AN ACTION
o Since (m; ®id)(aj,i(1y,)) = Uj,iU;i*, for all i,j € Z we have
(i~aj) <= (Uy#0).

PROPOSITION
The relation ~, is symmetric.

PROOF.

Assume « is implemented by a representation. We have i ~,, j iff
Uji # 0O iff there are { € 7 and 7 € J# such that (w¢, ® id)U # 0.
Now (w¢, ® id)U € D(S) (domain of antipode) and

0 # S((L%,n & id)U) = (LUg’n ®id)(U").

This means that 0 # (U*);; = Uy;*, so Uj; # 0 and i ~, j. O
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QUANTUM GROUP ACTIONS ON DISCRETE QUANTUM SPACES ORBITS OF AN ACTION

REMARK
The relation ~, need not be transitive. For example take
o M=1L1>{1,2,3,4}) = L>=({1}) ® L>({2,3}) ® L™({4}),

o G = Zgy acting by
R
24

o Then {1} ~, {2,3} and {2,3} ~, {4}, but {1} £, {4}.
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QUANTUM GROUP ACTIONS ON DISCRETE QUANTUM SPACES ORBITS OF AN ACTION

PROPOSITION
If M; is a factor for each i then ~, is an equivalence relation.

PROOF.
From (id ® Ag)oa = (a ® id)oa it follows that

(id ® Ag)(ai(2) =D (e ®id) (e i(x)), ijeZ, xeM.
keZ

Since each M; is a factor, for any a, b € 7 we have a ~,, b iff
keraqp = {0}. Assume i ~, l and [ ~, j. We have

(id ® Ag)(aji(Im,)) = D (i ® id) (e i(Tm,))
ke

(sum of orthogonal projections).
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QUANTUM GROUP ACTIONS ON DISCRETE QUANTUM SPACES ORBITS OF AN ACTION

PROOF CONT’D.
o Since i ~, I, we have oy ;(1y,) # O,
o since j ~, I, we have ker o ; = {O}.

It follows that

(id ® Ag)(ei(Im,) = D (1 ®1d) (cuei(Im,))
keZ

> (aj; ®1id) (ew,i(Im,)) # O,

s0 aji(1nm,) # 0, ie. i~ j.

Finally, for any i there is j such that i ~, j (otherwise o would
not be injective). Thus by symmetry and transitivity we get
reflexivity of ~. O

DEFINITION
The classes of ~,, will be called orbits of «.
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QUANTUM GROUP ACTIONS ON DISCRETE QUANTUM SPACES ORBITS OF AN ACTION

o Let A C 7 be an equivalence class of ~,. Then « restricts to
an action on [][ M;.

icA
o Moreover, the projection pa = > p; is invariant:
€A
a(pa) =pa®1

COROLLARY 1
If a is ergodic then ~,, is the total relation.

COROLLARY 2
If M; = My, (C) for all i € Z then all orbits of a are finite.

THEOREM

Let a be an ergodic action of a compact quantum group G on a
von Neumann algebra N of the form N = M,,(C) & N. Then
dimN < +oc0.

~
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QUANTUM GROUP ACTIONS ON DISCRETE QUANTUM SPACES ORBITS OF AN ACTION

SKETCH OF PROOF OF COROLLARY 2.

od

i d

D

~

§

§

Restrict to one class: Vi,j i~q],
take a minimal projection p in M* = {m € M|a(m) = m®1},
« restricts to an action on pMp which is ergodic,

pMp is itself a product of matrix algebras, so by Theorem
dim pMp < +o0,

thus Z, = {i € Z| p;p # O} is finite,

take i € Z, and j € 7\Z,. We have p;p # 0, and

aji(pip) = (p; ®id) ((pip)) < (P; @ id)(a(p)) = P;(p) ® 1 = 0.

But i ~, j, so kera;; = {0} — a contradiction.
Thus T = 7, is finite.

O
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QUANTUM CLIFFORD THEORY DISCRETE QUANTUM GROUP WITH A QUANTUM SUBGROUP
o Let [ be a discrete quantum group:
[ee]
<) = I M (),
yelrr I

o and let A be a quantum subgroup of [':

o~ ~

o L®°(A) C L=(T), (A is closed)
o L2([) — £°(N). (A is open)

o Put (®°(A\N) = {x € 1= | (7 ® id)Ap(x) = 1 ® x}.
o Let G = T. We have

WE (0°(A\T) ® 1)WE c (A1) & L=(T)
which yields an action of G on ¢*°(A\l):

a(x) = W8 (x @ 1)WE", x € (2(A\I).
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QUANTUM CLIFFORD THEORY DISCRETE QUANTUM GROUP WITH A QUANTUM SUBGROUP

EXAMPLE
Consider a special case:
o let H C G be a normal closed quantum subgroup,

9 letW:@and/\:@ﬁ.
Then G acts on £2°(A\[') = (T /A) = ¢>°(H).

9 (*°(A\I') is a product of matrix algebras:
(M) = [ M
icl

with each M; = M, (C).

o The action of G =T on >°(A\I") defines the equivalence
relation ~, on 7.
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QUANTUM CLIFFORD THEORY RESTRICTING REPRESENTATIONS OF QUANTUM GROUPS
o Representations of G = [ are all of the form
U = (p @ id)WE,

where ¢ is a representation of />°(T).
9 Irreps correspond to matrix blocks in the decomposition

(1) = [ [ Mn, (C).
il

o Since (*(A\I") C ¢>°(I"), representations of />°(') can be
restricted to (>°(A\I).

o When A = @ﬁ for a normal H C G this is exactly restricting
representations of G to H ((*°(A\l') = éoo(ﬁ[)].

o Classical theorem of Clifford says that an irrep of G
restricted to a normal H C G is equivalent to a direct sum
of irreps of H forming precisely one orbit of the action of G

on Irr H by conjugation.
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QUANTUM CLIFFORD THEORY QUANTUM CLIFFORD’S THEOREM

o Denote by 1; the unit of M; C ¢>°(A\I') viewed as a projection
in ¢°(I).

THEOREM
For any i € I the element

D 1€ £°(A\T) C (T

Jral

is the central support z(1;) in ¢°°(T") of the projection 1;. Moreover
z(1;) is orthogonal to z(1;) if i is not equivalent toj (i.e. i and j are
not in the same orbit).

~

o In particular for any « € Irr T there exists i € Z such that
@ for all j € 7 we have p,1; # 0 if and only if j ~, i,

@ we have pK( > ]lj> = Dk-

J~al
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QUANTUM CLIFFORD THEORY QUANTUM CLIFFORD’S THEOREM

EXAMPLE REVISITED

o When A = m for a closed normal subgroup H of G, the
theorem says that for an irrep « of G (or ¢°(G)) the
restriction of x to H (or EOO(H?]I)) is a direct sum of irreps of H
constituting one class of the equivalence relation ~, on

7 = Irr H.

o For classical groups G and H the irreps of H in one orbit of
the action of G (by conjugation) all have the same
dimension.
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QUANTUM CLIFFORD THEORY DIMENSIONS IN KAC CASE

THEOREM

Let G be a compact quantum group of Kac type and let H be a
closed normal quantum subgroup of G. Then any two irreducible

representations o and T of H in the same orbit have the same

dimension. Moreover, if 7 is any trreducible representation of G

with 7(1,) # 0, then also the multiplicity of o in  is the same
the multiplicity of T in «.
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OTHER APPLICATIONS TORSION FREENESS AND CONNECTEDNESS

THEOREM
Consider the following three conditions

) -~ . . All actions of G on finite dimensional
@ G s torslonfree , C*-algebras are direct sums of actions
Morita equivalent to trivial action on C
. . e, For any action of G on a product of ma-
@ G s satl‘sﬁes the (TO) -condltlon’ trix algebras the orbits are trivial
) . There is no finite quantum group H such
@ G is connected. that Pol(E) C Pol(G) as a Hopf *-sub-
algebra
Then

Q= 9= Q.

In general neither of the implications can be reversed.

P.M. SOLTAN (WARSAW) QUANTUM CLIFFORD THEORY APRIL 25, 2017 19 / 24



OTHER APPLICATIONS VERGNIOUX RELATION

DEFINITION

Let A be a quantum subgroup of a discrete quantum group [
For o,7 € Irr [ we say that o and 7 are A-related if there exists

A € Irr A such that 7 C oDy.

o Recall that in this situation we have an action o« of G on

(M) = 1] My
€T
o For i € Z define I-supp(1;) = {x € IrrT | p,1; # O}.
THEOREM

@ Fori,j eI we have i~ j iff [-supp(1;) = I-supp(1;).
@ two elements 0,7 € Irr [ are A-related iff there exists i € 7
such that o, 7 € [-supp(1;).
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ERGODIC ACTIONS ACTIONS ON Mp(C) & N

Let o : N - N® L*°(G) be an ergodic action,
o assume N = M,(C) @ N.

o There is a unique invariant state ¢ on N, let L2(N) be the
associated G.N.S. space.

Define G : L2(N) ® L?(N) — L2(N) ® L?(G) by extending
xX@yr— a(y)(x® 1), x,y € Pol(N),

where Pol(N) is the algebraic core (or Podles subalgebra or
polynomial subalgebra) of N.
One can show that G € N ® B(L?(N), L?(G)), so for w € N, we

have
L, = (w®id)(G*) € B(L*(G), L*(N)).

Put N
co(N) = {Lw |w S N*}
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ERGODIC ACTIONS ACTIONS ON Mp(C) & N

~ ~

9 cop(N) can be shown to be a Hilbert C*-module over co(G) of

the form R
co(N) = @ Mm, n,.(C)

kelirG
for some non-negative integers {my}.cnrc (co-direct sum).
o Finiteness of each m, follows from ergodicity of a.
o In fact the summand M, . (C) is

{Ly(. x| x € N transforms according to «}

(¢ € Pol(N)").

o If N is infinite dimensional then so is CO(N).
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ERGODIC ACTIONS ACTIONS ON Mp(C) & N

o Letn:N=M,(C)a® N — M,,(C) be the canonical projection.
o Define 7;; € N, by

X) = ZU{J(X)G{J, X € N,

o andlet L, = e;;® Ly, € Mqy(C) ® co(N).
iJj

o If dim N = +oo there are infinitely many different « with
L(.x,)Px = Ly x,) for some non-zero x, € Pol(N)".

o Then, via somewhat complicated calculations, we get
1Ll = |1 ® Pe) Ly (1 ® Lo, || < | Ln(L @ P) {1 Lo x0) I

s0 ||Ly(1 ® p,)| = 1 for infinitely many different .
o This is a contradiction with L, € M,(C) ® CO(N).
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Thank you for your attention.

©
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