On quantum groups from multiplicative unitaries

Piotr M. Soltan

Joint work with S.L. Woronowicz

Trieste, June 2006

- 1 Modular multiplicative unitaries
- \mathcal{H} (separable) Hilbert space Modular multiplicative unitary: $W \in B(\mathcal{H} \otimes \mathcal{H})$
- $\circledast W$ is unitary
- W is multiplicative: $W_{23}W_{12}W_{23}^* = W_{12}W_{13}$
- $\blacksquare \exists Q, \widehat{Q} \text{positive, self adjoint on } \mathcal{H} \text{ such that } W(\widehat{Q} \otimes Q)W^* = \widehat{Q} \otimes Q$ $\blacksquare \exists \text{ unitary } \widetilde{W} \in \mathbb{B}(\overline{\mathcal{H}} \otimes \mathcal{H}) \text{ such that }$

$$(x \otimes u | W | z \otimes y) = \left(\overline{z} \otimes Qu \Big| \widetilde{W} \Big| \overline{x} \otimes Q^{-1}y\right)$$

2 Multiplicative unitaries give quantum groups

 $W \in B(\mathcal{H} \otimes \mathcal{H})$ – modular multiplicative unitary

•
$$A = \{ (\omega \otimes id)(W) | \omega \in B(\mathcal{H})_* \}^-$$
 is a C*-algebra

• For $a \in A$ formula $\Delta(a) = W(a \otimes I)W^*$ defines a coassociative $\Delta \in Mor(A, A \otimes A)$

(important:
$$B(\mathcal{H})_* = \mathcal{K}(\mathcal{H})^*$$
 – depends on \mathcal{H})

Definition: $\mathbb{G} = (A, \Delta)$ – quantum group. ($\mathbb{G} = (A, \Delta)$ is a quantum group if A and Δ are obtained from a modular multiplicative unitary as indicated above)

?? Dependence on choice of m.m.u. ??

3 More structure

 $\hfill \exists ! \mbox{ closed } \kappa : A \to A \mbox{ such that }$

$$\kappa \left((\omega \otimes \mathrm{id})(W) \right) = (\omega \otimes \mathrm{id})(W^*)$$

$$\kappa a, b \in \mathrm{D}(\kappa) \Rightarrow ab \in \mathrm{D}(\kappa) \text{ and } \kappa(ab) = \kappa(b)\kappa(a)$$

$$\kappa \kappa \left(\kappa(a)^*\right)^* = a$$

 $\square \kappa = R \circ \tau_{\frac{i}{2}}$ $\bigotimes (\tau_t)_{t \in \mathbb{R}}$ – one parameter group of automorphisms of A:

$$\tau_t(a) = Q^{2it} a Q^{-2it}$$

R – ultraweakly continuous involutive antiautomorphism of A $\widehat{\mathbb{G}}$ – obtained as \mathbb{G} from m.m.u. \widehat{W} ($\widehat{\mathbb{G}}$ is called the reduced dual of \mathbb{G}) 4 Dual modular multiplicative unitary

 \widehat{W} given by

is also a modular multiplicative unitary

5 Main theorem

Let $\mathbb{G} = (A, \Delta)$ be a quantum group. Let $W \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H})$ be a m.m.u. giving rise to \mathbb{G} . Then

- \blacktriangleright the ultraweak topology on $A \subset B(\mathcal{H})$
- \blacktriangleright the unitary coinverse R
- \blacktriangleright the scaling group $(\tau_t)_{t \in \mathbb{R}}$
- \blacktriangleright the coinverse κ
- \blacktriangleright the reduced dual
- \blacktriangleright and many other important things

do not depend on the choice of \mathcal{H} and W

6 Method of proof: step 1

1 Develop theory of unitary representations of quantum groups

- \blacksquare direct sums
- tensor products
- Imp contragradient representations
- intertwining operators
- equivalence and quasi-equivalence
- \blacksquare C*-algebras generated by representations

- 7 Method of proof: steps 2–7
- Notice that any m.m.u. giving rise to G is a representation and all such representations are right absorbing
- **3** Notice that all right absorbing representations are quasi-equivalent
- 0 Notice that quasi-equivalent representations generate isomorphic C*-algebras
- Notice that this isomorphism is a homeomorphism for the ultraweak topologies inherited from natural embeddings into operators
- **\bigcirc** Notice that A is a special case of C^{*}-algebra generated by a representation
- Notice that we have already taken care of the ultraweak topology and deduce the other points of the theorem

8 One application

- \Rightarrow There is a special "maximal" representation $\mathbb{W} \in \mathcal{M}(\mathcal{K}(H_{\mathbb{W}}) \otimes A)$
- ➡ Representations of the C*-algebra \widehat{A}_u generated by W are in bijection with representations of G
- $\Rightarrow \widehat{A}_{u}$ has comultiplication $\widehat{\Delta}_{u}$ and all other structure $\widehat{\kappa}^{u}$, $\widehat{\tau}^{u}$ and \widehat{R}^{u}
- $\Leftrightarrow (\widehat{A}_{\mathbf{u}}, \widehat{\Delta}_{\mathbf{u}})$ has a counit $\widehat{e}^{\mathbf{u}}$
- $\Rightarrow (\widehat{A}_{u}, \widehat{\Delta}_{u}) \text{ is not a quantum group, but it is not far from being one}$ $\Rightarrow \text{ If } \widehat{A} \text{ has a continuous counit then } \widehat{A} = \widehat{A}_{u}$

- 9 What we are saying
 - * A quantum group is described by a C*-algebra with comultiplication not a C*-algebra represented in $B(\mathcal{H})$ with a comultiplication
 - * All important features coming from such a representation are determined uniquely by (A, Δ) – not by specific realization in Hilbert space
 - We don't know how to prove existence of Haar measure, but we have shown existence of "Haar measure class" this is, in effect, the ultraweak topology on A
 - ✤ In particular this means that defining quantum groups via von Neumann algebras actually makes sense