PODLEŚ SPHERES FOR THE BRAIDED GUANTUM $\mathrm{SU}(2)$

The Frontier of Quantum Dynamics Banach Center, Warsaw

Piotr M. Sołtan

Department of Mathematical Methods in Physics
Faculty of Physics, University of Warsaw

December 11, 2019

(1) BRAIDED TENSOR PRODUCTS OF \mathbb{T}-C*-ALGEBRAS

- The category of $\mathbb{T}-\mathrm{C}^{*}$-algebras
- Braided tensor products
(2) THE BRAIDED QUANTUM $\operatorname{SU}(2)$ GROUPS
- The quantum group space $\mathrm{SU}_{q}(2)$
- The braided quantum group $\mathrm{SU}_{q}(2)$
(3) ThE QUOTIENT SPHERE
- The quantum subgroup \mathbb{T}
- Action of $\mathrm{SU}_{q}(2)$ on \mathbb{S}_{q}^{2}

4) The Three dimensional Irrep \boldsymbol{V}

- \mathbb{S}_{q}^{2} in terms of \boldsymbol{V}
(5) QUANTUM SPACES SIMILAR TO \mathbb{S}_{q}^{2}
- Braided Podleś spheres
- We will consider the category $\mathfrak{C}_{\mathbb{T}}^{*}$ of C^{*}-algebras endowed with an action of \mathbb{T} and equivariant morphisms.
- Given $A \in \operatorname{Ob}\left(\mathfrak{C}_{\mathbb{T}}^{*}\right)$ the action will be described by

$$
\rho^{\mathrm{A}} \in \operatorname{Mor}(\mathrm{~A}, \mathrm{C}(\mathbb{T}) \otimes \mathrm{A})
$$

such that $\left(i d \otimes \rho^{A}\right) \circ \rho^{A}=\left(\Delta_{\mathbb{T}} \otimes i d\right) \circ \rho^{A}$.

- For $A, B \in \operatorname{Ob}\left(\mathfrak{C}_{\mathbb{T}}^{*}\right)$ the morphisms between A and B in $\mathfrak{C}_{\mathbb{T}}^{*}$ are those $\Phi \in \operatorname{Mor}(A, B)$ such that

$$
(\mathbf{i d} \otimes \Phi) \circ \rho^{\mathrm{A}}=\rho^{\mathrm{B}} \circ \Phi
$$

and the set of those morphisms will be denoted $\operatorname{Mor}_{\mathbb{T}}(A, B)$.

- The set of homogeneous elements, i.e. $a \in A$ such that $\rho^{\mathrm{A}}(a)=\boldsymbol{z}^{n} \otimes a$ for some n, spans a dense subspace of A.
- Choose $\zeta \in \mathbb{T}$.
- There exists a monoidal structure \boxtimes_{ζ} on $\mathfrak{C}_{\mathbb{T}}^{*}$ such that
- for $A, B \in \operatorname{Ob}\left(\mathfrak{C}_{\mathbb{T}}^{*}\right)$ the C^{*}-algebra $A \boxtimes_{\zeta} B$ comes equipped with embeddings

$$
\begin{aligned}
& \jmath_{1}: \mathrm{A} \longrightarrow \mathrm{~A} \boxtimes_{\zeta} \mathrm{B}, \\
& \jmath_{2}: \mathrm{B} \longrightarrow \mathrm{~A} \boxtimes_{\zeta} \mathrm{B}
\end{aligned}
$$

such that for homogeneous elements

$$
\jmath_{2}(\boldsymbol{b}) \jmath_{1}(\boldsymbol{a})=\bar{\zeta}^{\operatorname{deg}(\boldsymbol{a}) \operatorname{deg}(\boldsymbol{b})} \jmath_{1}(\boldsymbol{a}) \jmath_{2}(\boldsymbol{b})
$$

- the action of \mathbb{T} on $A \boxtimes_{\zeta} B$ is determined uniquely by the condition that \jmath_{1} and \jmath_{2} are equivariant.
- For $\Phi \in \operatorname{Mor}_{\mathbb{T}}\left(A, A^{\prime}\right)$ and $\Psi \in \operatorname{Mor}_{\mathbb{T}}\left(B, B^{\prime}\right)$ there exists a unique $\Phi \boxtimes_{\zeta} \Psi \in \operatorname{Mor}_{\mathbb{T}}\left(A \boxtimes_{\zeta} B, A^{\prime} \boxtimes_{\zeta} B^{\prime}\right)$ such that

$$
\left(\Phi \boxtimes_{\zeta} \Psi\right)\left(\jmath_{1}(\boldsymbol{a}) \jmath_{2}(\boldsymbol{b})\right)=\jmath_{1}(\Phi(\boldsymbol{a})) \jmath_{2}(\Psi(\boldsymbol{b}))
$$

for all $a \in \mathrm{~A}, b \in \mathrm{~B}$.

- If ρ^{B} or ρ^{A} is trivial then

$$
A \boxtimes_{\zeta} B \cong A \otimes B
$$

with \jmath_{1} and \jmath_{2} becoming

$$
a \longmapsto a \otimes \mathbb{1} \quad \text { and } \quad a \longmapsto \mathbb{1} \otimes b
$$

respectively.

- Fix $q \in \mathbb{C}$ such that $0<|q|<1$.
- Define $\mathrm{C}\left(\mathrm{SU}_{q}(2)\right)$ to be the universal C^{*}-algebra generated by α and γ such that

$$
\left[\begin{array}{cc}
\alpha & -q \gamma^{*} \\
\gamma & \alpha^{*}
\end{array}\right]
$$

is unitary.

- The C^{*}-algebra $\mathrm{C}\left(\mathrm{SU}_{q}(2)\right)$ is equipped with and action of \mathbb{T} described by

$$
\rho^{\mathrm{C}\left(\mathrm{SU}_{q}(2)\right)} \in \operatorname{Mor}\left(\mathrm{C}\left(\mathrm{SU}_{q}(2)\right), \mathrm{C}(\mathbb{T}) \otimes \mathrm{C}\left(\mathrm{SU}_{q}(2)\right)\right)
$$

determined by

$$
\rho^{\mathrm{C}\left(\mathrm{SU}_{q}(2)\right)}(\alpha)=\mathbb{1} \otimes \alpha, \quad \rho^{\mathrm{C}\left(\mathrm{SU}_{q}(2)\right)}(\gamma)=\boldsymbol{z} \otimes \gamma
$$

THEOREM (KASPRZAK-MEYER-ROY-WORONOWICZ)

Let $\zeta=q / \bar{q}$. There exists a unique

$$
\Delta \in \operatorname{Mor}_{\mathbb{T}}\left(\mathrm{C}\left(\mathrm{SU}_{q}(2)\right), \mathrm{C}\left(\mathrm{SU}_{q}(2)\right) \boxtimes_{\zeta} \mathrm{C}\left(\mathrm{SU}_{q}(2)\right)\right)
$$

such that

$$
\Delta(\alpha)=\jmath_{1}(\alpha) \jmath_{2}(\alpha)-q \jmath_{1}\left(\gamma^{*}\right) \jmath_{2}(\gamma), \quad \Delta(\gamma)=\jmath_{1}(\gamma) \jmath_{2}(\alpha)+\jmath_{1}\left(\alpha^{*}\right) \jmath_{2}(\gamma) .
$$

Moreover

(1) Δ is coassociative: $\left(\Delta \boxtimes_{\zeta}\right.$ id $) \circ \Delta=\left(\mathrm{id} \boxtimes_{\zeta} \Delta\right) \circ \Delta$,
(2) the subspaces

$$
\Delta\left(\mathrm{C}\left(\mathrm{SU}_{q}(2)\right)\right) \jmath_{2}\left(\mathrm{C}\left(\mathrm{SU}_{q}(2)\right)\right), \quad \jmath_{1}\left(\mathrm{C}\left(\mathrm{SU}_{q}(2)\right)\right) \Delta\left(\mathrm{C}\left(\mathrm{SU}_{q}(2)\right)\right)
$$

are dense in $\mathrm{C}\left(\mathrm{SU}_{q}(2)\right) \boxtimes_{\zeta} \mathrm{C}\left(\mathrm{SU}_{q}(2)\right)$.

- In what follows we will sometimes write \mathbb{G} instead of $\mathrm{SU}_{q}(2)$.
- Consider the C^{*}-algebra $C(\mathbb{T})$ with trivial action of \mathbb{T}.
- Then the map $\pi: \mathrm{C}(\mathbb{G}) \rightarrow \mathrm{C}(\mathbb{T})$ given by

$$
\pi(\alpha)=\mathbf{z}, \quad \pi(\gamma)=0
$$

is equivariant and we have $\left(\pi \boxtimes_{\zeta} \pi\right) \circ \Delta=\Delta_{\mathbb{T}} \circ \pi$.

- Define $\mathrm{C}\left(\mathbb{S}_{q}^{2}\right)=\left\{a \in \mathrm{C}(\mathbb{G}) \mid\left(\mathrm{id}_{\mathbb{V}_{\zeta}} \pi\right) \Delta(a)=a \otimes \mathbb{1}\right\}$.

Proposition

(1) $\left(\pi \boxtimes_{\zeta} \pi\right) \circ \Delta=\Delta_{\mathbb{T}} \circ \pi$,
(2) $\mathrm{C}\left(\mathbb{S}_{q}^{2}\right)$ is the C^{*}-subalgebra of generated by $\alpha \gamma^{*}$ and $\gamma^{*} \gamma$,
(3) $\mathrm{C}\left(\mathbb{S}_{q}^{2}\right)$ is the universal unital C^{*}-algebra generated by elements A and B with relations

$$
B^{*} B=A-A^{2}, \quad B A=|q|^{2} A B, \quad B B^{*}=|q|^{2} A-|q|^{4} A^{2}, \quad A^{*}=A,
$$

(4) $\mathrm{C}\left(\mathbb{S}_{q}^{2}\right)$ is isomorphic to the minimal unitization of the compacts.

- Put $\Gamma=\left.\Delta\right|_{\mathrm{C}\left(\mathbb{S}_{q}^{2}\right)}$. Then
- $\Gamma \in \operatorname{Mor}_{\mathbb{T}}\left(\mathbf{C}\left(\mathbb{S}_{q}^{2}\right), \mathrm{C}(\mathbb{G}) \boxtimes_{\zeta} \mathbf{C}\left(\mathbb{S}_{q}^{2}\right)\right)$,
- (id $\left.\boxtimes_{\zeta} \Gamma\right) \circ \Gamma=\left(\Delta \boxtimes_{\zeta}\right.$ id $) \circ \Gamma$,
- $\jmath_{1}(\mathbf{C}(\mathbb{G})) \Gamma\left(\mathbf{C}\left(\mathbb{S}_{q}^{2}\right)\right)$ is dense in $\mathrm{C}(\mathbb{G}) \boxtimes_{\zeta} \mathrm{C}\left(\mathbb{S}_{q}^{2}\right)$,
- for $x \in \mathrm{C}\left(\mathbb{S}_{q}^{2}\right)$ we have $\Gamma(x)=\jmath_{2}(x)$ if and only if $x \in \mathbb{C} \mathbb{1}$.
- Now define

$$
\boldsymbol{V}=\left[\begin{array}{ccc}
\alpha^{2} & -\boldsymbol{s}^{2} \gamma^{*} \alpha & -\boldsymbol{q} \gamma^{* 2} \\
\zeta \alpha \gamma & \mathbb{1}-\boldsymbol{s}^{2} \gamma^{*} \gamma & \gamma^{*} \alpha^{*} \\
-\boldsymbol{q} \zeta \gamma^{2} & -\boldsymbol{s}^{2} \alpha^{*} \gamma & \alpha^{* 2}
\end{array}\right]=\left[\begin{array}{ccc}
\boldsymbol{v}_{-1,-1} & \boldsymbol{v}_{-1,0} & \boldsymbol{v}_{-1,1} \\
\boldsymbol{v}_{0,-1} & \boldsymbol{v}_{0,0} & \boldsymbol{v}_{0,1} \\
\boldsymbol{v}_{1,-1} & \boldsymbol{v}_{1,0} & \boldsymbol{v}_{1,1}
\end{array}\right]
$$

(with $s=\sqrt{1+|q|^{2}}$). Putting $e_{i}=\boldsymbol{v}_{i, 0}(i=-1,0,1)$ we have

- $\mathrm{C}\left(\mathbb{S}_{q}^{2}\right)=\mathrm{C}^{*}\left(e_{-1}, e_{0}, e_{1}\right)$,
- $\Gamma\left(\boldsymbol{e}_{i}\right)=\sum_{j=-1}^{1} \jmath_{1}\left(\boldsymbol{e}_{i}\right) \jmath_{2}\left(\boldsymbol{v}_{i, j}\right)$.
- \boldsymbol{V} is unitary.
- Elements of the matrix \boldsymbol{V} satisfy $\Delta\left(\boldsymbol{v}_{i, j}\right)=\sum_{k=-1}^{1} \jmath_{1}\left(\boldsymbol{v}_{i, k}\right) \jmath_{2}\left(\boldsymbol{v}_{k, j}\right)$.
- If $A \in M_{3}(\mathbb{C})$ commutes with \boldsymbol{V} then $A \in \mathbb{C 1}_{3}$.

Moreover

- $e_{i}{ }^{*}=e_{-i}$ for $i=-1,0,1$,
- $\operatorname{deg}\left(e_{i}\right)=i$ for $i=-1,0,1$,
- $\operatorname{span}\left\{e_{-1}, e_{0}, e_{1}\right\}$ is the unique subspace of $\mathrm{C}\left(\mathbb{S}_{q}^{2}\right)$ equipped with a basis which transforms according to \boldsymbol{V}.

Let \mathbb{X} be a compact quantum space such that $\mathrm{C}(\mathbb{X}) \in \operatorname{Ob}\left(\mathfrak{C}_{\mathbb{T}}^{*}\right)$. Assume that there exists $\Gamma \in \operatorname{Mor}_{\mathbb{T}}\left(\mathbf{C}(\mathbb{X}), \mathbf{C}(\mathbb{G}) \boxtimes_{\zeta} \mathbf{C}(\mathbb{X})\right)$ such that

- if $a \in \mathbb{C}(\mathbb{X})$ satisfies $\Gamma(a)=\jmath_{2}(\boldsymbol{a})$ then $\boldsymbol{a} \in \mathbb{C} \mathbb{1}$,
- $\mathbf{C}(\mathbb{X})$ is generated by a three dimensional subspace $\mathrm{W} \subset \mathrm{C}(\mathbb{X})$ equipped with a basis $\left\{e_{-1}, e_{0}, e_{1}\right\}$ such that

$$
\Gamma\left(e_{i}\right)=\sum_{j=-1}^{1} \jmath_{1}\left(e_{i}\right) \jmath_{2}\left(\boldsymbol{v}_{i, j}\right)
$$

- W is the only subspace of $C(\mathbb{X})$ equipped with a basis which transforms according to \boldsymbol{V},
$-\operatorname{deg}\left(\boldsymbol{e}_{\boldsymbol{i}}\right)=\boldsymbol{i}$.
(Note that $\mathbb{X}=\mathbb{S}_{q}^{2}$ satisfies these conditions.)

Then (after re-scaling $\left\{e_{-1}, e_{0}, e_{1}\right\}$ by a constant) we have
(1) $e_{i}{ }^{*}=e_{-i}$,
(2) there exists $\varrho \in \mathbb{R}$ such that

$$
e_{-1} e_{1}+s^{2} e_{0}^{2}+|q|^{2} e_{1} e_{-1}=\varrho \mathbb{1}
$$

(3) there exists $\lambda \in \mathbb{R}$ such that

$$
\begin{aligned}
s^{2}\left(e_{-1} e_{0}-|q|^{2} e_{0} e_{-1}\right) & =\lambda e_{-1} \\
|q|^{2}\left(e_{1} e_{-1}-e_{-1} e_{1}\right)+\left(1-|q|^{4}\right) e_{0}^{2} & =\lambda e_{0} \\
s^{2}\left(e_{0} e_{1}-|q|^{2} e_{1} e_{0}\right) & =\lambda e_{1}
\end{aligned}
$$

Theorem

Let $\mathbb{X}_{q, e, \lambda}$ be the universal C*-algebra generated by e_{-1}, e_{0}, e_{1} with relations $e_{i}^{*}=e_{-i}$ and

$$
\begin{aligned}
e_{-1} e_{1}+s^{2} e_{0}^{2}+|q|^{2} e_{1} e_{-1} & =\varrho \mathbb{1}, \\
s^{2}\left(e_{-1} e_{0}-|q|^{2} e_{0} e_{-1}\right) & =\lambda e_{-1}, \\
|q|^{2}\left(e_{1} e_{-1}-e_{-1} e_{1}\right)+\left(1-|q|^{4}\right) e_{0}^{2} & =\lambda e_{0}, \\
s^{2}\left(e_{0} e_{1}-|q|^{2} e_{1} e_{0}\right) & =\lambda e_{1} .
\end{aligned}
$$

Then

(1) there is an action of \mathbb{T} on $\mathrm{C}\left(\mathbb{X}_{q, \varrho, \lambda}\right)$ such that $\operatorname{deg}\left(e_{i}\right)=i$,
(2) There exists $\Gamma_{q, \varrho, \lambda}: \mathrm{C}\left(\mathbb{X}_{q, \varrho, \lambda}\right) \rightarrow \mathrm{C}(\mathbb{G}) \boxtimes_{\zeta} \mathrm{C}\left(\mathbb{X}_{q, \varrho, \lambda}\right)$ such that

$$
\Gamma_{q, \varrho, \lambda}\left(e_{i}\right)=\sum_{j=-1}^{1} \jmath_{1}\left(\boldsymbol{v}_{i, j}\right) \jmath_{2}\left(e_{j}\right),
$$

(3) $\left(i d \boxtimes_{\zeta} \Gamma_{q, \varrho, \lambda}\right) \circ \Gamma_{q, \varrho, \lambda}=\left(\Delta \mathbb{X}_{\zeta}\right.$ id $) \circ \Gamma_{q, \varrho, \lambda}$ and $\jmath_{1}(\mathrm{C}(\mathbb{G})) \Gamma_{q, \varrho, \lambda}\left(\mathrm{C}\left(\mathbb{X}_{q, \varrho, \lambda}\right)\right)$ is dense in $\mathrm{C}(\mathbb{G}) \boxtimes_{\zeta} \mathrm{C}\left(\mathbb{X}_{q, \varrho, \lambda}\right)$.

Moreover

We have

$$
\mathrm{C}\left(\mathbb{X}_{q, \varrho, \lambda}\right) \cong \mathrm{C}\left(S_{|q| c}^{2}\right)
$$

where $S_{|q| c}^{2}$ is the Podleś sphere for $\mathrm{SU}_{|q|}(2)$ and

$$
c=|q|^{2} \frac{s^{2} \varrho\left(1-|q|^{2}\right)^{2}-\lambda^{2}}{\left(1+|q|^{2}\right)^{2} \lambda^{2}}
$$

(or $c=\infty$ if $\lambda=0$).

Conclusion

- Any quantum space with action of $\mathrm{SU}_{q}(2)$ with properties similar to that of the action on \mathbb{S}_{q}^{2} is equivariantly isomorphic to one of the spaces $\mathbb{X}_{q, \lambda, \varrho}$.
- An equivariant isomorphism of $\mathrm{C}\left(\mathbb{X}_{q, \lambda, \varrho}\right)$ onto $\mathrm{C}\left(\mathbb{X}_{q, \lambda^{\prime}, \rho^{\prime}}\right)$ must map the distinguished basis $\left\{e_{-1}, e_{0}, e_{1}\right\}$ of $\mathrm{W} \subset \mathrm{C}\left(\mathbb{X}_{q, \lambda, \varrho}\right)$ to a multiple of the distinguished basis of $W^{\prime} \subset \mathrm{C}\left(\mathbb{X}_{q, \lambda^{\prime}, e^{\prime}}\right)$.
- The collection of compact quantum spaces $\left\{\mathbb{X}_{q, \lambda, \varrho}\right\}$ coincides with $\left\{S_{|q| c}^{2}\right\}_{c \in \mathbb{R} \cup\{\infty\}}$.

