Podleś spheres for the braided guantum $\operatorname{SU}(2)$

THE FRONTIER OF QUANTUM DYNAMICS BANACH CENTER, WARSAW

Piotr M. Sołtan

Department of Mathematical Methods in Physics Faculty of Physics, University of Warsaw

December 11, 2019

P.M. SOLTAN (WARSAW)

QUANTUM SPHERES

1 Braided tensor products of \mathbb{T} -C^{*}-algebras

- The category of \mathbb{T} -C*-algebras
- Braided tensor products
- 2 The braided quantum $\mathrm{SU}(\mathbf{2})$ groups
 - The quantum group space $SU_q(2)$
 - The braided quantum group ${
 m SU}_q(2)$
- 3 The quotient sphere
 - The quantum subgroup $\mathbb T$
 - Action of $SU_q(2)$ on \mathbb{S}_q^2
- THE THREE DIMENSIONAL IRREP V
 S²_q in terms of V
- **QUANTUM SPACES SIMILAR TO** S²_q
 Braided Podles spheres

- We will consider the category $\mathfrak{C}^*_{\mathbb{T}}$ of C*-algebras endowed with an action of \mathbb{T} and equivariant morphisms.
- $\bullet~\mbox{Given}~A\in {\rm Ob}(\mathfrak{C}^*_{\mathbb{T}})$ the action will be described by

 $\rho^{\mathsf{A}} \in \mathrm{Mor}(\mathsf{A}, \mathsf{C}(\mathbb{T}) \otimes \mathsf{A})$

such that $(\mathrm{id} \otimes \rho^{\mathsf{A}}) \circ \rho^{\mathsf{A}} = (\Delta_{\mathbb{T}} \otimes \mathrm{id}) \circ \rho^{\mathsf{A}}$.

• For $A, B \in Ob(\mathfrak{C}^*_{\mathbb{T}})$ the morphisms between A and B in $\mathfrak{C}^*_{\mathbb{T}}$ are those $\Phi \in Mor(A, B)$ such that

$$(\mathrm{id}\otimes\Phi)\circ\rho^\mathsf{A}=\rho^\mathsf{B}\circ\Phi$$

and the set of those morphisms will be denoted $Mor_{\mathbb{T}}(A, B)$.

• The set of **homogeneous** elements, i.e. $a \in A$ such that $\rho^A(a) = \mathbf{z}^n \otimes a$ for some *n*, spans a dense subspace of A.

• Choose $\zeta \in \mathbb{T}$.

• There exists a monoidal structure $\boxtimes_{\mathcal{C}}$ on $\mathfrak{C}^*_{\mathbb{T}}$ such that

 $\bullet~$ for $A,B\in {\rm Ob}(\mathfrak{C}^*_{\mathbb{T}})$ the C*-algebra $A\boxtimes_{\zeta}B$ comes equipped with embeddings

$$j_1 : \mathsf{A} \longrightarrow \mathsf{A} \boxtimes_{\zeta} \mathsf{B},$$
$$j_2 : \mathsf{B} \longrightarrow \mathsf{A} \boxtimes_{\zeta} \mathsf{B}$$

such that for homogeneous elements

$$j_2(b)j_1(a) = \overline{\zeta}^{\deg(a)\deg(b)}j_1(a)j_2(b),$$

• the action of \mathbb{T} on $A \boxtimes_{\zeta} B$ is determined uniquely by the condition that j_1 and j_2 are equivariant.

• For $\Phi \in \operatorname{Mor}_{\mathbb{T}}(A, A')$ and $\Psi \in \operatorname{Mor}_{\mathbb{T}}(B, B')$ there exists a unique $\Phi \boxtimes_{\zeta} \Psi \in \operatorname{Mor}_{\mathbb{T}}(A \boxtimes_{\zeta} B, A' \boxtimes_{\zeta} B')$ such that

 $(\Phi \boxtimes_{\zeta} \Psi) (j_1(a)j_2(b)) = j_1(\Phi(a))j_2(\Psi(b))$

for all $a \in A$, $b \in B$.

• If ρ^{B} or ρ^{A} is trivial then

$$A \boxtimes_{\zeta} B \cong A \otimes B$$

with j_1 and j_2 becoming

$$a \mapsto a \otimes 1$$
 and $a \mapsto 1 \otimes b$

respectively.

- Fix $q \in \mathbb{C}$ such that 0 < |q| < 1.
- Define C(SU_q(2)) to be the universal C*-algebra generated by *α* and *γ* such that

$$\begin{bmatrix} \alpha & -\boldsymbol{q}\gamma^* \\ \gamma & \alpha^* \end{bmatrix}$$

is unitary.

 $\bullet\,$ The C*-algebra $\mathrm{C}(\mathrm{SU}_q(2))$ is equipped with and action of $\mathbb T$ described by

$$\rho^{\mathrm{C}(\mathrm{SU}_q(2))} \in \mathrm{Mor}\big(\mathrm{C}(\mathrm{SU}_q(2)), \mathrm{C}(\mathbb{T}) \otimes \mathrm{C}(\mathrm{SU}_q(2))\big)$$

determined by

$$\rho^{\mathcal{C}(\mathrm{SU}_q(2))}(\alpha) = \mathbb{1} \otimes \alpha, \quad \rho^{\mathcal{C}(\mathrm{SU}_q(2))}(\gamma) = \mathbf{z} \otimes \gamma.$$

THEOREM (KASPRZAK-MEYER-ROY-WORONOWICZ) Let $\zeta = q/\overline{q}$. There exists a unique

 $\Delta \in \operatorname{Mor}_{\mathbb{T}} \bigl(\operatorname{C}(\operatorname{SU}_q(2)), \operatorname{C}(\operatorname{SU}_q(2)) \boxtimes_{\zeta} \operatorname{C}(\operatorname{SU}_q(2)) \bigr)$

such that

$$\Delta(\alpha) = j_1(\alpha)j_2(\alpha) - qj_1(\gamma^*)j_2(\gamma), \quad \Delta(\gamma) = j_1(\gamma)j_2(\alpha) + j_1(\alpha^*)j_2(\gamma).$$

Moreover

- 2 the subspaces

 $\Delta \big(\mathrm{C}(\mathrm{SU}_q(2)) \big) \jmath_2 \big(\mathrm{C}(\mathrm{SU}_q(2)) \big), \quad \jmath_1 \big(\mathrm{C}(\mathrm{SU}_q(2)) \big) \Delta \big(\mathrm{C}(\mathrm{SU}_q(2)) \big)$

are dense in $C(SU_q(2)) \boxtimes_{\zeta} C(SU_q(2))$.

• In what follows we will sometimes write \mathbb{G} instead of $SU_q(2)$.

P.M. SOŁTAN (WARSAW)

- Consider the C*-algebra $C(\mathbb{T})$ with **trivial** action of \mathbb{T} .
- Then the map $\pi : C(\mathbb{G}) \to C(\mathbb{T})$ given by

$$\pi(\alpha) = \mathbf{z}, \quad \pi(\gamma) = \mathbf{0}$$

is equivariant and we have $(\pi \boxtimes_{\zeta} \pi) \circ \Delta = \Delta_{\mathbb{T}} \circ \pi$.

• Define $C(\mathbb{S}^2_q) = \{ a \in C(\mathbb{G}) \, | \, (\mathrm{id} \boxtimes_{\zeta} \pi) \Delta(a) = a \otimes \mathbb{1} \}.$

PROPOSITION

$$(\pi \boxtimes_{\zeta} \pi) \circ \Delta = \Delta_{\mathbb{T}} \circ \pi,$$

- (2) $C(\mathbb{S}_q^2)$ is the C^{*}-subalgebra of generated by $\alpha \gamma^*$ and $\gamma^* \gamma$,
- 3 $C(\mathbb{S}_q^2)$ is the universal unital C*-algebra generated by elements *A* and *B* with relations

$$B^*B = A - A^2, \quad BA = |q|^2 AB, \quad BB^* = |q|^2 A - |q|^4 A^2, \quad A^* = A,$$

4 $C(\mathbb{S}_q^2)$ is isomorphic to the minimal unitization of the compacts.

Now define

$$\mathbf{V} = \begin{bmatrix} \alpha^2 & -s^2 \gamma^* \alpha & -q \gamma^{*2} \\ \zeta \alpha \gamma & 1 - s^2 \gamma^* \gamma & \gamma^* \alpha^* \\ -q \zeta \gamma^2 & -s^2 \alpha^* \gamma & \alpha^{*2} \end{bmatrix} = \begin{bmatrix} \mathbf{v}_{-1,-1} & \mathbf{v}_{-1,0} & \mathbf{v}_{-1,1} \\ \mathbf{v}_{0,-1} & \mathbf{v}_{0,0} & \mathbf{v}_{0,1} \\ \mathbf{v}_{1,-1} & \mathbf{v}_{1,0} & \mathbf{v}_{1,1} \end{bmatrix}$$

(with
$$s = \sqrt{1 + |q|^2}$$
). Putting $e_i = \boldsymbol{v}_{i,0}$ $(i = -1, 0, 1)$ we have
• $C(\mathbb{S}_q^2) = C^*(e_{-1}, e_0, e_1),$
• $\Gamma(e_i) = \sum_{j=-1}^1 j_1(e_i) j_2(\boldsymbol{v}_{i,j}).$

.

- **V** is unitary.
- Elements of the matrix **V** satisfy $\Delta(\mathbf{v}_{i,j}) = \sum_{k=-1}^{1} j_1(\mathbf{v}_{i,k}) j_2(\mathbf{v}_{k,j})$.

• If $A \in M_3(\mathbb{C})$ commutes with **V** then $A \in \mathbb{C}\mathbb{1}_3$.

Moreover

- $e_i^* = e_{-i}$ for i = -1, 0, 1,
- $\deg(e_i) = i$ for i = -1, 0, 1,
- span{ e_{-1}, e_0, e_1 } is the unique subspace of $C(\mathbb{S}_q^2)$ equipped with a basis which transforms according to **V**.

Let \mathbb{X} be a compact quantum space such that $C(\mathbb{X}) \in Ob(\mathfrak{C}^*_{\mathbb{T}})$. Assume that there exists $\Gamma \in Mor_{\mathbb{T}}(C(\mathbb{X}), C(\mathbb{G}) \boxtimes_{\zeta} C(\mathbb{X}))$ such that

- if $a \in C(\mathbb{X})$ satisfies $\Gamma(a) = j_2(a)$ then $a \in \mathbb{C}1$,
- C(X) is generated by a three dimensional subspace $W \subset C(X)$ equipped with a basis $\{e_{-1}, e_0, e_1\}$ such that

$$\Gamma(\boldsymbol{e}_i) = \sum_{j=-1}^{1} j_1(\boldsymbol{e}_i) j_2(\boldsymbol{v}_{i,j}),$$

• W is the only subspace of $C(\mathbb{X})$ equipped with a basis which transforms according to $\boldsymbol{V},$

• $\deg(e_i) = i$.

(Note that $\mathbb{X} = \mathbb{S}_q^2$ satisfies these conditions.)

Then (after re-scaling $\{e_{-1}, e_0, e_1\}$ by a constant) we have

1)
$$e_i^* = e_{-i}$$
,

2 there exists $\rho \in \mathbb{R}$ such that

$$e_{-1}e_1 + s^2 e_0^2 + |q|^2 e_1 e_{-1} = \varrho \mathbb{1},$$

③ there exists $\lambda \in \mathbb{R}$ such that

$$egin{aligned} &s^2(e_{-1}e_0-|q|^2e_0e_{-1})=\lambda e_{-1},\ |q|^2(e_1e_{-1}-e_{-1}e_1)+ig(1-|q|^4ig)e_0^2&=\lambda e_0,\ &s^2(e_0e_1-|q|^2e_1e_0)=\lambda e_1. \end{aligned}$$

THEOREM

Let $X_{q,\varrho,\lambda}$ be the universal C*-algebra generated by e_{-1}, e_0, e_1 with relations $e_i^* = e_{-i}$ and

$$\begin{split} e_{-1}e_1 + s^2 e_0^2 + |q|^2 e_1 e_{-1} &= \varrho \mathbb{1}, \\ s^2 (e_{-1}e_0 - |q|^2 e_0 e_{-1}) &= \lambda e_{-1}, \\ |q|^2 (e_1 e_{-1} - e_{-1}e_1) + (1 - |q|^4) e_0^2 &= \lambda e_0, \\ s^2 (e_0 e_1 - |q|^2 e_1 e_0) &= \lambda e_1. \end{split}$$

Then

- ① there is an action of \mathbb{T} on $C(\mathbb{X}_{q,\varrho,\lambda})$ such that $\deg(e_i) = i$,
- ② There exists $\Gamma_{q,\varrho,\lambda}$: C($\mathbb{X}_{q,\varrho,\lambda}$) → C(\mathbb{G}) \boxtimes_{ζ} C($\mathbb{X}_{q,\varrho,\lambda}$) such that

$$\Gamma_{q,\varrho,\lambda}(\boldsymbol{e}_i) = \sum_{j=-1}^{1} j_1(\boldsymbol{v}_{i,j}) j_2(\boldsymbol{e}_j),$$

 $\begin{array}{l} \textbf{3} \hspace{0.1cm} (\text{id} \boxtimes_{\zeta} \Gamma_{q,\varrho,\lambda}) \circ \Gamma_{q,\varrho,\lambda} = (\Delta \boxtimes_{\zeta} \text{id}) \circ \Gamma_{q,\varrho,\lambda} \hspace{0.1cm} \text{and} \hspace{0.1cm} \jmath_1 \big(C(\mathbb{G}) \big) \Gamma_{q,\varrho,\lambda} \big(C(\mathbb{X}_{q,\varrho,\lambda}) \big) \\ \text{ is dense in } C(\mathbb{G}) \boxtimes_{\zeta} C(\mathbb{X}_{q,\varrho,\lambda}). \end{array}$

MOREOVER

We have

$$\mathrm{C}(\mathbb{X}_{q,\varrho,\lambda})\cong\mathrm{C}(S^2_{|q|c}),$$

where $S^2_{|q|c}$ is the Podleś sphere for $\mathrm{SU}_{|q|}(2)$ and

$$c = |q|^2 rac{s^2 arrho (1-|q|^2)^2 - \lambda^2}{(1+|q|^2)^2 \lambda^2}$$

(or $c = \infty$ if $\lambda = 0$).

CONCLUSION

- Any quantum space with action of SU_q(2) with properties similar to that of the action on S²_q is equivariantly isomorphic to one of the spaces X_{q,λ,q}.
- An equivariant isomorphism of $C(\mathbb{X}_{q,\lambda,\varrho})$ onto $C(\mathbb{X}_{q,\lambda',\rho'})$ must map the distinguished basis $\{e_{-1}, e_0, e_1\}$ of $W \subset C(\mathbb{X}_{q,\lambda,\varrho})$ to a multiple of the distinguished basis of $W' \subset C(\mathbb{X}_{q,\lambda',\varrho'})$.
- The collection of compact quantum spaces $\{X_{q,\lambda,\varrho}\}$ coincides with $\{S^2_{|q|c}\}_{c\in\mathbb{R}\cup\{\infty\}}$.