PODLES SPHERES FOR THE BRAIDED
QUANTUM SU(2)

THE FRONTIER OF QUANTUM DYNAMICS
BANACH CENTER, WARSAW

Piotr M. Sottan

Department of Mathematical Methods in Physics
Faculty of Physics, University of Warsaw

December 11, 2019

P.M. SOLTAN (WARSAW) QUANTUM SPHERES DECEMBER 11, 2019 1/15



(1) BRAIDED TENSOR PRODUCTS OF T-C*-ALGEBRAS
o The category of T-C*-algebras
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BRAIDED TENSOR PRODUCTS OF T-C* -ALGEBRAS THE CATEGORY OF T-C* -ALGEBRAS

o We will consider the category ¢} of C*-algebras endowed
with an action of T and equivariant morphisms.

o Given A € Ob(€}) the action will be described by
p™ € Mor(A,C(T) ® A)

such that (id ® p*)op” = (A1 ®id)op”.
o For A,B e Ob(¢}) the morphisms between A and B in & are
those ® € Mor(A, B) such that

(id ® ®)op™ = pBod

and the set of those morphisms will be denoted Mory(A, B).

o The set of homogeneous elements, i.e. a € A such that
o (a) = 2" ® a for some n, spans a dense subspace of A.
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BRAIDED TENSOR PRODUCTS OF T-C* -ALGEBRAS BRAIDED TENSOR PRODUCTS

o Choose ¢ € T.
o There exists a monoidal structure X on €7 such that

o for A,B e Ob(€}) the C*-algebra A Xl B comes equipped with

embeddings

WAl ZA—>A<B,
J2:B— AX.B

such that for homogeneous elements

sa(b)g1 (@) = CUE DD (@), (b),

o the action of T on A X B is determined uniquely by the
condition that j; and j9 are equivariant.

P.M. SOLTAN (WARSAW) QUANTUM SPHERES DECEMBER 11, 2019

4/15



BRAIDED TENSOR PRODUCTS OF T-C* -ALGEBRAS BRAIDED TENSOR PRODUCTS

o For ® € Morp(A,A’) and ¥ € Mory (B, B’) there exists a unique
P X ¥ € Morr(A X B, A’ X B') such that

(@ e ) (g1(a)gz2(b) = 51(P(a))j2(¥(b))

for all ae A, b e B.
o If pB or p” is trivial then

AX:B=A®B
with j; and j» becoming
a—a®l and a~—1®Db

respectively.
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THE BRAIDED QUANTUM SU(2) GROUPS  THE QUANTUM GROUP SPACE SUgq(2)

o Fix ge C such that 0 < |g| < 1.

o Define C(SUy4(2)) to be the universal C*-algebra generated
by a and v such that

is unitary.
o The C*-algebra C(SUy(2)) is equipped with and action of T
described by

pCEYaR) e Mor (C(SU4(2)), C(T) ® C(SUg(2)))
determined by

pC(SUq(Z))(a) -1®a, pC(SUq(Z))(W) —zZ®".
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THE BRAIDED QUANTUM SU(2) GROUPS ~ THE BRAIDED QUANTUM GROUP SUq/(2)

THEOREM (KASPRZAK-MEYER-ROY-WORONOWICZ)
Let ( = q/q. There exists a unique

A € Morp(C(SU4(2)), C(SU4(2)) R C(SU4(2)))

such that

Aa) = n(@)gz(@) —qn(v*)a2(v), A®O) =n(Mz(a) + 31(a®)2(7).
Moreover

@ A is coassociative: (A id)oA = (id X A)oA,

@ the subspaces

A(C(SU4(2)))12(C(SU4(2))), 11(C(SU4(2)))A(C(SU4(2)))
are dense in C(SUq(2)) X C(SU4(2)).

o In what follows we will sometimes write G instead of SU4(2).
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THE QUOTIENT SPHERE THE QUANTUM SUBGROUP T

o Consider the C*-algebra C(T) with trivial action of T.
o Then the map = : C(G) — C(T) given by
m(o) =2, 7w(y)=0
is equivariant and we have (7 x| m)oA = Aror.
o Define C(S2) = {a e C(G) | (idK, m)A(a) = a® 1}.
PROPOSITION

@ (7 7)oA = Aror,
(©) C(Sg) is the C*-subalgebra of generated by a~* and ~v*~,

() C(S%I) is the universal unital C*-algebra generated by
elements A and B with relations

B*B=A—- A%, BA-=|q?AB, BB* = |q|*?A —|q[*A%, A* =A,

(@) C(S%I) is isomorphic to the minimal unitization of the
compacts.
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THE QUOTIENT SPHERE ACTION OF SUgq(2) ON Sg

o Putl = A|C(S%). Then

I' € Morr(C(S7), C(G) K¢ C(S7)).

(d X I')oT' = (A X id)oT,

711(C(G))I(C(S2)) is dense in C(G) X C(S2),

for x € C(Sg) we have I'(x) = 72(x) if and only if x € C1.

¢ ¢ ¢ ¢

o Now define

« —-SsTy o —qy V_1-1 V_10 U-_11
V=1 oy 1-8**y ~%* | =| vo_1 voo Vo1
—qly?  —s?a*y o*? Vi1 Uip VUi

(with s = /1 + |g|?). Putting e; = v;o (i = —1,0, 1) we have
o C(S2) = C*(e_1,e0,€1),

o T(e) = ‘iljl(ei).yz(vu).
e
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THE THREE DIMENSIONAL IRREP V/ Sg IN TERMS OF V

© V is unitary.

1
o Elements of the matrix V satisfy A(vy;) = > 71(0i k)72 (Vi)
k=1

o If Ae M3(C) commutes with V then A € Cl3.
Moreover

o eg*=e_;fori=-1,0,1,

o deg(e)) =ifori=-1,0,1,

o span{e_j, eg, e1} is the unique subspace of C(Sg) equipped
with a basis which transforms according to V.
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THE THREE DIMENSIONAL IRREP V/ Sg IN TERMS OF V

Let X be a compact quantum space such that C(X) e Ob(¢€}.).
Assume that there exists I' € Morr(C(X), C(G) K C(X)) such that

0 if a € C(X) satisfies I'(a) = jo(a) then a € C1,
o C(X) is generated by a three dimensional subspace
W c C(X) equipped with a basis {e_1, eg, e1} such that

1

T(e) = Y. nle)sz(vy),

j=—1

o W is the only subspace of C(X) equipped with a basis which
transforms according to V,

o deg(e) = 1.
(Note that X = SZ satisfies these conditions.)
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THE THREE DIMENSIONAL IRREP V' Sg IN TERMS OF V

Then (after re-scaling {e_;, eg, e;} by a constant) we have
De*=ey

@ there exists p € R such that
e_ie; + s°€} + |ql*ere_; = o1,
@ there exists )\ € R such that

s?(e_1e0 — |q|%epe_1) = Ne_1,
q*(ere-1 —e_1e1) + (1 — |q*)eg = Aeo,

52(e0e1 — |q|2e1e0) = )e.
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QUANTUM SPACES SIMILAR TO Sg BRAIDED PODLES SPHERES

THEOREM

Let X, , » be the universal C*-algebra generated by e_1, e, e
with relations e;* = e_; and

e 1e + s?e + |ql’eie 1 = ol,
s*(e_1e0 — |q*eve_1) = Ne_1,
lgl*(ere_1 —e_1e1) + (1 — |g*) el = Xeo,
s%(eper — |g|%eien) = Ney.
Then

@ there is an action of T on C(Xg, ») such that deg(e;) = 1,
@ There exists 'y, 5 : C(Xg,1) = C(G) K C(Xg,0,1) such that

1
Tyon(e) = D, n(vij)s(e),
=1

@ (IdX Tgpn)oTqen = (AR id)oTg,x and 71 (C(G))Tg e (C(Xge,n))
is dense in C(G) Xl C(Xg,0.2)-
P.M. SOLTAN (WARSAW)
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QUANTUM SPACES SIMILAR TO Sg BRAIDED PODLES SPHERES

MOREOVER

We have
C(Xqpn) = C(ST0)s

where S|2q‘C is the Podles sphere for SU|4(2) and

c=lq

2 s?0(1-|qP)*—\?
(1+]g?)2A2

(or ¢ = w0 if A = 0).
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QUANTUM SPACES SIMILAR TO Sg BRAIDED PODLES SPHERES

CONCLUSION

o Any quantum space with action of SU4(2) with properties
similar to that of the action on Sg is equivariantly
isomorphic to one of the spaces X » ,.

o An equivariant isomorphism of C(Xg» ,) onto C(Xg v )
must map the distinguished basis {e_, ey, e} of
W < C(Xg,»,0) to a multiple of the distinguished basis of
W < C(Xq7)\/791).

o The collection of compact quantum spaces {Xg  ,} coincides
with {S\2q|c}ce]Ru{oo}-
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