UNBOUNDED OPERATORS ON HILBERT SPACES

PIOTR M. SOLTAN

ABSTRACT. These are notes from the lecture course “Unbounded operators on Hilbert spaces”
delivered at the School on Geometry and Physics in Bialowieza from June 28 through July 2,
2021.

1. BASIC OPERATOR THEORY

1.1. Fundamentals.
Throughout these notes .7 will denote a Hilbert space and B(.) the space of all bounded
operators on JZ, i.e. linear maps a: ¢ — ¢ such that
all = sup lag]| < +o0 (1)
=1

(the left-hand side of (1) is called the norm of a).

The set B() is a unital =-algebra under natural which means that not only is B(.##’) a complex
vector space with usual addition and scalar multiplication of linear operators, but additionally the
composition of operators defines an associative and bi-linear multiplication of bounded operators
and the identity operator 1 is the unit of this multiplication. Finally the operation of passing from
a € B(J) to its hermitian adjoint (adjoint for short) defined by

{play) = (a*plip), o, eH

is an anti-linear and anti-multiplicative involution on B(J¢).

Fact. B(7) is a Banach =-algebra, i.e.
e B(J7) is a Banach space with the norm defined by (1),
o for any a,b € B(4) we have |ab| < |all||b],
e for any a € B(J#) we have |a*|| = |al.
Moreover for any a € B(#) the identity |a*al| = |a|? holds, which means that B(J#) is a C*-
algebra.
Example. Let 52 = {5, i.e. S is the space of sequences 1) = (¢, )nen of complex numbers such

Q0
that Y |¢,|? < +00. Let s: 5 — 2 be defined by
1

0 n=1
(s9)n = {1#711 1’ Y€ by
Then s € B(#) (in fact ||s| = 1) and
(8*)n = Vi1, e, neN.
Note that s*s = 1, but ss* + 1.

1.2. The spectrum.

Terminology 1. Let a € B(J7).
o We say that a is invertible if there exists b € B(J#) such that ab = ba = 1 (we write
b = a~1), it is worth noting that if a is such that there exist b, ¢ satisfying ab = 1 = ca,
then b = ¢ and consequently a is invertible,
e the spectrum of a is
o(a) = {A € C|AL — a is not invertible},
1
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o the resolvent set of a is p(a) = C\o(a),
e the resolvent of a is the function

pla) 3 pr— (ul —a)™" € B(A),
o the spectral radius of a is sr(a) = sup{|\|| A € o(a)}.
Theorem. Let a € B(#). Then
(1) sr(a) < al,

(2) o(a) is a non-empty compact subset of C,
(3) the resolvent is a contmuous (in fact holomorphic) function p(a) — B(J2),
(4)

4) the limit hm |la™ |7 exists and is equal to sr(a).

Example. Let 57 = C? and a = [ }]. Then o(a) = {0}, so that sr(a) = 0, while |a| = 1. Note
that |a™ | =1 for m = 1 and 0 otherwise.

Example. Let 7 = L2(R) and let .7 : 5 — S be the Fourier transformation:

+
(F0)0) = = | o7 fa)da. e Li(R) A La(R), peR.
Now consider the functions:
Yo(z) =7 e~ 5
wo-virle
Uala) = (VErH) 7 (202~ e T
P3(z) = (\/gw%)_l(Qm —3x)e” 7

Then
Fpo = Yo, Fihr =101, Fipo= 1P and Fipg = —its,
so {1,i,—1,—i} ¢ o(&). In fact o(F) = {1,i, -1, —i}.

1.3. Certain classes of operators.

Terminology 2. Let a € B(J#). The following table contains definitions of seven important
classes of operators:

type of operator characterization

algebraic geometric spectral
normal a*a = aa™® VEe A |al|| = ||a*E|
self-adjoint a=a* VEe s (Ela)eR a is normal and o(a) € R
positive 3b a = b*b VEe s lag) =0 a is normal and o(a) = R,
projection a*a =a I M a = {f) 2 E jl a is normal and o(a) < {0,1}
partial isometry || aa*a = a I ||ag|| = {0£| 2 2 ji
isometry a*a=1 VEeH |ak| = |€
unitary a*a = aa™ =1 | surjective isometry a is normal and o(a) ¢ T

In the third and fourth row of the table .# stands for a closed vector subspace.

Remark. It is worth mentioning that the condition aa*a = a defining a partial isometry is
equivalent to (a*a)? = a*a, i.e. to a*a being a projection.
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Proposition. Let a € B(#) be normal. Then sr(a) = ||al.

Proof. For n € Z, define b,, = a?". Then each b,, is normal and we have b,, = bi_l. Thus
”an2 = an*bn” = H(b2—1)*(bi—1)H = anfl*bnfl*bnflbnflﬂ
= anfl*bnflbnfl*bnflﬂ
= an—l*bn—lﬂ2 = ”bn—1H4a

so that

1

1
[oul# = (15al?) 7T = (bt |) 7T = bu |7, neN.

It follows that the sequence (HamHﬁ)meN has a constant subsequence with value |b| = [a|. O

Proposition. Let a € B(J) be self-adjoint. Then o(a) < R.

Proof. Take A € o(a) and decompose it as A = o + i with «, 8 € R. Now for n € N put a,, =
a—(a—inB)1. It is easy to show that o(a,) = o(a) —(a—inB), so i(n+1)8 = A—(a—inf) € o(a,).
In particular we must have

li(n + 1)B| < |anl, n e N.
In other words for any n € N
(n® +2n + 1)8% < |lan*an| = |(a — al)® + n*B°1] < |(a — )*| + n*B*
which is only possible when g = 0. O

1.4. Functional calculus.

Proposition. Let a € B(2) and P € C[-]. Then
o(P(a)) = {P(\) | A€ a(a)}.
Proof. The statement is obvious if deg P < 0. Assume that deg P > 1 and we have
P(z)=ay+a1z + - + ayz”.
Take A € o(a). Then

k=0 0
n n—1 . )
= (Al —a) 2 ak< )\Ja"_J_l) .
Tk:o j=0
C

Note that BC = OB, so if A were invertible then we would have 1 = B(CA™!) and 1¢ =
(A~1C)B and consequently B would be invertible. But A € o(a), so P(A\) must belong to o(P(a)).
This shows that P(c(a)) < o(P(a)).

Now take 1 € C\P(c(a)) and let Ay,..., Ay, be the different zeros of the polynomial Q(z) =
u— P(x). Thus there exists v € C\{0} and multiplicities k1, ..., k,, such that

b P(@) =9 =2 O — )b,
Clearly A1, ..., A\, do not belong to o(a) and consequently
pl = P(a) = Q(a) = y (M1 —a)* -+ (A1 — a)*
is invertible as a product of invertible operators. Thus u € p(P(a)) which proves that P(p(a))
p(P(a)), i.e. P(o(a)) 2 o(P(a)). O

Theorem. Let a € B(J) be self-adjoint. Then there exists a unique linear map C(o(a)) — B(H)
denoted by f — f(a) such that
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e if f is a polynomial function f(x) = 3} agz® then f(a) = 3 axa®,
k=0 k=0

e |f(a)]|= sup |f(N)| for all f e C(o(a)).

A€o (a)

Moreover

e forall f,g € C(o(a)) we have (fg)(a) = f(a)g(a),
o for all f € C(o(a)) we have f(a)* = f(a).

Definition. Let a € B(J#) be self-adjoint. The mapping
C(U(a)) 5 f— f(a) € B(J)
described above is called the continuous functional calculus for a.
Sketch of proof. First we note that for any P € C[-] the operator P(a) is normal, so
|P(a)] = st(P(a)) = sup{lul |1 € o(P(a)}
= sup{|P(\)| | Aeo(a)} = H\I/(P)H

where ¥: C[-] — C(o(a)) is the restriction map.
It follows that there exists a unique linear map ® defined on the range of ¥ into B(5#) such
that

‘«’.X),

C[-] Y W
PHP(a)\L -
B(2)

Moreover ® is isometric.

Next, using the density of polynomial functions in C(o(a)), we extend ® uniquely to an isometry
C(o(a)) — B(#) which we denote by f — f(a). Clearly if f is a Polynomial function, i.e. f =
U(P) for some P € C[-]) then f(a) coincides with P(a).

We check that

(f9)(a) = f(a)g(a) and f(a)* = f(a)
for polynomial functions (we use a = a* for the second property) and note that these remain true
for all f,g € C(o(a)) via uniform approximation.

The uniqueness of the mapping f — f(a) with the properties described in the theorem is
clear. O

We have the following alternative formulation of the previous theorem:

Theorem. Let a € B(J) be self-adjoint. Then there exits a unique unital *-homomorphism
C(o(a)) — B(H) mapping the identity function

ola)3A— AeR
to a. Moreover this map is isometric.
Theorem. Let a € B(J7) be self-adjoint. Then for any g € C(o(a)) we have o(g(a)) = g(o(a)).
The above statement is know as the spectral mapping theorem.
Remark. if a = a* and g € C(o(a),R) then g(a)* = g(a) = g(a), i.e. g(a) is self-adjoint.

Remark. A fully analogous statements about functional calculus and the spectral mapping the-
orem remain true after replacing the assumption that a is self-adjoint by the requirement that it
is normal.

The uniqueness of the continuous functional calculus provides an easy proof of the following
corollary:
Corollary. Let a € B(J7) be self-adjoint and let g € C(o(a),R). Then for any f € C(o(g(a))) we
have f(g(a)) = (f o g)(a).
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In the next theorem we extend the continuous functional calculus for a self-adjoint a € B(5¢)
to all bounded Borel functions on the spectrum. The unital #-algebra of all these functions will
be denoted by %(o(a)).

Theorem. Let a € B(5) be self-adjoint. Then there exists a unique unital =-homomorphism
PB(o(a)) — B(SH) denoted by f — f(a) such that

o if f is the identity function then f(a) = a,
o if (fn)nen @s a uniformly bounded sequence of elements of #(o(a)) converging pointwise
to f then for any £ € £ we have f,(a)é — f(a).
Moreover the mapping B(c(a)) 3 f — f(a) € B(J) extends the continuous functional calculus.

The homomorphism f +— f(a) described in the above theorem is called the Borel functional
calculus for a.

Remark. As with the continuous functional calculus the Borel functional calculus can be extended
in the analogous form to normal operators in place of self-adjoint ones.

Example. Let a € B(J2) be self-adjoint and let f: o(a) — C be defined as

1 X#0
ﬂM={OAfO~

Then f € B(c(a)) and f(a) is the projection onto rana.
Indeed, let p = f(a). Then p is a projection and pa = a, so for any & € rana, i.e. £ = an for
some 7, we have
p€ = pan = an = &.
Thus rana < ranp and consequently rana < ranp. Conversely, since f can be written as a
pointwise limit of polynomial functions (P, )nen without constant term, if ¥ € ker a then

pY = lim Py(a)t =0

and it follows that ker p  ker a, so that ranp < (kera)* = rana.

Definition. Let a € B(47) be self-adjoint. The projection onto rana is called the support of a.
It is denoted by s(a).

1.5. Polar decomposition.

Theorem (Polar decomposition). Let a € B(). Then there exists a unique (v,d) € B(5) x
B(4€) such that

e a=uvd,

e d is positive,

o v¥v =s(d).
Proof. The operator a*a is positive, hence o(a*a) < [0,+00[. Let f(A) = Az (A € o(a*a)) and
put d = f(a*a). Since f = gg, where g(A) = A3 (X € o(a*a)), we have d = g(a*a)*g(a*a), so d is
positive.

For any & € 57 we have
|dg|* = (d€|de) = (E|d*dE) = (¢|dPE) = (E|a*a) = (ag|a&) = |a€|?
which implies that the mapping
rand 3 d§ —> al € I

is well-defined and isometric. Consequently we can extend it uniquely to an isometry vy: rand —
A (with range equal to rana) and define v € B(J#) by

5_ ’Uof gem
“ o ¢ e (rand)t



6 PIOTR M. SOLTAN

One easily checks! that

oFn — vo_ln nE rana
" On € (rana)t ’

so v*v is the projection onto rand, i.e. v*v = s(d). This shows that the pairs (v,d) as in the
statement of the theorem exists.
Let (u, k) € B(27) x B(J) be such that
e a = uk,
e k is positive,
o u*yu =s(k).
Then d? = a*a = ku*uk = k2, so defining ¢ to be the function A + A2 on o(d) and h to be the
same function on o(k) we obtain

d=f(9(d)) = f(d*) = f(k*) = f(h(k)) =k
because fog is the identity function on o(d) and foh is the identity on o(k) (note that o(g(d)) =
o(d?) = o(k®) = a(h(k))).
Now u is a partial isometry which satisfies
ug = v & erand
0 ¢e(rand)t’
since for £ € rand = rank we have u§ = ukn = an = vdn = vkn = v, so by continuity u = v
on rand. Also u*u = 0 on (rank)® = (rand)* and hence® u = 0 on (rand)*. Consequently
U= . (]

The positive part of the polar decomposition of ain B(J#) is called the absolute value or the
modulus of a and it is denoted by |a|. Thus a = v|a|, where |a| = (a*a)z and v*v = s(|al).
2. UNBOUNDED OPERATORS

2.1. Domains, graphs and closures.
An (unbounded) operator T on a Hilbert space 4 is a linear mapping

Dom(T) — 2,
where Dom(T) is a subspace of S called the domain of T.
Example. Consider the Hilbert space L2([0,1]) and put

Dom(d) = {w e Lo ([0,1]) ‘ JaeC, pely([0,1]) Vael0,1]e(z) = o+ J(p(t) dt}.
0
It turns out that given ¢ € Dom(d) the constant « and ¢ € L2([0, 1])such that ¢ (z) = a+ S (t)dt
0
for almost all z € [0, 1] are unique and depend linearly on 1. We define the operator ¢ by 0y = .

LTake P, € H# and write ¢ = 1 + b2 with ¢ € rana, ¥2 € (rana)’ and ¢ = 1 + p2 with 1 € rand,
@2 € (rand)L. wvg is an isometry from rand onto rana, so

@lvpy = (1 + 2 lvopr) = (Y1 lvopr) + (P2 |vowr)
\—‘:-——/

0

= <U0'U071"/)1‘U0801>
= (v fer)
= (v~ ¥]p).

2For any a € B(#) we have kera = ker a*a.
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Note that for n € N the function ¥, (z) = v/2n + 12" (x € [0,1]) belongs to Dom(d) (since
Yn(z) =0+ +/2n + In{t""1dt) and [, ]2 = 1, but
0

n—0o0

1
[0 ]2 = (2n + 1)n? szn —2dz =n*Ztl — s fo0.
0

Terminology 3. Let T be an operator on 7.

e T is densely defined if Dom(T) is dense in 52,
e The graph of T is

Graph(T) = { [;f ¢] ‘w e Dom(T)} cAHSH,

e T is closed if Graph(T) is a closed subspace of the Hilbert space ¢ @ 2,
o T is closable if Graph(T) is a graph of an operator,
e if T is closable then the operator whose graph is Graph(T) is called the closure of T and

it is denoted by T,
e and operator S is an extension of T is Graph(T') < Graph(S).

Example. Consider again the operator ¢ on Ly([0,1]). It turns out that ¢ is closed. Note that
Dom(d) is contained in C([0,1]) and contains C'([0,1]) (and for f e C'([0,1]) we have of = f').
In particular ¢ is densely defined and it makes sense to write

Dom(dp ) = {gp € Dom(0) | v(0)=0= 90(1)}, 00,0 = (?’Dom(aoyo).

Clearly 0 is an extension of dy 9. Moreover 0y is closed because

Graph(20,0) = Graph(é) n {[i] }L A {m }L.

Fact. Let T be an operator on J#
(1) T is closed if and only if

¥ € Dom(T)
W, ——> :><1/}eDom(T)>'
T, =

(2) T is closable if and only if
¥y, € Dom(T)
Yn ——0 = (Lp = 0).

n—o0

Ty —— ¢

n—o0

2.2. The spectrum.

In what follows for an unbounded operator 7" on % and a number A € C we define \1 — T
as the operator with domain Dom(Al — 7)) = Dom(T) acting as (AL — T)¢ = Ay — T for
1 € Dom(AL —T). Clearly if T is densely defined then A1 —T is densely defined as well. Moreover,
it can be easily shown that A1 — T is closed if T is.

Definition. Let T be a closed, densely defined operator. We say that T is invertible if T is a
bijection from Dom(T") onto . The spectrum of T is

o(T) = {\ € C| T is not invertible}.

Remark. It follows from the closed graph theorem that if T is closed and bijective from Dom(T")
onto # then the inverse map T~': 5 — Dom(T) is bounded.

Theorem. Let T be closed and densely defined. Then o(T) is a closed subset of C.
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Example. We have o(0) = C because for any A € C the function ¥ (z) = e** (x € [0, 1]) satisfies
Othx = Aipx.

Example. Define Dom(dy) = {¢ € Dom(d) |(0) = 0} and ¢y = 6‘Dom(ao). Then 0y is closed
(and densely defined) and o(dp) = .
Indeed, defining for A € C the operator r) by
() (2) = - [ X 0u(t) vels(0,1), v [0.1]

0
we easily find that r) € B(L2([0,1])) (in fact r) is compact) and
(1) for any v € Lo([0,1]) we have ryy) € Dom(dy),

(2) (AL = do)rath = ¢ for any o € Ly([0, 1]),
(3) ra(AL — 0g)p = ¢ for any ¢ € Dom(dp).

It follows that A1 — ¢y is invertible for any A € C and A\ — r), is the resolvent of 0.
Example. Fix « € [0,2n] and let u = e'*. Define the operator P, on L([0,1]) by
Dom(P,) = {v & Dom(@) | (1) = up(0)}

and
P = oy, ¥ € Dom(P,).

Then for all n € Z the function v, (z) = ¢!+ (3 € [0,1]) belongs to Dom(P,) and P, =
(27mn + K)y, so 21Z + k < o(P,). It can be shown that o(P,) = 27Z + k.

2.3. The adjoint operator.
Proposition. Let T be a densely defined operator. Then

{m ‘V“Dom(T) <§T¢>=<nw>}

is a graph of a closed operator T*. Moreover

(1) Graph(T*) = [_0]1 g] Graph(T),

(2) T* is densely defined if and only if T is closable,
(3) if T* is densely defined then (T*)* =T.
Proof. If [2] € {[f]] Vo € Dom(T) &|TY) = <771/)>} then (n|y) = 0 for all ¥ € Dom(T'), so

1 = 0. This defined T*.
Next we note that

([]-cmr) = (v [ 5]~
— ({4 tJowerr)
— ([ﬂ e [_01 ]01] Graph(T)l>
which also shows that T* is closed.

The operator T is closable if and only if Graph(T) does not contain non-zero vectors of the

form [2] Note further that the formula Graph(7T™*) = [_0]1 g] Graph(T)* implies that

Graph(T*)t = [_0]1 ]é] Graph(T),
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so T is closable if and only if Graph(7*)* does not contain non-zero vectors of the form g] which

is equivalent to Dom(T%*) = {f e H ‘ In [g] € Graph(T*)} being dense in 7.

Finally
0 1

Graph(T) = Graph(T) = [—]l 0

] Graph(T*)* = Graph((T*)*).

Definition. The operator T* defined in the theorem above is called the adjoint of T
Corollary. Let T be a densely defined operator and S an extension of T. Then T* > S*.

Definition. An operator T is called symmetric or hermitian if T < T*. We has that T is
self-adjoint if T = T*.
Proposition.

(1) An operator T is symmetric if and only if for any ¢,v € Dom(T") we have
(| Ty = (Tolt), (2)

(2) a self-adjoint operator has no proper symmetric extensions.
Proof. The first statement is almost obvious, since (2) means precisely that any ¢ € Dom(T)
belongs to Dom(7T*) and T*p = Tp.
As for the second statement, take a symmetric S such that T'c S. Then T* 5 S, so
T=T*>8*>S5>T,
and consequently 7" = S. O
Example. Let T' = 10y on Ly([0,1]). Then T* = 10. The fact that 10 < T* follows from the
calculation: for ¢ € Dom(T") = Dom(dp,0) and ¢ € Dom(d)
1

(oI Ty = f@%ww)a) at

0

1
= }<so(1) ¥(1) —¢(0) 1(0) —f(ago)(tm(t) dt)
=0 0

=0
= —1aplv) = (Lop |v).
The converse inclusion requires some more involved approximations.
We also have

o T'C %6, so that T is symmetric, but not self-adjoint,

e since 7' is closed, we have (%8)* =T.

Example. Put Ty = 10y (recall Dom(dy) = {¢ € Dom(d)|p(0) = 0}, dy = a’Dom(é’o)) and
Ty = 10, with Dom(d;) = {¢ € Dom(d) |¢(1) = 0} and 0 Then Tp* = Ty (and

Ty* = Ty).

1= a|Dom(?71)'

Example. For any u € T the operator P, is self-adjoint. Note that each P, is an extension of
14
100,0-
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2.4. Algebraic operators.
Given two operators T and S on J# we define

Dom(T'S) = {t € Dom(S) | St € Dom(T)},
Dom(T + S) = Dom(T") n Dom(S)
and TSy = T(S¢) (¢ € Dom(TS)), (T + S)p =Ty + Sp (p € Dom(T + S)).

Even when T and S are densely defined and closed the operators T'S and T + S might fail to
be densely defined or closed (or closable).

Proposition. Let S and T be closed and densely defined operators and let a € B(5¢), Then

(1) T + a is closed,
(2) Ta is closed,

(3) if a is invertible (in B()) then oT is closed,

(4) if TS is densely defined then S*T* < (T'S)*,

(5) (aT)* = T*a*,

(6) if T+ S is densely defined then T* + S* < (T + S)*,
(7)) (T+a)* =T* +a*.

We say that an operator T' on 3 is positive if (¢|T¢) = 0 for all » € Dom(T). A positive
operator is symmetric, but may fail to be self-adjoint (when it is not bounded).

Fact. Let T be a closed and densely defined operator. Then the operator T*T is
closed,

densely defined,

positive,

self-adjoint.

Example. Let S = T2, where T = %60,0 as in several examples above), i.e.
Dom(S) = {¢ € Dom(d,0) | & € Dom(do,)}

and
Sp = —d%p, © € Dom(S).
Then S is
e positive,
e closed,
e not self-adjoint.

3. THE 2z-TRANSFORM OF A CLOSED DENSELY DEFINED OPERATOR
3.1. Definition of the z-transform.

Theorem. Let T be a closed densely defined operator on a Hilbert space 7. Then the mapping
Dom(T*T) 3 —— b + T*Typ
is a bijection not decreasing the norm.

Proof. Recall that

Graph(T)* [ o 0] Graph(T*) — {[T_’:f] ’gp e Dom(T*)}.

Since #’®.5# = Graph(T)@®Graph(T)*, for any ¢, 1 € J# there are 1) € Dom(T) and ¢ € Dom(T*)
such that
R e}
U Ty

V¢e # 3 e Dom(T), o € Dom(T™) H - [w ] + [T‘p],

Setting n = 0, we obtain
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ie.
Vée A F¢eDom(T*T) &=+ T*T.
Furthermore once § == 1) + T*T for some 1 € Dom(T*T) then
|17 = (b + T*Tplp + T*Tp) = |9 [* + 2|T[* + |T*Ty|* = ] *.
Consequently, if ¢ + T*T = o) + T*T' for 1,¢" € Dom(T*T) then
0=(=9)+T*T(¥ — "),
s0 0= [0]* > [ — ' 0
Consider a closed and densely defined operator T on . The inverse (1 + T*T)~! of the

bijection 1+T*T: Dom(T*T) — S is contractive and hence bounded (and consequently closed).
It follows that 1 + T*T is closed, so that also T*T = (1 + T*T) + (—1) is closed.

Suppose [;fw] € Graph(T) is orthogonal to Graph(T|Dom 7T )

e (5] )

Then |y + {(TY|Ty) = 0 for all ¢ € Dom(T*T), i
Vo e Dom(T*T) v L (1 +T*T)e.
In other words ¢ L J#, so that i) = 0. It follows that Graph(

T’Dom(T*T)) is dense in Graph(T'):

T= T}Dom(T*T)'
In particular Dom(7T*T) is dense in .57 (it is a core for T).
Lemma. The operator (1 + T*T)~! is positive.
Proof. Take ¢ € 2 and put ¢ = (1 + T*T)~1¢ € Dom(T*T). Then

EM+TT)7) = vy =+ T*T)¢|y) = [¢]* + |T9[* = 0
O

We will denote by (1 +T*T)~2 the square root of the positive operator (1 +T*T)!, ie. (1 +
T*T)~= = f((1 +T*T)~'), where f is the function A — A2 on o((1 + T*T)1).

Theorem. Let T be a closed densely defined operator. Then
(1) ran (1 + T*T)~2 = Dom(T),
(2) T(1 +T*T)"2 € B(A) and |(1 +T*T)" 2| < 1.

Definition. Let T be a closed densely defined operator. The bounded operator zp = T(1 +
T*T)~2 is called the z-transform of T

Remark. Since |zr| < 1, we have 0 < zp*zp < 1, so in particular 1 — zp* 2 is positive (similarly
1 — zrzr* is positive).

3.2. Properties of the z-transform.

Theorem. Let T be a closed densely defined operator. Then
% \1
Graph(T) = {[(ﬂ +ar ZT)Qf] e %}

2ré
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Proof. Since Dom(T") = ran (1 + T*T)~ %, we have

_ ]
Graph(T') = { T ¥ € Dom(T)

[ (1 +T*T)~
T+ T*T)% ”56%}

{_(IH—T*T —25] ‘ge%p}

ZTf

and it remains to prove that (1 + T*T)~2 = (1 — zp*27)? or that
(1 +T*T)"' = (1 — zp%27). (3)
Take ¢ € # and let ¢ = (1 + T*T)~2¢. We have
12 = {1+ T*T) |1+ T*T)Ee)

=M+ THT)7YE)

=M+ T*T) (1 + T*T)""¢|(L + T*T)7'¢)

— (1 + T*T) | + (T*T(1 + T*T) "¢ |(1 + T*T)~'¢)

= |+ T*T) 7| + (T + T*T) "¢ T + T*T)~¢)

= @+ 7)) + ey

Hence, by continuity we obtain [¢]? = H(]l + T"‘T)’%w”2 + Hsz/JH2 for all ¢ € .
In other words the sesquilinear forms

(¥, 9) — (L +T*T) 729 | (L+ T*T)"2¢) and (¥, ¢) — (W) — (zrdp|2re),

i.e. the forms

(W, ) — WA +T*T) o) and  (,9) — @1 — 2r*2r)0)
coincide when ¢ = 1. Thus, by polarization, they are equal, and we obtain (3). (]

It follows from the theorem above that zr contains the full information about T
Corollary. Let S and T be closed densely defined operators. If zg = zp then S =T.

Example. Consider . = L5([0,1]) and T = 10,9, so that T*T = —Ap (the Dirichlet Laplacian).
For n e N let

sp(x) = V2sin (mnz), x € [0,1].
Then (8y,)nen is an orthonormal basis of ## and T*Ts, = w2n?s, for all n. It follows that

(1 —T*T)"2s, = (1 + 72n%)~2s, and consequently with

en(®) = V2 cos (mnz), z€[0,1], neZy
we obtain®
2nm(1—(—1)"*t"
2r8n = 7\/1::72712% = 1 —\/ngi?n?(mtn?)) Smms neN.
m=

3The expansion of ¢y, in the basis (sm )men is found by calculating the scalar products
1

{(sm|cn)y =2 fsin(wmx) cos(mnz) dz =
0

1— ( 1)7n+n)

ey (
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While the above expression is not very helpful in the analysis of T', we nevertheless see that the
!

domain of T' (which is equal to the range of (1 + T*T)~2) can be described as those vectors
¥ € Ly([0, 1]) whose expansion
[e¢]
Y= 2 QAnSn
n=1
0

a0

in the basis (s, )nen satisfies Y n?|a,|?> < +o. In particular the series Y| s, is uniformly
n=1 n=1

convergent.4

Remark. We have ker (1 — zp*z7) = {0}. Indeed, ker (1 — zp*27) = ran (1 — zT*zT)J‘ and since
1 — z27%20 = (1 + T*T)7! is a bijection Dom(T*T) — J#, we see that ran(l — zp*z7)* =
Dom(T*T)* = {0}.

Theorem. The assignment T — zp establishes a bijection from the set of closed densely defined
operators on # onto the set {z € B()||z]| <1, ker (1 —2*z) = {0}}.

Remark. Note that if z € B(J7) is such that ker (1 — z*z) = {0} then also ker (1 — 2z*) = {0}.
Indeed, is (1 — zz*)p = 0 then z*(1 — zz*)p = 0, i.e. (1 — 2*2)z*¢ = 0 which implies z*p = 0.
But this reduces (1 — zz*)p = 0 to ¢ = 0.

Proposition. Let J4i0r = {[g] e %} Then for any closed densely defined operator T we

have Graph(T) = Up (%”HOR), where

Up = (H—ZT*ZT)% —ZT*
T zT (]l - ZTZT*)%
is a unitary operator on I @ .
*
Corollary. Graph(T)* = _ZT€1:|' e%ﬂ}.
Y rap. ( ) {|:(]IZTZT*)2§ §
Proof. We have

Graph(T)* = (UT (%OR))J— = UT(%{ORL) = Up(Herr),

where %ERT = {l:?]]

fejf}. O

Corollary. zps = zr*.
Proof. We have
_ *) 3
Graph(T™*) = 0 1 Graph(T)* = (1 ZTjT )28 EeH
-1 0 T 6

which shows that the operator whose z-transform is z7* coincides with T*. O

3.3. Polar decomposition of closed operators.

Theorem. Let T' be a closed densely defined operator on €. Then there exists a unique pair
(u, K) such that

e K is a positive self-adjoint operator on F,

o u € B(J) is such that u*u is the projection onto ran K,
o T'=uK

Remark. Let T,u and K be as above. Then u enters the polar decomposition of zy: zp = u|zp|
while zx = |27/

=
|

4 o @ o] 2 ®© 2

We have Y |an| = 2] (n|an|)% < < > n2|an\2> < > %) < 400, so the series converges uniformy by
n=1 n=1 n=1 n=1"

Weierstrass test.
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3.4. Functional calculus.
Define ¢: R — |—1,1[ by
C(flf) = \/ﬁ7 z € R.
Theorem. Let T be a self-adjoint operator on . Then there exists a unique unital =-homomor-
phism Cp(R) — B(52) denoted by f — f(T') such that {(T) = zr.
4. SELF-ADJOINT EXTENSIONS OF SYMMETRIC OPERATORS
4.1. The Cayley transform.

Remark. A symmetric operator T is always closable (since T' < T* the latter is densely defined).
Moreover T is symmetric (because T* is closed). Consequently any self-adjoint extension of a
symmetric operator T is an extension of 7.

Proposition. Let S and T be closed densely defined operators. Then T < S if and only if
(1 - ZSZS*)%ZT =25(1 — zT*zT)%. (4)
Proof. Recall that
Graph(T') = Ur (%@IOR) and Graph(S) = Ug (%ﬂHOR),

where

N

27 (1 — zpzp*)? zs (1 — zg25™)

are unitary operators on s @ 5. Now T < S if and only if Graph(7T') < Graph(S), i.e.
UT(%OR) c Us (%—IOR)-

Acting with Us™ on both sides of this relation we find that Us*Ur preserves the subspace “&ior,

so the lower-left corner of the matrix representation of this operator must be zero. A simple
calculation shows that this is equivalent to (4). t

UT _ [(]l — ZT*ZT)% —ZT* ] US _ |:(]l — ZS*ZS)% —ZS*

Corollary. A closed densely defined operator T is symmetric if and only if
(1 - zT*zT)%zT =27p*(1 — ZT*ZT)%~
Corollary. Let T be a closed symmetric operator. Then
wy = zr +i(1 — zT*zT)% and w_ = zr —i(l — zT*zT)%
are isometries.
Put #, =ranwy and 24 = ”//iJ‘.

Definition. Let T be a closed symmetric operator. The subspaces 2, and Z_ are called the
deficiency subspaces of T and their dimensions ny = dim 2 are the deficiency indices of T

Proposition. 2, = ker (T* Fil).
Proof. ( € 94 if and only if

O:<C|ZT€J£1(I[_ZT*ZT)%€>7 e A,
So since .
Graph(T) = {[(ﬂ + ZT*ZT)Q’E] ‘g c jf}
ZT§

we find that ( € 4 if and only if

0 =Ty +iy), ¢ € Dom(T')
which means that ¢ € Dom(T*) and T*( = =+i(. O
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Notation/terminology. If v € B(J#) is a partial isometry then we denote by v the map v
restricted to the subspace

Dom(d) = {¢ € | |v€| = ||¢]} = ranv*v = (kerv)*.
This subspace is called the initial subspace of v, while the range of v is referred to as the final
subspace of v.

Proposition. Let T be a closed symmetric operator. Then cr = w_w,*

with initial subspace Wy and final subspace W _.

is a partial isometry

Definition. Let T be a closed symmetric operator. The operator cr is called the Cayley transform
of T.

4.2. Self-adjoint extensions.

Theorem. Let T be a closed symmetric operator.
(1) Graph(T) = [_ﬁﬂ Hﬂ Graph(cr),
(2) ran (cp — L)ep* = .

Proof. Ad (1). We have

T o e
- {702 55] o< pomr)

—il il o
[ 1 ]1] Graph(cr).

Ad (2). The fact that T is densely defined is equivalent to Graph(T)* n . 4ior = {0}. Thus we

have
([g] 1 Hﬂ i]ﬂ Graph(c})> — (n=0),
(soevmen [f] [ 2][8]) = (-0),

(V 6 € Dom(cy) {(n|(cr —1)8) = O) = (17 = 0).

Finally we note that #, = rancr™*, so the condition

i.e.

or in other words

n L ran(cp — 1)er™
implies n = 0. (]

Theorem.
(1) The assignment T — cp is a bijection from the set of closed symmetric operators on
onto the set of partial isometries ¢ € B(J) such that ran (¢ — 1)c* = 5,
(2) we have Ty < Ty if and only if er, < c1,
(3) T is self-adjoint if and only if cr is unitary.

Remark. cr is unitary if and only if 2, = {0}, i.e. ny = 0.

Corollary. A closed symmetric operator has a self-adjoint extension if and only if n, =n_. In
this case the set of self-adjoint extensions of T is in bijection with the set of unitary operators

9+ — @_.
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Remark. Statement (3) in the theorem above follows from the fact that

Graph(T*) = Graph(T) ® 7, ® Z_,

[ e

Example. Consider ¢ = Ly([0,1]) and T = 1o with domain
Dom(T") = Dom(dy ) = {<p € Dom(0) | 0(0) =0= <p(1)}.
We know that 7% = 10, so 73 = {¢ € Dom(0) ! 10p = +ip}, i.e. 24 = span{e }, where

where

x € [0,1]

(in particular ny = 1). Unitary operators 2, — Z2_ are all of the form e, — ae_ with « € T.
Thus the graph of an extension of ¢ to a unitary operator is

Graph(cr) @ span{ [Of:] }
and the corresponding extension T, of T is determined by
|-l il . —leq +ioe_
Graph(T,) = [ 1 ]l] Graph(cr) + Span{[ €r + e ]}

span —lep +iae_ || spand | €+ — e-
P €+ +ae_ — P iep +ice_||°

In particular Dom(7,) = Dom(T’) + span{e; — ae_}. Thus the values of elements of Dom(T,) at
the end-points of [0, 1] are determined by the values at 0 and 1 of the function e, — ae_:

o (ex —ae)(0) =/ FEq(e —a),

o (e4 —ae_)(1) = /2 (1 —ae).

Denote by p the number

Note also that

(ey—ae_)(1) _ e—a
(e4—ae_)(0) 1—ae

3

Q

e T.

e|L
Q|

Then
Dom(T,) = {¢ € Dom(d) | p(1) = p(0)}.
Note also that the correspondence av < p is bijective:

Finally T, (64 — ae_) = iey +iae_ = 10(ex — ae_), so T, = 10 on Dom(T,) (This is in fact clear
from the simple observation that any self-adjoint extension of a symmetric operator is a restriction
of its adjoint). In other words T, = P,,.

4.3. Von Neumann’s theorem.
An operator J: € — J is anti-linear if
o V&net J(E+n)=J(E)+ ),
o VéeH, aeC J(at) =alJ(§).
As with linear operators, we usually write J¢ instead of J(&) for the value of K on &.
An anti-linear operator J: € — S is anti-unitary if J is isometric and surjective. One can
show that this is equivalent to J being a surjective anti-linear map satisfying

(&l In) = (nl&), §ne .

Finally we say that an anti-linear operator J is an anti-unitary involution if J is anti-unitary and
J? =1.
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Theorem. Let T be a symmetric operator on € and let J be an anti-unitary involution on F€
such that

e J(Dom(T)) < Dom(T),

e Ve Dom(T) TJy = JT.
Then T has a self-adjoint extension.

Ideal of proof. J maps 2, bijectively onto Z_. O

Example. As before let T = 10y,9 on Lo([0,1]). For £ € L([0,1]) Let (J€)(z) = —£(=) (z € [0, 1]).
Clearly J is an anti-unitary involution, J(Dom(T")) € Dom(T") and for any ¢ € Dom(7") we have

Ty = T(~) = 1o(~) = ~130 = J(2ov) = T,

This way von Neumann’s theorem can be used to prove existence of self-adjoint extensions of T
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