
UNBOUNDED OPERATORS ON HILBERT SPACES

PIOTR M. SO LTAN

Abstract. These are notes from the lecture course “Unbounded operators on Hilbert spaces”

delivered at the School on Geometry and Physics in Bia lowieża from June 28 through July 2,

2021.

1. Basic operator theory

1.1. Fundamentals.
Throughout these notes H will denote a Hilbert space and BpH q the space of all bounded

operators on H , i.e. linear maps a : H Ñ H such that

}a} “ sup
}ξ}“1

}aξ} ă `8 (1)

(the left-hand side of (1) is called the norm of a).
The set BpH q is a unital ˚-algebra under natural which means that not only is BpH q a complex

vector space with usual addition and scalar multiplication of linear operators, but additionally the
composition of operators defines an associative and bi-linear multiplication of bounded operators
and the identity operator 1 is the unit of this multiplication. Finally the operation of passing from
a P BpH q to its hermitian adjoint (adjoint for short) defined by

xϕ aψy “ xa˚ϕ ψy, ϕ, ψ P H

is an anti-linear and anti-multiplicative involution on BpH q.

Fact. BpH q is a Banach ˚-algebra, i.e.

‚ BpH q is a Banach space with the norm defined by (1),
‚ for any a, b P BpH q we have }ab} ď }a}}b},
‚ for any a P BpH q we have }a˚} “ }a}.

Moreover for any a P BpH q the identity }a˚a} “ }a}2 holds, which means that BpH q is a C˚-
algebra.

Example. Let H “ `2, i.e. H is the space of sequences ψ “ pψnqnPN of complex numbers such

that
8
ř

n“1
|ψn|

2 ă `8. Let s : H Ñ H be defined by

psψqn “

#

0 n “ 1

ψn´1 n ą 1
, ψ P `2.

Then s P BpH q (in fact }s} “ 1) and

ps˚ψqn “ ψn`1, ψ P H , n P N.
Note that s˚s “ 1, but ss˚ ­“ 1.

1.2. The spectrum.

Terminology 1. Let a P BpH q.

‚ We say that a is invertible if there exists b P BpH q such that ab “ ba “ 1 (we write
b “ a´1), it is worth noting that if a is such that there exist b, c satisfying ab “ 1 “ ca,
then b “ c and consequently a is invertible,

‚ the spectrum of a is

σpaq “
 

λ P C
ˇ

ˇλ1´ a is not invertible
(

,
1

http://wgmp.uwb.edu.pl/index.html
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‚ the resolvent set of a is ρpaq “ Czσpaq,
‚ the resolvent of a is the function

ρpaq Q µ ÞÝÑ pµ1´ aq´1 P BpH q,

‚ the spectral radius of a is srpaq “ sup
 

|λ|
ˇ

ˇλ P σpaq
(

.

Theorem. Let a P BpH q. Then

(1) srpaq ď }a},
(2) σpaq is a non-empty compact subset of C,
(3) the resolvent is a continuous (in fact holomorphic) function ρpaq Ñ BpH q,

(4) the limit lim
mÑ8

}am}
1
m exists and is equal to srpaq.

Example. Let H “ C2 and a “ r 0 1
0 0 s. Then σpaq “ t0u, so that srpaq “ 0, while }a} “ 1. Note

that }am}
1
m “ 1 for m “ 1 and 0 otherwise.

Example. Let H “ L2pRq and let F : H Ñ H be the Fourier transformation:

pFψqppq “ 1?
2π

`8
ż

´8

e´ipxfpxqdx, ψ P L1pRq X L2pRq, p P R.

Now consider the functions:

ψ0pxq “ π´
1
4 e´

x2

2

ψ1pxq “
?

2π´
1
4xe´

x2

2

ψ2pxq “
`?

2π
1
4

˘´1
p2x2 ´ 1qe´

x2

2

ψ3pxq “
`?

3π
1
4

˘´1
p2x3 ´ 3xqe´

x2

2

x P R.

Then
Fψ0 “ ψ0, Fψ1 “ iψ1, Fψ2 “ ´ψ2 and Fψ3 “ ´iψ3,

so t1, i,´1,´iu Ă σpF q. In fact σpF q “ t1, i,´1,´iu.

1.3. Certain classes of operators.

Terminology 2. Let a P BpH q. The following table contains definitions of seven important
classes of operators:

type of operator
characterization

algebraic geometric spectral

normal a˚a “ aa˚ @ ξ P H }aξ} “ }a˚ξ}

self-adjoint a “ a˚ @ ξ P H xξ aξy P R a is normal and σpaq Ă R

positive Db a “ b˚b @ ξ P H xξ aξy ě 0 a is normal and σpaq Ă R`

projection a˚a “ a DM aξ “

#

ξ ξ P M

0 ξ P MK
a is normal and σpaq Ă t0, 1u

partial isometry aa˚a “ a DM }aξ} “

#

}ξ} ξ P M

0 ξ P MK

isometry a˚a “ 1 @ ξ P H }aξ} “ }ξ}

unitary a˚a “ aa˚ “ 1 surjective isometry a is normal and σpaq Ă T

In the third and fourth row of the table M stands for a closed vector subspace.

Remark. It is worth mentioning that the condition aa˚a “ a defining a partial isometry is
equivalent to pa˚aq2 “ a˚a, i.e. to a˚a being a projection.



SCHOOL ON GEOMETRY AND PHYSICS 2021 3

Proposition. Let a P BpH q be normal. Then srpaq “ }a}.

Proof. For n P Z` define bn “ a2n

. Then each bn is normal and we have bn “ b2n´1. Thus

}bn}
2 “ }bn

˚bn} “
›

›pb2n´1q
˚pb2n´1q

›

› “ }bn´1
˚bn´1

˚bn´1bn´1}

“ }bn´1
˚bn´1bn´1

˚bn´1}

“ }bn´1
˚bn´1}

2 “ }bn´1}
4,

so that

}bn}
1
2n “

`

}bn}
2
˘

1

2n`1 “
`

}bn´1}
4
˘

1

2n`1 “ }bn´1}
1

2n´1 , n P N.
It follows that the sequence

`

}am}
1
m

˘

mPN has a constant subsequence with value }b0} “ }a}. �

Proposition. Let a P BpH q be self-adjoint. Then σpaq Ă R.

Proof. Take λ P σpaq and decompose it as λ “ α ` iβ with α, β P R. Now for n P N put an “
a´pα´inβq1. It is easy to show that σpanq “ σpaq´pα´inβq, so ipn`1qβ “ λ´pα´inβq P σpanq.
In particular we must have

ˇ

ˇipn` 1qβ
ˇ

ˇ ď }an}, n P N.
In other words for any n P N

pn2 ` 2n` 1qβ2 ď }an
˚an} “

›

›pa´ α1q2 ` n2β21
›

› ď
›

›pa´ α1q2
›

›` n2β2

which is only possible when β “ 0. �

1.4. Functional calculus.

Proposition. Let a P BpH q and P P Cr ¨ s. Then

σ
`

P paq
˘

“
 

P pλq
ˇ

ˇλ P σpaq
(

.

Proof. The statement is obvious if degP ď 0. Assume that degP ě 1 and we have

P pxq “ α0 ` α1x` ¨ ¨ ¨ ` αnx
n.

Take λ P σpaq. Then

P pλq1´ P paq
looooooomooooooon

A

“

n
ÿ

k“0

αkλ
k ´

n
ÿ

k“0

αka
k “

n
ÿ

k“0

αkpλ
k ´ akq

“

n
ÿ

k“0

αkpλ1´ aq

ˆn´1
ÿ

j“0

λjan´j´1

˙

“ pλ1´ aq
looomooon

B

n
ÿ

k“0

αk

ˆn´1
ÿ

j“0

λjan´j´1

˙

loooooooooooooomoooooooooooooon

C

.

Note that BC “ CB, so if A were invertible then we would have 1 “ BpCA´1q and 1H “

pA´1CqB and consequently B would be invertible. But λ P σpaq, so P pλq must belong to σpP paqq.
This shows that P pσpaqq Ă σpP paqq.

Now take µ P C zP pσpaqq and let λ1, . . . , λm be the different zeros of the polynomial Qpxq “
µ´ P pxq. Thus there exists γ P Czt0u and multiplicities k1, . . . , km such that

µ´ P pxq “ γpλ1 ´ xq
k1 ¨ ¨ ¨ pλm ´ xq

km .

Clearly λ1, . . . , λm do not belong to σpaq and consequently

µ1´ P paq “ Qpaq “ γpλ11´ aq
k1 ¨ ¨ ¨ pλm1´ aq

km

is invertible as a product of invertible operators. Thus µ P ρpP paqq which proves that P pρpaqq Ă
ρpP paqq, i.e. P pσpaqq Ą σpP paqq. �

Theorem. Let a P BpH q be self-adjoint. Then there exists a unique linear map Cpσpaqq Ñ BpH q

denoted by f ÞÑ fpaq such that
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‚ if f is a polynomial function fpxq “
n
ř

k“0

αkx
k then fpaq “

n
ř

k“0

αka
k,

‚ }fpaq} “ sup
λPσpaq

|fpλq| for all f P Cpσpaqq.

Moreover

‚ for all f, g P Cpσpaqq we have pfgqpaq “ fpaqgpaq,
‚ for all f P Cpσpaqq we have fpaq˚ “ fpaq.

Definition. Let a P BpH q be self-adjoint. The mapping

C
`

σpaq
˘

Q f ÞÝÑ fpaq P BpH q

described above is called the continuous functional calculus for a.

Sketch of proof. First we note that for any P P Cr ¨ s the operator P paq is normal, so
›

›P paq
›

› “ sr
`

P paq
˘

“ sup
 

|µ|
ˇ

ˇµ P σpP paqq
(

“ sup
 

|P pλq|
ˇ

ˇλ P σpaq
(

“
›

›ΨpP q
›

›

8
,

where Ψ: Cr ¨ s Ñ Cpσpaqq is the restriction map.
It follows that there exists a unique linear map Φ defined on the range of Ψ into BpH q such

that

Cr ¨ s
ψ //

P ÞÑP paq

��

ran Ψ

Φvv
BpH q

Moreover Φ is isometric.
Next, using the density of polynomial functions in Cpσpaqq, we extend Φ uniquely to an isometry

Cpσpaqq Ñ BpH q which we denote by f ÞÑ fpaq. Clearly if f is a Polynomial function, i.e. f “
ΨpP q for some P P Cr ¨ s) then fpaq coincides with P paq.

We check that
pfgqpaq “ fpaqgpaq and fpaq˚ “ fpaq

for polynomial functions (we use a “ a˚ for the second property) and note that these remain true
for all f, g P Cpσpaqq via uniform approximation.

The uniqueness of the mapping f ÞÑ fpaq with the properties described in the theorem is
clear. �

We have the following alternative formulation of the previous theorem:

Theorem. Let a P BpH q be self-adjoint. Then there exits a unique unital ˚-homomorphism
Cpσpaqq Ñ BpH q mapping the identity function

σpaq Q λ ÞÝÑ λ P R
to a. Moreover this map is isometric.

Theorem. Let a P BpH q be self-adjoint. Then for any g P Cpσpaqq we have σpgpaqq “ gpσpaqq.

The above statement is know as the spectral mapping theorem.

Remark. if a “ a˚ and g P Cpσpaq,Rq then gpaq˚ “ gpaq “ gpaq, i.e. gpaq is self-adjoint.

Remark. A fully analogous statements about functional calculus and the spectral mapping the-
orem remain true after replacing the assumption that a is self-adjoint by the requirement that it
is normal.

The uniqueness of the continuous functional calculus provides an easy proof of the following
corollary:

Corollary. Let a P BpH q be self-adjoint and let g P Cpσpaq,Rq. Then for any f P Cpσpgpaqqq we
have fpgpaqq “ pf ˝ gqpaq.



SCHOOL ON GEOMETRY AND PHYSICS 2021 5

In the next theorem we extend the continuous functional calculus for a self-adjoint a P BpH q

to all bounded Borel functions on the spectrum. The unital ˚-algebra of all these functions will
be denoted by Bpσpaqq.

Theorem. Let a P BpH q be self-adjoint. Then there exists a unique unital ˚-homomorphism
Bpσpaqq Ñ BpH q denoted by f ÞÑ fpaq such that

‚ if f is the identity function then fpaq “ a,
‚ if pfnqnPN is a uniformly bounded sequence of elements of Bpσpaqq converging pointwise

to f then for any ξ P H we have fnpaqξ ÝÝÝÑ
nÑ8

fpaq.

Moreover the mapping Bpσpaqq Q f ÞÑ fpaq P BpH q extends the continuous functional calculus.

The homomorphism f ÞÑ fpaq described in the above theorem is called the Borel functional
calculus for a.

Remark. As with the continuous functional calculus the Borel functional calculus can be extended
in the analogous form to normal operators in place of self-adjoint ones.

Example. Let a P BpH q be self-adjoint and let f : σpaq Ñ C be defined as

fpλq “

#

1 λ ‰ 0

0 λ “ 0
.

Then f P Bpσpaqq and fpaq is the projection onto ran a.
Indeed, let p “ fpaq. Then p is a projection and pa “ a, so for any ξ P ran a, i.e. ξ “ aη for

some η, we have
pξ “ paη “ aη “ ξ.

Thus ran a Ă ran p and consequently ran a Ă ran p. Conversely, since f can be written as a
pointwise limit of polynomial functions pPnqnPN without constant term, if ψ P ker a then

pψ “ lim
nÑ8

Pnpaqψ “ 0

and it follows that ker p Ą ker a, so that ran p Ă pker aqK “ ran a.

Definition. Let a P BpH q be self-adjoint. The projection onto ran a is called the support of a.
It is denoted by spaq.

1.5. Polar decomposition.

Theorem (Polar decomposition). Let a P BpH q. Then there exists a unique pv, dq P BpH q ˆ

BpH q such that

‚ a “ vd,
‚ d is positive,
‚ v˚v “ spdq.

Proof. The operator a˚a is positive, hence σpa˚aq Ă r0,`8r. Let fpλq “ λ
1
2 (λ P σpa˚aq) and

put d “ fpa˚aq. Since f “ gg, where gpλq “ λ
1
4 (λ P σpa˚aq), we have d “ gpa˚aq˚gpa˚aq, so d is

positive.
For any ξ P H we have

}dξ}2 “ xdξ dξy “ xξ d˚dξy “
@

ξ d2ξ
D

“ xξ a˚aξy “ xaξ aξy “ }aξ}2

which implies that the mapping
ran d Q dξ ÞÝÑ aξ P H

is well-defined and isometric. Consequently we can extend it uniquely to an isometry v0 : ran dÑ
H (with range equal to ran a) and define v P BpH q by

vξ “

#

v0ξ ξ P ran d

0 ξ P pran dqK
.
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One easily checks1 that

v˚η “

#

v0
´1η η P ran a

0η P pran aqK
,

so v˚v is the projection onto ran d, i.e. v˚v “ spdq. This shows that the pairs pv, dq as in the
statement of the theorem exists.

Let pu, kq P BpH q ˆ BpH q be such that

‚ a “ uk,
‚ k is positive,
‚ u˚u “ spkq.

Then d2 “ a˚a “ ku˚uk “ k2, so defining g to be the function λ ÞÑ λ2 on σpdq and h to be the
same function on σpkq we obtain

d “ f
`

gpdq
˘

“ fpd2q “ fpk2q “ f
`

hpkq
˘

“ k

because f ˝g is the identity function on σpdq and f ˝h is the identity on σpkq (note that σpgpdqq “
σpd2q “ σpk2q “ σphpkqq).

Now u is a partial isometry which satisfies

uξ “

#

vξ ξ P ran d

0 ξ P pran dqK
,

since for ξ P ran d “ ran k we have uξ “ ukη “ aη “ vdη “ vkη “ vξ, so by continuity u “ v
on ran d. Also u˚u “ 0 on pran kqK “ pran dqK and hence2 u “ 0 on pran dqK. Consequently
u “ v. �

The positive part of the polar decomposition of ainBpH q is called the absolute value or the

modulus of a and it is denoted by |a|. Thus a “ v|a|, where |a| “ pa˚aq
1
2 and v˚v “ sp|a|q.

2. Unbounded operators

2.1. Domains, graphs and closures.
An (unbounded) operator T on a Hilbert space H is a linear mapping

DompT q ÝÑ H ,

where DompT q is a subspace of H called the domain of T .

Example. Consider the Hilbert space L2pr0, 1sq and put

DompBq “

"

ψ P L2

`

r0, 1s
˘

ˇ

ˇ

ˇ

ˇ

D α P C, ϕ P L2pr0, 1sq 9@ x P r0, 1sψpxq “ α`

x
ż

0

ϕptqdt

*

.

It turns out that given ψ P DompBq the constant α and ϕ P L2pr0, 1sqsuch that ψpxq “ α`
x
ş

0

ϕptqdt

for almost all x P r0, 1s are unique and depend linearly on ψ. We define the operator B by Bψ “ ϕ.

1Take ψ,ϕ P H and write ψ “ ψ1 ` ψ2 with ψ1 P ran a, ψ2 P pran aqK and ϕ “ ϕ1 ` ϕ2 with ϕ1 P ran d,

ϕ2 P pran dqK. v0 is an isometry from ran d onto ran a, so

xψ vϕy “ xψ1 ` ψ2 v0ϕ1y “ xψ1 v0ϕ1y ` xψ2 v0ϕ1y
looooomooooon

“0

“
@

v0v0
´1ψ1 v0ϕ1

D

“
@

v0
´1ψ1 ϕ1

D

“
@

v0
´1ψ ϕ

D

.

2For any a P BpH q we have ker a “ ker a˚a.
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Note that for n P N the function ψnpxq “
?

2n` 1xn (x P r0, 1s) belongs to DompBq (since

ψnpxq “ 0`
?

2n` 1n
x
ş

0

tn´1 dt) and }ψn}2 “ 1, but

}Bψn}
2
2 “ p2n` 1qn2

1
ż

0

x2n´ 2 dx “ n2 2n`1
2n´1 ÝÝÝÑnÑ8

`8.

Terminology 3. Let T be an operator on H .

‚ T is densely defined if DompT q is dense in H ,
‚ The graph of T is

GraphpT q “

"„

ψ
Tψ


ˇ

ˇ

ˇ

ˇ

ψ P DompT q

*

Ă H ‘H ,

‚ T is closed if GraphpT q is a closed subspace of the Hilbert space H ‘H ,

‚ T is closable if GraphpT q is a graph of an operator,

‚ if T is closable then the operator whose graph is GraphpT q is called the closure of T and
it is denoted by T ,

‚ and operator S is an extension of T is GraphpT q Ă GraphpSq.

Example. Consider again the operator B on L2pr0, 1sq. It turns out that B is closed. Note that
DompBq is contained in Cpr0, 1sq and contains C1

pr0, 1sq (and for f P C1
pr0, 1sq we have Bf “ f 1).

In particular B is densely defined and it makes sense to write

DompB0,0q “
 

ϕ P DompBq
ˇ

ˇϕp0q “ 0 “ ϕp1q
(

, B0,0 “ B
ˇ

ˇ

DompB0,0q
.

Clearly B is an extension of B0,0. Moreover B0,0 is closed because

GraphpB0,0q “ GraphpBq X

"„

1
x

*K

X

"„

0
1

*K

.

Fact. Let T be an operator on H

(1) T is closed if and only if
¨

˚

˝

ψn P DompT q
ψn ÝÝÝÑ

nÑ8
ψ

Tψn ÝÝÝÑ
nÑ8

ϕ

˛

‹

‚

ùñ

ˆ

ψ P DompT q
Tψ “ ϕ

˙

.

(2) T is closable if and only if
¨

˚

˝

ψn P DompT q
ψn ÝÝÝÑ

nÑ8
0

Tψn ÝÝÝÑ
nÑ8

ϕ

˛

‹

‚

ùñ

´

ϕ “ 0
¯

.

2.2. The spectrum.
In what follows for an unbounded operator T on H and a number λ P C we define λ1 ´ T

as the operator with domain Dompλ1 ´ T q “ DompT q acting as pλ1 ´ T qψ “ λψ ´ Tψ for
ψ P Dompλ1´T q. Clearly if T is densely defined then λ1´T is densely defined as well. Moreover,
it can be easily shown that λ1´ T is closed if T is.

Definition. Let T be a closed, densely defined operator. We say that T is invertible if T is a
bijection from DompT q onto H . The spectrum of T is

σpT q “
 

λ P C
ˇ

ˇT is not invertible
(

.

Remark. It follows from the closed graph theorem that if T is closed and bijective from DompT q
onto H then the inverse map T´1 : H Ñ DompT q is bounded.

Theorem. Let T be closed and densely defined. Then σpT q is a closed subset of C.
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Example. We have σpBq “ C because for any λ P C the function ψλpxq “ eλx (x P r0, 1s) satisfies
Bψλ “ λψλ.

Example. Define DompB0q “
 

ϕ P DompBq
ˇ

ˇϕp0q “ 0
(

and B0 “ B
ˇ

ˇ

DompB0q
. Then B0 is closed

(and densely defined) and σpB0q “ H.
Indeed, defining for λ P C the operator rλ by

`

rλψ
˘

pxq “ ´

x
ż

0

eλpx´tqψptqdt, ψ P L2pr0, 1sq, x P r0, 1s

we easily find that rλ P BpL2pr0, 1sqq (in fact rλ is compact) and

(1) for any ψ P L2pr0, 1sq we have rλψ P DompB0q,
(2) pλ1´ B0qrλψ “ ψ for any ψ P L2pr0, 1sq,
(3) rλpλ1´ B0qϕ “ ϕ for any ϕ P DompB0q.

It follows that λ1´ B0 is invertible for any λ P C and λ ÞÑ rλ is the resolvent of B0.

Example. Fix κ P r0, 2πr and let µ “ eiκ. Define the operator Pµ on L2pr0, 1sq by

DompPµq “
 

ψ P DompBq
ˇ

ˇψp1q “ µψp0q
(

and
Pµψ “

1
i Bψ, ψ P DompPµq.

Then for all n P Z the function ψnpxq “ eip2πn`κqx (x P r0, 1s) belongs to DompPµq and Pµψn “
p2πn` κqψn, so 2πZ` κ Ă σpPµq. It can be shown that σpPµq “ 2πZ` κ.

2.3. The adjoint operator.

Proposition. Let T be a densely defined operator. Then
"„

ξ
η


ˇ

ˇ

ˇ

ˇ

@ ψ P DompT q xξ Tψy “ xη ψy

*

is a graph of a closed operator T˚. Moreover

(1) GraphpT˚q “

„

0 1

´1 0



GraphpT qK,

(2) T˚ is densely defined if and only if T is closable,
(3) if T˚ is densely defined then pT˚q˚ “ T .

Proof. If

„

0
η



P

"„

ξ
η


ˇ

ˇ

ˇ

ˇ

@ ψ P DompT q xξ Tψy “ xη ψy

*

then xη ψy “ 0 for all ψ P DompT q, so

η “ 0. This defined T˚.
Next we note that

ˆ„

ξ
η



P GraphpT˚q

˙

ðñ

ˆ

@ ψ P DompT q

B„

ξ
η

 „

Tψ
´ψ

F

“ 0

˙

ðñ

ˆ„

ξ
η



K

„

0 1

´1 0



GraphpT q

˙

ðñ

ˆ„

ξ
η



P

„

0 1

´1 0



GraphpT qK
˙

which also shows that T˚ is closed.
The operator T is closable if and only if GraphpT q does not contain non-zero vectors of the

form

„

0
ϕ



. Note further that the formula GraphpT˚q “

„

0 1

´1 0



GraphpT qK implies that

GraphpT˚qK “

„

0 1

´1 0



GraphpT q,
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so T is closable if and only if GraphpT˚qK does not contain non-zero vectors of the form

„

ϕ
0



which

is equivalent to DompT˚q “

"

ξ P H

ˇ

ˇ

ˇ

ˇ

D η

„

ξ
η



P GraphpT˚q

*

being dense in H .

Finally

Graph
`

T
˘

“ GraphpT q “

„

0 1

´1 0



GraphpT˚qK “ Graph
`

pT˚q˚
˘

.

�

Definition. The operator T˚ defined in the theorem above is called the adjoint of T .

Corollary. Let T be a densely defined operator and S an extension of T . Then T˚ Ą S˚.

Definition. An operator T is called symmetric or hermitian if T Ă T˚. We has that T is
self-adjoint if T “ T˚.

Proposition.

(1) An operator T is symmetric if and only if for any ϕ,ψ P DompT q we have

xϕ Tψy “ xTϕ ψy, (2)

(2) a self-adjoint operator has no proper symmetric extensions.

Proof. The first statement is almost obvious, since (2) means precisely that any ϕ P DompT q
belongs to DompT˚q and T˚ϕ “ Tϕ.

As for the second statement, take a symmetric S such that T Ă S. Then T˚ Ą S, so

T “ T˚ Ą S˚ Ą S Ą T,

and consequently T “ S. �

Example. Let T “ 1
i B0,0 on L2pr0, 1sq. Then T˚ “ 1

i B. The fact that 1
i B Ă T˚ follows from the

calculation: for ϕ P DompT q “ DompB0,0q and ψ P DompBq

xϕ Tψy “

1
ż

0

ϕptq 1
i pBψqptqdt

“ 1
i

ˆ

ϕp1q ψp1q
loomoon

“0

´ϕp0q ψp0q
loomoon

“0

´

1
ż

0

pBϕqptqψptqdt

˙

“ ´ 1
i xBϕ ψy “

@

1
i Bϕ

ˇ

ˇψ
D

.

The converse inclusion requires some more involved approximations.
We also have

‚ T Ă 1
i B, so that T is symmetric, but not self-adjoint,

‚ since T is closed, we have
`

1
i B
˘˚
“ T .

Example. Put T0 “
1
i B0 (recall DompB0q “

 

ϕ P DompBq
ˇ

ˇϕp0q “ 0
(

, B0 “ B
ˇ

ˇ

DompB0q
) and

T1 “
1
i B1 with DompB1q “

 

ϕ P DompBq
ˇ

ˇϕp1q “ 0
(

and B1 “ B
ˇ

ˇ

DompB1q
. Then T0

˚
“ T1 (and

T1
˚
“ T0).

Example. For any µ P T the operator Pµ is self-adjoint. Note that each Pµ is an extension of
1
i B0,0.
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2.4. Algebraic operators.
Given two operators T and S on H we define

DompTSq “
 

ψ P DompSq
ˇ

ˇSψ P DompT q
(

,

DompT ` Sq “ DompT q XDompSq

and TSψ “ T pSψq (ψ P DompTSq), pT ` Sqϕ “ Tϕ` Sϕ (ϕ P DompT ` Sq).
Even when T and S are densely defined and closed the operators TS and T ` S might fail to

be densely defined or closed (or closable).

Proposition. Let S and T be closed and densely defined operators and let a P BpH q, Then

(1) T ` a is closed,
(2) Ta is closed,
(3) if a is invertible (in BpH q) then aT is closed,
(4) if TS is densely defined then S˚T˚ Ă pTSq˚,
(5) paT q˚ “ T˚a˚,
(6) if T ` S is densely defined then T˚ ` S˚ Ă pT ` Sq˚,
(7) pT ` aq˚ “ T˚ ` a˚.

We say that an operator T on H is positive if xψ Tψy ě 0 for all ψ P DompT q. A positive
operator is symmetric, but may fail to be self-adjoint (when it is not bounded).

Fact. Let T be a closed and densely defined operator. Then the operator T˚T is

‚ closed,
‚ densely defined,
‚ positive,
‚ self-adjoint.

Example. Let S “ T 2, where T “ 1
i B0,0 as in several examples above), i.e.

DompSq “
 

ϕ P DompB0,0q
ˇ

ˇ Bϕ P DompB0,0q
(

and
Sϕ “ ´B2ϕ, ϕ P DompSq.

Then S is

‚ positive,
‚ closed,
‚ not self-adjoint.

3. The z-transform of a closed densely defined operator

3.1. Definition of the z-transform.

Theorem. Let T be a closed densely defined operator on a Hilbert space H . Then the mapping

DompT˚T q Q ψ ÞÝÑ ψ ` T˚Tψ

is a bijection not decreasing the norm.

Proof. Recall that

GraphpT qK “

„

0 1

´1 0



GraphpT˚q “

"„

T˚ϕ
´ϕ


ˇ

ˇ

ˇ

ˇ

ϕ P DompT˚q

*

.

Since H ‘H “ GraphpT q‘GraphpT qK, for any ξ, η P H there are ψ P DompT q and ϕ P DompT˚q
such that

„

ξ
η



“

„

ψ
Tψ



`

„

Tϕ
´ϕ



.

Setting η “ 0, we obtain

@ ξ P H D ψ P DompT q, ϕ P DompT˚q

„

ξ
0



“

„

ψ
Tψ



`

„

Tϕ
´ϕ



,
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i.e.
@ ξ P H D ψ P DompT˚T q ξ “ ψ ` T˚Tψ.

Furthermore once ξ ““ ψ ` T˚Tψ for some ψ P DompT˚T q then

}ξ}2 “ xψ ` T˚Tψ ψ ` T˚Tψy “ }ψ}2 ` 2}Tψ}2 ` }T˚Tψ}2 ě }ψ}2.

Consequently, if ψ ` T˚Tψ “ ψ1 ` T˚Tψ1 for ψ,ψ1 P DompT˚T q then

0 “ pψ ´ ψ1q ` T˚T pψ ´ ψ1q,

so 0 “ }0}2 ě }ψ ´ ψ1}2. �

Consider a closed and densely defined operator T on H . The inverse p1 ` T˚T q´1 of the
bijection 1`T˚T : DompT˚T q ÑH is contractive and hence bounded (and consequently closed).
It follows that 1` T˚T is closed, so that also T˚T “ p1` T˚T q ` p´1q is closed.

Suppose

„

ψ
Tψ



P GraphpT q is orthogonal to Graph
`

T
ˇ

ˇ

DompT˚T q

˘

:

@ ϕ P DompT˚T q

B„

ψ
Tψ

 „

ϕ
Tϕ

F

“ 0.

Then xψ ϕy ` xTψ Tϕy “ 0 for all ϕ P DompT˚T q, i.e.

@ ϕ P DompT˚T q ψ K p1` T˚T qϕ.

In other words ψ K H , so that ψ “ 0. It follows that Graph
`

T
ˇ

ˇ

DompT˚T q

˘

is dense in GraphpT q:

T “ T
ˇ

ˇ

DompT˚T q
.

In particular DompT˚T q is dense in H (it is a core for T ).

Lemma. The operator p1` T˚T q´1 is positive.

Proof. Take ξ P H and put ψ “ p1` T˚T q´1ξ P DompT˚T q. Then
@

ξ p1` T˚T q´1ξ
D

“ xξ ψy “ xp1` T˚T qψ ψy “ }ψ}2 ` }Tψ}2 ě 0.

�

We will denote by p1`T˚T q´
1
2 the square root of the positive operator p1`T˚T q´1, i.e. p1`

T˚T q´
1
2 “ fpp1` T˚T q´1q, where f is the function λ ÞÑ λ

1
2 on σpp1` T˚T q´1q.

Theorem. Let T be a closed densely defined operator. Then

(1) ran p1` T˚T q´
1
2 “ DompT q,

(2) T p1` T˚T q´
1
2 P BpH q and }p1` T˚T q´

1
2 } ď 1.

Definition. Let T be a closed densely defined operator. The bounded operator zT “ T p1 `

T˚T q´
1
2 is called the z-transform of T .

Remark. Since }zT } ď 1, we have 0 ď zT
˚zT ď 1, so in particular 1´zT

˚zT is positive (similarly
1´ zT zT

˚ is positive).

3.2. Properties of the z-transform.

Theorem. Let T be a closed densely defined operator. Then

GraphpT q “

"„

p1` zT
˚zT q

1
2 ξ

zT ξ


ˇ

ˇ

ˇ

ˇ

ξ P H

*

.
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Proof. Since DompT q “ ran p1` T˚T q´
1
2 , we have

GraphpT q “

"„

ψ
Tψ


ˇ

ˇ

ˇ

ˇ

ψ P DompT q

*

“

"„

p1` T˚T q´
1
2 ξ

T p1` T˚T q´
1
2 ξ


ˇ

ˇ

ˇ

ˇ

ξ P H

*

“

"„

p1` T˚T q´
1
2 ξ

zT ξ

 ˇ

ˇ

ˇ

ˇ

ξ P H

*

and it remains to prove that p1` T˚T q´
1
2 “ p1´ zT

˚zT q
1
2 or that

p1` T˚T q´1 “ p1´ zT
˚zT q. (3)

Take ξ P H and let ψ “ p1` T˚T q´
1
2 ξ. We have

}ψ}2 “
A

p1` T˚T q´
1
2 ξ p1` T˚T q´

1
2 ξ
E

“
@

ξ p1` T˚T q´1ξ
D

“
@

p1` T˚T qp1` T˚T q´1ξ p1` T˚T q´1ξ
D

“
›

›p1` T˚T q´1ξ
›

›

2
`
@

T˚T p1` T˚T q´1ξ p1` T˚T q´1ξ
D

“
›

›p1` T˚T q´1ξ
›

›

2
`
@

T p1` T˚T q´1ξ T p1` T˚T q´1ξ
D

“
›

›p1` T˚T q´
1
2ψ

›

›

2
`
›

›zTψ
›

›

2
.

Hence, by continuity we obtain }ψ}2 “
›

›p1` T˚T q´
1
2ψ

›

›

2
`
›

›zTψ
›

›

2
for all ψ P H .

In other words the sesquilinear forms

pψ,ϕq ÞÝÑ
@

p1` T˚T q´
1
2ψ

ˇ

ˇ p1` T˚T q´
1
2ϕ

D

and pψ,ϕq ÞÝÑ xψ ϕy ´ xzTψ zTϕy,

i.e. the forms

pψ,ϕq ÞÝÑ
@

ψ p1` T˚T q´1ϕ
D

and pψ,ϕq ÞÝÑ xψ p1´ zT
˚zT qϕy

coincide when ϕ “ ψ. Thus, by polarization, they are equal, and we obtain (3). �

It follows from the theorem above that zT contains the full information about T :

Corollary. Let S and T be closed densely defined operators. If zS “ zT then S “ T .

Example. Consider H “ L2pr0, 1sq and T “ 1
i B0,0, so that T˚T “ ´∆D (the Dirichlet Laplacian).

For n P N let
snpxq “

?
2 sin pπnxq, x P r0, 1s.

Then psnqnPN is an orthonormal basis of H and T˚Tsn “ π2n2sn for all n. It follows that

p1´ T˚T q´
1
2 sn “ p1` π

2n2q´
1
2 sn and consequently with

cnpxq “
?

2 cos pπnxq, x P r0, 1s, n P Z`
we obtain3

zT sn “
πn?

1`π2n2 cn “
8
ÿ

m“1

2nmp1´p´1qm`nq
?

1`π2n2pm2´n2q
sm, n P N.

3The expansion of cn in the basis psmqmPN is found by calculating the scalar products

xsm cny “ 2

1
ż

0

sinpπmxq cospπnxq dx “ 2m
πpm2´n2q

`

1´ p´1qm`n
˘

.
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While the above expression is not very helpful in the analysis of T , we nevertheless see that the
domain of T (which is equal to the range of p1 ` T˚T q´

1
2 ) can be described as those vectors

ψ P L2pr0, 1sq whose expansion

ψ “
8
ÿ

n“1

αnsn

in the basis psnqnPN satisfies
8
ř

n“1
n2|αn|

2 ă `8. In particular the series
8
ř

n“1
αnsn is uniformly

convergent.4

Remark. We have ker p1´ zT
˚zT q “ t0u. Indeed, ker p1´ zT

˚zT q “ ran p1´ zT
˚zT q

K
and since

1 ´ zT
˚zT “ p1 ` T˚T q´1 is a bijection DompT˚T q Ñ H , we see that ranp1 ´ zT

˚zT q
K “

DompT˚T qK “ t0u.

Theorem. The assignment T ÞÑ zT establishes a bijection from the set of closed densely defined
operators on H onto the set

 

z P BpH q
ˇ

ˇ }z} ď 1, ker p1´ z˚zq “ t0u
(

.

Remark. Note that if z P BpH q is such that ker p1´ z˚zq “ t0u then also ker p1´ zz˚q “ t0u.
Indeed, is p1 ´ zz˚qϕ “ 0 then z˚p1 ´ zz˚qϕ “ 0, i.e. p1 ´ z˚zqz˚ϕ “ 0 which implies z˚ϕ “ 0.
But this reduces p1´ zz˚qϕ “ 0 to ϕ “ 0.

Proposition. Let HHOR “

"„

ξ
0


ˇ

ˇ

ˇ

ˇ

ξ P H

*

. Then for any closed densely defined operator T we

have GraphpT q “ UT
`

HHOR

˘

, where

UT “

„

p1´ zT
˚zT q

1
2 ´zT

˚

zT p1´ zT zT
˚q

1
2



is a unitary operator on H ‘H .

Corollary. GraphpT qK “

"„

´zT
˚ξ

p1´ zT zT
˚q

1
2 ξ


ˇ

ˇ

ˇ

ˇ

ξ P H

*

.

Proof. We have

GraphpT qK “
´

UT
`

HHOR

˘

¯K

“ UT
`

HHOR
K
˘

“ UT
`

HVERT

˘

,

where HVERT “

"„

0
η


ˇ

ˇ

ˇ

ˇ

ξ P H

*

. �

Corollary. zT˚ “ zT
˚.

Proof. We have

GraphpT˚q “

„

0 1

´1 0



GraphpT qK “

"„

p1´ zT zT
˚q

1
2 ξ

zT
˚ξ


ˇ

ˇ

ˇ

ˇ

ξ P H

*

which shows that the operator whose z-transform is zT
˚ coincides with T˚. �

3.3. Polar decomposition of closed operators.

Theorem. Let T be a closed densely defined operator on H . Then there exists a unique pair
pu,Kq such that

‚ K is a positive self-adjoint operator on H ,
‚ u P BpH q is such that u˚u is the projection onto ranK,
‚ T “ uK

Remark. Let T, u and K be as above. Then u enters the polar decomposition of zT : zT “ u|zT |
while zK “ |zT |.

4We have
8
ř

n“1
|αn| “

8
ř

n“1

`

n|αn|
˘

1
n
ď

ˆ

8
ř

n“1
n2|αn|2

˙ 1
2
ˆ

8
ř

n“1

1
n2

˙ 1
2

ă `8, so the series converges uniformy by

Weierstrass test.
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3.4. Functional calculus.
Define ζ : RÑ s´1, 1r by

ζpxq “ x?
1`x2 , x P R.

Theorem. Let T be a self-adjoint operator on H . Then there exists a unique unital ˚-homomor-
phism CbpRq Ñ BpH q denoted by f ÞÑ fpT q such that ζpT q “ zT .

4. Self-adjoint extensions of symmetric operators

4.1. The Cayley transform.

Remark. A symmetric operator T is always closable (since T Ă T˚ the latter is densely defined).
Moreover T is symmetric (because T˚ is closed). Consequently any self-adjoint extension of a
symmetric operator T is an extension of T .

Proposition. Let S and T be closed densely defined operators. Then T Ă S if and only if

p1´ zSzS
˚q

1
2 zT “ zSp1´ zT

˚zT q
1
2 . (4)

Proof. Recall that

GraphpT q “ UT
`

HHOR

˘

and GraphpSq “ US
`

HHOR

˘

,

where

UT “

„

p1´ zT
˚zT q

1
2 ´zT

˚

zT p1´ zT zT
˚q

1
2



, US “

„

p1´ zS
˚zSq

1
2 ´zS

˚

zS p1´ zSzS
˚q

1
2



are unitary operators on H ‘H . Now T Ă S if and only if GraphpT q Ă GraphpSq, i.e.

UT
`

HHOR

˘

Ă US
`

HHOR

˘

.

Acting with US
˚ on both sides of this relation we find that US

˚UT preserves the subspace HHOR,
so the lower-left corner of the matrix representation of this operator must be zero. A simple
calculation shows that this is equivalent to (4). �

Corollary. A closed densely defined operator T is symmetric if and only if

p1´ zT
˚zT q

1
2 zT “ zT

˚p1´ zT
˚zT q

1
2 .

Corollary. Let T be a closed symmetric operator. Then

w` “ zT ` ip1´ zT
˚zT q

1
2 and w´ “ zT ´ ip1´ zT

˚zT q
1
2

are isometries.

Put W˘ “ ranw˘ and D˘ “ W˘
K.

Definition. Let T be a closed symmetric operator. The subspaces D` and D´ are called the
deficiency subspaces of T and their dimensions n˘ “ dim D˘ are the deficiency indices of T .

Proposition. D˘ “ ker pT˚ ¯ i1q.

Proof. ζ P D˘ if and only if

0 “
@

ζ
ˇ

ˇ zT ξ ˘ ip1´ zT
˚zT q

1
2 ξ
D

, ξ P H ,

so since

GraphpT q “

"„

p1` zT
˚zT q

1
2 ξ

zT ξ


ˇ

ˇ

ˇ

ˇ

ξ P H

*

,

we find that ζ P D˘ if and only if

0 “ xζ Tψ ˘ iψy, ψ P DompT q

which means that ζ P DompT˚q and T˚ζ “ ˘iζ. �
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Notation/terminology. If v P BpH q is a partial isometry then we denote by v̊ the map v
restricted to the subspace

Domp̊vq “
 

ξ P H
ˇ

ˇ }vξ} “ }ξ}
(

“ ran v˚v “ pker vqK.

This subspace is called the initial subspace of v, while the range of v is referred to as the final
subspace of v.

Proposition. Let T be a closed symmetric operator. Then cT “ w´w`
˚ is a partial isometry

with initial subspace W` and final subspace W´.

Definition. Let T be a closed symmetric operator. The operator c̊T is called the Cayley transform
of T .

4.2. Self-adjoint extensions.

Theorem. Let T be a closed symmetric operator.

(1) GraphpT q “

„

´i1 i1
1 1



Graphpc̊T q,

(2) ran pcT ´ 1qcT ˚ “ H .

Proof. Ad (1). We have

Graphpc̊T q “

"„

θ
w´w`

˚θ


ˇ

ˇ

ˇ

ˇ

θ P W`

*

“

"„

w`ξ
w´ξ


ˇ

ˇ

ˇ

ˇ

ξ P H

*

“

"„

Tψ ` iψ
Tψ ´ iψ


ˇ

ˇ

ˇ

ˇ

ψ P DompT q

*

“

„

´i1 i1
1 1



Graphpc̊T q.

Ad (2). The fact that T is densely defined is equivalent to GraphpT qKXHHOR “ t0u. Thus we
have

˜

„

η
0



K

„

´i1 i1
1 1



Graphpc̊T q

¸

ùñ

´

η “ 0
¯

,

i.e.
˜

@ θ P Dompc̊T q

„

η
0



K

„

´i1 i1
1 1

 „

θ
c̊T θ



¸

ùñ

´

η “ 0
¯

,

or in other words
´

@ θ P Dompc̊T q
@

η
ˇ

ˇ pc̊T ´ 1qθ
D

“ 0
¯

ùñ

´

η “ 0
¯

.

Finally we note that W` “ ran cT
˚, so the condition

η K ran pcT ´ 1qcT
˚

implies η “ 0. �

Theorem.

(1) The assignment T ÞÑ cT is a bijection from the set of closed symmetric operators on H

onto the set of partial isometries c P BpH q such that ran pc´ 1qc˚ “ H ,
(2) we have T1 Ă T2 if and only if c̊T1

Ă c̊T2
,

(3) T is self-adjoint if and only if c̊T is unitary.

Remark. c̊T is unitary if and only if D˘ “ t0u, i.e. n˘ “ 0.

Corollary. A closed symmetric operator has a self-adjoint extension if and only if n` “ n´. In
this case the set of self-adjoint extensions of T is in bijection with the set of unitary operators
D` Ñ D´.
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Remark. Statement (3) in the theorem above follows from the fact that

GraphpT˚q “ GraphpT q ‘ rD` ‘ rD´,

where

rD` “

"„

ξ
iξ


ˇ

ˇ

ˇ

ˇ

ξ P D`

*

, rD´ “

"„

η
´iη


ˇ

ˇ

ˇ

ˇ

η P D´

*

.

Example. Consider H “ L2pr0, 1sq and T “ 1
i B0,0 with domain

DompT q “ DompB0,0q “
 

ϕ P DompBq
ˇ

ˇϕp0q “ 0 “ ϕp1q
(

.

We know that T˚ “ 1
i B, so D˘ “

 

ϕ P DompBq
ˇ

ˇ

1
i Bϕ “ ˘iϕ

(

, i.e. D˘ “ spantε˘u, where

ε`pxq “
b

2
e2´1e1´x

ε´pxq “
b

2
e2´1ex

, x P r0, 1s

(in particular n˘ “ 1). Unitary operators D` Ñ D´ are all of the form ε` ÞÑ αε´ with α P T.
Thus the graph of an extension of c̊T to a unitary operator is

Graphpc̊T q ‘ span

"„

ε`
αε´

*

and the corresponding extension Tα of T is determined by

GraphpTαq “

„

´i1 i1
1 1



Graphpc̊T q ` span

"„

´iε` ` iαε´
ε` ` αε´

*

.

Note also that

span

"„

´iε` ` iαε´
ε` ` αε´

*

“ span

"„

ε` ´ αε´
iε` ` iαε´

*

.

In particular DompTαq “ DompT q ` span
 

ε` ´ αε´
(

. Thus the values of elements of DompTαq at
the end-points of r0, 1s are determined by the values at 0 and 1 of the function ε` ´ αε´:

‚ pε` ´ αε´qp0q “
b

2
e2´1 pe´ αq,

‚ pε` ´ αε´qp1q “
b

2
e2´1 p1´ αeq.

Denote by µ the number
pε`´αε´qp1q
pε`´αε´qp0q

“ e´α
1´αe “

´1
α
e´α
e´α P T.

Then
DompTαq “

 

ϕ P DompBq
ˇ

ˇϕp1q “ µϕp0q
(

.

Note also that the correspondence αØ µ is bijective:

α “ e´µ
1´µe .

Finally Tαpε`´αε´q “ iε`` iαε´ “
1
i Bpε`´αε´q, so Tα “

1
i B on DompTαq (This is in fact clear

from the simple observation that any self-adjoint extension of a symmetric operator is a restriction
of its adjoint). In other words Tα “ Pµ.

4.3. Von Neumann’s theorem.
An operator J : H Ñ H is anti-linear if

‚ @ ξ, η P H Jpξ ` ηq “ Jpξq ` Jpηq,
‚ @ ξ P H , α P C Jpαξq “ αJpξq.

As with linear operators, we usually write Jξ instead of Jpξq for the value of K on ξ.
An anti-linear operator J : H Ñ H is anti-unitary if J is isometric and surjective. One can

show that this is equivalent to J being a surjective anti-linear map satisfying

xJξ Jηy “ xη ξy, ξ, η P H .

Finally we say that an anti-linear operator J is an anti-unitary involution if J is anti-unitary and
J2 “ 1.
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Theorem. Let T be a symmetric operator on H and let J be an anti-unitary involution on H
such that

‚ J
`

DompT q
˘

Ă DompT q,
‚ @ ψ P DompT q TJψ “ JTψ.

Then T has a self-adjoint extension.

Ideal of proof. J maps D` bijectively onto D´. �

Example. As before let T “ 1
i B0,0 on L2pr0, 1sq. For ξ P L2pr0, 1sq Let pJξqpxq “ ´ξpxq (x P r0, 1s).

Clearly J is an anti-unitary involution, JpDompT qq Ă DompT q and for any ψ P DompT q we have

TJψ “ T
`

´ψ
˘

“ 1
i B
`

´ψ
˘

“ ´ 1
i Bψ “ J

`

1
i Bψ

˘

“ JTψ.

This way von Neumann’s theorem can be used to prove existence of self-adjoint extensions of T .

Department of Mathematical Methods in Physics
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