MATHEMATICS AND PHYSICS OF SOUND AND MUSIC

Piotr Mikołaj Sołtan

Department of Mathematical Methods in Physics

PYTHAGOREAN THEOREM

Theorem (First version)

In a right triangle with legs a and b and hypotenuse c we have

$$
a^{2}+b^{2}=c^{2}
$$

THEOREM (SECOND VERSION)

The altitude of a right triangle divides it into two triangles similar to the original.

Pythagoras of Samos

- Born around 570 BCE , died around 495 BCE
- Philosopher, mathematician, musician, ...
- Founded and lead a secret organization - the "Pythagorean brotherhood"
- Pythagoras and his followers believed that the world should be described by mathematics and, in particular, its highest form - geometry.
- He is quoted to have said that "all things are numbers", with the word "number" meaning "rational number" or "ratio".

VIBRATING STRING

- Homogeneous string of length $\ell \mathrm{m}$, mass density $\rho \frac{\mathrm{kg}}{\mathrm{m}}$ and tension $T \mathrm{~N}$

- Deviation from equilibrium at point x at time t :

- From Newton's law ($m \vec{a}=\vec{F}$) we derive the equation which is satisfied by f

$$
\frac{\partial^{2} f}{\partial t^{2}}=c^{2} \frac{\partial^{2} f}{\partial x^{2}}
$$

where $c=\sqrt{T / \rho}$ (velocity of wave propagation).

VibRATING STRING

- Some solutions of the wave equation:

$$
f(x, t)=\sin \left(\frac{n \pi x}{\ell}\right) \cos \left(\frac{n \pi c t}{\ell}+\varphi\right)
$$

$$
(t=\varphi=0)
$$

- Any other solution is a combination (sum) of such solutions.
- The frequency ν is

$$
\nu=\frac{n}{2 \ell} \sqrt{\frac{T}{\rho}} .
$$

- Usually we hear the sound of $n=1$, higher frequencies are softer (we call them overtones).

MUSICAL SOUNDS

- Vibrating strings produce sounds used when making music.
- Usually we limit ourselves to particular frequencies, e.g.

INTERVALS

- The "distances" between sounds we hear are called intervals.
- Our brains perceive the interval through the ratio of frequencies: the interval from a sound of frequency $261 \mathrm{~Hz}\left(c^{1}\right)$ to the sound of frequency $329 \mathrm{~Hz}\left(e^{1}\right)$ is the same as from $f^{1}(349 \mathrm{~Hz})$ to $a^{1}(440 \mathrm{~Hz})$, because

$$
\frac{329}{261} \approx 1.260 \approx \frac{440}{349}
$$

- Thus intervals are nothing else than Pythagorean ratios.
- Intervals for which the ratios are rational numbers with small denominator sound to our ears "in tune" or "harmonious" and we call them consonances.
- Intervals without that property are called dissonances.

Consonances

Interval	Ratio*	Example
Octave	2:1	
Fifth	$3: 2$	
Fourth	4:3	\& ${ }^{\circ}$
Major third	5:4	$\text { ל }-0$
Minor sixth	$8: 5$	
Minor third	6:5	
Major sixth	$5: 3$	

*In practice the ratios are slightly different.

DISSONANCES

Interval	Ratio	Example
Minor seventh	$\approx 16: 9$	
Major second	$\approx 10: 9$	
Major seventh	$\approx 15: 8$	
Minor second	$\approx 16: 15$	
Tritone	$\approx 45: 32$	

- Instead of playing separate notes, we can play them together:

- We then hear different sound waves overlapping.
- This means that the solutions of the wave equations add up.
- This phenomenon is called interference of waves.
- Let us see what that looks like for different intervals.

ANNNNNAN ?
Anmmmmmmenmens of .

ANNNNANA ?.

Minor second
ADAOADAAAAAAA
\qquad

The Tristan chord

- Recall the opening chord form "Tristan und Isolde":

- Here is the wave pattern:

Harmonic series

- Start with a string vibrating with frequency 220 Hz (the note a):

- we also hear a softer note $a^{1}(440 \mathrm{~Hz})$:
ל.

- and $e^{2}(660 \mathrm{~Hz})$:

- as well as $a^{2}(880 \mathrm{~Hz})$:

- and $c \not \sharp^{3}(1100 \mathrm{~Hz})$:

- etc.

Harmonic series

- Let us write all the overtones on one staff starting with $A(110 \mathrm{~Hz})$

- The notes marked in red form the A major chord.
- The ones marked in blue form the seventh chord.
- The common major-minor system is therefore a consequence of the basic physics of sound.

