MATHEMATICS AND PHYSICS OF SOUND AND MUSIC

Piotr Mikołaj Sołtan

Department of Mathematical Methods in Physics

PYTHAGOREAN THEOREM

THEOREM (FIRST VERSION)

In a right triangle with legs a and b and hypotenuse c we have

$$a^2 + b^2 = c^2.$$

THEOREM (SECOND VERSION)

The altitude of a right triangle divides it into two triangles similar to the original.

PYTHAGORAS OF SAMOS

- Born around 570 BCE, died around 495 BCE
- Philosopher, mathematician, musician, ...
- Founded and lead a secret organization — the "Pythagorean brotherhood"
- Pythagoras and his followers believed that the world should be described by mathematics and, in particular, its highest form geometry.
- He is quoted to have said that "all things are numbers", with the word "number" meaning "rational number" or "ratio".

VIBRATING STRING

• Homogeneous string of length ℓ m, mass density $\rho \frac{\text{kg}}{\text{m}}$ and tension *T* N

• Deviation from equilibrium at point *x* at time *t*:

• From Newton's law $(m\vec{a} = \vec{F})$ we derive the equation which is satisfied by f

$$\frac{\partial^2 f}{\partial t^2} = c^2 \frac{\partial^2 f}{\partial x^2}, \qquad (\text{equation})$$

where $c = \sqrt{T/
ho}$ (velocity of wave propagation).

VIBRATING STRING

• Some solutions of the wave equation:

• The **frequency** ν is

$$\nu = \frac{n}{2\ell} \sqrt{\frac{T}{\rho}}.$$

• Usually we hear the sound of *n* = 1, higher frequencies are softer (we call them **overtones**).

MUSICAL SOUNDS

- Vibrating strings produce sounds used when making music.
- Usually we limit ourselves to particular frequencies, e.g.

INTERVALS

- The "distances" between sounds we hear are called **intervals**.
- Our brains perceive the interval through the ratio of frequencies: the interval from a sound of frequency 261 Hz (c^1) to the sound of frequency 329 Hz (e^1) is the same as from f^1 (349 Hz) to a^1 (440 Hz), because

$$\frac{329}{261} \approx 1.260 \approx \frac{440}{349}.$$

- Thus intervals are nothing else than Pythagorean ratios.
- Intervals for which the ratios are rational numbers with small denominator sound to our ears "in tune" or "harmonious" and we call them **consonances**.
- Intervals without that property are called **dissonances**.

CONSONANCES

Interval	Ratio*	Example
Octave	2:1	
Fifth	3:2	
Fourth	4:3	
Major third	5:4	
Minor sixth	8 : 5	
Minor third	6 : 5	
Major sixth	5:3	

^{*}In practice the ratios are slightly different.

DISSONANCES

Interval	Ratio	Example
Minor seventh	$\approx 16:9$	
Major second	pprox 10:9	
Major seventh	pprox 15:8	
Minor second	pprox 16:15	
Tritone	pprox 45:32	

• Instead of playing separate notes, we can play them together:

- We then hear different sound waves overlapping.
- This means that the solutions of the wave equations **add up**.
- This phenomenon is called **interference** of waves.
- Let us see what that looks like for different intervals.

OCTAVE

Fifth

MINOR SECOND

THE TRISTAN CHORD

• Recall the opening chord form "Tristan und Isolde":

• Here is the wave pattern:

HARMONIC SERIES

• Start with a string vibrating with frequency 220 Hz (the note *a*):

• we also hear a softer note a^1 (440 Hz):

• and e^2 (660 Hz):

• as well as a^2 (880 Hz):

• and c^{\sharp}_{3} (1100 Hz):

HARMONIC SERIES

• Let us write all the overtones on one staff starting with *A* (110 Hz)

- The notes marked in red form the **A major chord**.
- The ones marked in blue form the **seventh chord**.
- The common major-minor system is therefore a consequence of the basic physics of sound.