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Motivation: Gelfand’s method of construct-
ing representations of the Lorentz group was
succesfully applied to the quantum Lorentz
group in [PuSLW] (see also [PoSLW]). These
are the representations induced from the one-
dimensional representations of the parabolic
subgroup.

In an attempt to apply Geltand’s construc-
tion to the quantum Lorentz group with Gauss
decomposition (see [ZaSLW]) we need to find
apropriate carrier spaces which classically
should correspond to some spaces of smooth
functions on SL(2,C). We want to start
with the definition of the Schwartz space
S (E4(2)) for the group E,(2) with the prop-
erty that the comultiplication on E(2) maps
S (E¢(2)) into S (E4(2)) @S (Ey(2)).



(Quite surprisingly) by the quantum plane
we mean the set

Cl={zeC:z=00r|z] € ¢%}

(where 0 < ¢ < 1 is a parameter) or rather
the C*-algebra

A has a braided group structure — see the
paper [SLW6]

[t makes sense to call it a (quantum) defor-
mation of IR.



Some notation:
A1 = (T

A"l is the set of elements affiliated with A —
see the paper [SLW2|.

A'l'is a topological x-algebra. The following
automorphisms of A will play an essential
role:

or : (o f))(z) = flq"2),

T (T(f))z) = flaz).
The strongly continuous group oy and the
automorphism 7 obviously extend to A".



Let A" be the set of entire analytic ele-
ments for the group oy and let o; be its an-
alytic generator (see [PMS] and references
therein). A" is a x-algebra. In particular
any function f € A" has the property that
its restriction to any circle of C has a holo-
morphic extension to C \ {0}.

Strange notation!

Explained in this table:
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We shall construct a first order differential
w-calculus (I, d) over A" (see [SLW1]).

Let I" be the A"-bimodule generated by two
distinguished elements

w and w

with relations

f(2w = wf(q-qz), }
flz)w = wflg-q 12),

for all functions f € A".

(1)

Setting w* = W we obtain a A"-x-bimodule
structure on 1.

Now we define d: A" — I
df =lw -, fl=(w-w)f - flw—-0).



We apply d to functions z — z and z — Z:
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w, Z} — (q_Z — 1>ZW7
~w,%] = (% - 1wz
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And now we can rewrite the differential d in
terms of dz and dz:

oS, oS
4 = 0z 0z
B Rf 0 f
= dz 0z 82

where the differential operators are found
using the relations (1).



For f € A"l we have:

of ¢ flat-a ) - fz)

0z 1—¢? 2
of 1 flz)—flqg q7)
0z 1 —¢? 2

of 1 flz)—fla' ¢z
0z 11— ¢? 2

Of ¢ flg-q ') — f(2)
0z 1 —¢? Z

[t is worth noting that for f € A"

: oo —q
( f is a restriction to C ) — <8Lf

of an entire function 0z

(and the same for g—%)

)



From the Leibnitz rule for d we get the fol-
lowing formula:

h(fg)  Ouf
0z c‘?_

O
g+ flg-q 2)65

for f,g € A", so if g is an entire function
we get

Ok(f9) _ Onf
9z 0z

Using this equation we can easily compute
the derivative of the special function Fy, (see

[SLW4]):

O Fy(Az) A
0z  1—gq

SFy(A2), A\ zeCh



Integration over C! — definition:

+oo

S F(2)dp(z) = 5 f f(e"qk)d
Cq

k——oo

- Z q2/-c f f 2777,,2

k=—00 ksl

We have an analogue of Stoke’s theorem,
namely if f € A" has compact support then

0 f
82
ol

pn=0.
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We also have the formulae:

[ flaz)du(z) = % [ f(z)

C! C!
S fla-2)duz) = [ f(z)dp(z)
C? C!

o* _ _ 20,
9. — 4 9%
k™ =20k
9. — 4 5z

on L? (@q) — I? ((Cq, ,u).

Furthermore it can be proved that these are
closed normal operators on L? ((Cq) with a
common core consisting of finite linear com-

binations of the functions gi;(2) = X(|2| =
¢*) (Phase 2)".

11



The Fourier transform:
Fi() = | FO)(du(a)
ol

For k,m € Z and [ € Z we introduce the
SEMINOIMS:

o\, m
llms = | (52 ) a2

L2

And define & (@q) as the space of those func-

tions from A" all of whose || - [/}, 1, semi-
norms are finite:

S(CY) = {f € A" || fllp1m < 00k, I,m}
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Thanks to the formulae:

Os 1 —
a—EU:f)(Z):

e

and the formula

D
5z’ \

20.f

~1gz) =g e (2)

We see that F is a topological isomorphism

of § (@q) onto itself.

The normality of g—% and formula (2) allows
us to forget about all the other differential
operatrs we have defined.
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Woronowicz proved that the space S (@q) 1S
nuclear.

Back to quantum groups — the E,;(2) group
is a C*-algebra generated by two elements

affiliated with it (see [SLWT]) n and v with

relations

ES
vnYvT = qn.

It is in fact the crossed product Co (@q) X
and consists of sums of the form

> oF fin)

keZ
where the f1.’s belong to Cxo (@q).
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We are now investigating various conditions
on sums of the form

> oF fin)

ke

with fi. € § @q) in order to properly define
the space S (Ey(2)) L.e. to have

A S (Eq(2>) — S (Eq(2>) ®8 (Eq(z)) -

where A is the comultiplication of Fg(2).

Remark: for a classical group there is no way
a condition of that kind be satisfied. Never-
theless there is evidence it could be the right
condition for the quantum version of F/(2)

(see [SLW5]).
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