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Motivation: Gelfand’s method of construct-
ing representations of the Lorentz group was
succesfully applied to the quantum Lorentz
group in [PuSLW] (see also [PoSLW]). These
are the representations induced from the one-
dimensional representations of the parabolic
subgroup.

In an attempt to apply Gelfand’s construc-
tion to the quantum Lorentz group with Gauss
decomposition (see [ZaSLW]) we need to find
apropriate carrier spaces which classically
should correspond to some spaces of smooth
functions on SL(2, C). We want to start
with the definition of the Schwartz space
S

(
Eq(2)

)
for the group Eq(2) with the prop-

erty that the comultiplication on Eq(2) maps
S

(
Eq(2)

)
into S

(
Eq(2)

)
⊗̂S

(
Eq(2)

)
.
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(Quite surprisingly) by the quantum plane
we mean the set

Cq
= {z ∈ C : z = 0 or |z| ∈ qZZ}

(where 0 < q < 1 is a parameter) or rather
the C∗-algebra

A = C∞
(
Cq)

.

A has a braided group structure — see the
paper [SLW6]

It makes sense to call it a (quantum) defor-
mation of IR2.
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Some notation:

Aη = C
(
Cq)

Aη is the set of elements affiliated with A —
see the paper [SLW2].

Aη is a topological ∗-algebra. The following
automorphisms of A will play an essential
role:

σt : (σt(f ))(z) = f (qitz),
τ : (τ (f ))(z) = f (qz).

The strongly continuous group σt and the
automorphism τ obviously extend to Aη.
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Let Aη be the set of entire analytic ele-
ments for the group σt and let σi be its an-
alytic generator (see [PMS] and references
therein). Aη is a ∗-algebra. In particular
any function f ∈ Aη has the property that
its restriction to any circle of Cq

has a holo-
morphic extension to C \ {0}.

Strange notation!

Explained in this table:

f ←→ f (z)
τ (f ) ←→ f (qz)

σt(f ) ←→ f (qitz)

σi(f ) ←→ f (q−1 · z)
σ−i(f ) ←→ f (q · z)

(σi ◦ τ )(f ) ←→ f (q−1 · qz)
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We shall construct a first order differential
∗-calculus (Γ, d) over Aη (see [SLW1]).

Let Γ be the Aη-bimodule generated by two
distinguished elements

ω and ω

with relations

f (z)ω = ωf(q · qz),

f (z)ω = ωf(q · q−1z),

}
(1)

for all functions f ∈ Aη.

Setting ω∗ = ω we obtain a Aη-∗-bimodule
structure on Γ.

Now we define d : Aη → Γ:

df = [ω − ω, f ] = (ω − ω)f − f (ω − ω).
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We apply d to functions z 7→ z and z 7→ z :

dz = [ω − ω, z] = (q−2 − 1)zω,

dz = [ω − ω, z ] = (q−2 − 1)ωz.

And now we can rewrite the differential d in
terms of dz and dz :

df =
∂Lf

∂z
dz + dz

∂Rf

∂z

= dz
∂Rf

∂z
+

∂Lf

∂z
dz,

where the differential operators are found
using the relations (1).
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For f ∈ Aη we have:

∂Lf

∂z
=

q2

1− q2

f (q−1 · q−1z)− f (z)

z
∂Rf

∂z
=

1

1− q2

f (z)− f (q · qz)

z
∂Lf

∂z
=

1

1− q2

f (z)− f (q−1 · qz)

z
∂Rf

∂z
=

q2

1− q2

f (q · q−1z)− f (z)

z

It is worth noting that for f ∈ Aη(
f is a restriction to Cq

of an entire function

)
⇐⇒

(
∂Lf

∂z
= 0

)
(and the same for ∂R

∂z ).
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From the Leibnitz rule for d we get the fol-
lowing formula:

∂R(fg)

∂z
=

∂Rf

∂z
g + f (q · q−1z)

∂Rg

∂z

for f, g ∈ Aη, so if g is an entire function
we get

∂R(fg)

∂z
=

∂Rf

∂z
g.

Using this equation we can easily compute
the derivative of the special function Fq (see
[SLW4]):

∂RFq(λz)

∂z
=

λ

1− q2
Fq(λz), λ, z ∈ Cq

.
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Integration over Cq
— definition:

∫
Cq

f (z)dµ(z) =
+∞∑

k=−∞
q2k 1

2π

2π∫
0

f (eiθqk)dθ

=
+∞∑

k=−∞
q2k

∫
qkS1

f (z) dz
2πiz .

We have an analogue of Stoke’s theorem,
namely if f ∈ Aη has compact support then∫

Cq

∂Rf

∂z
dµ = 0.
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We also have the formulae:∫
Cq

f (qz)dµ(z) = q−2
∫
Cq

f (z)dµ(z),∫
Cq

f (q · z)dµ(z) =
∫
Cq

f (z)dµ(z).

With these formulae we can prove that

∂L

∂z

∗
= −q2 ∂L

∂z ,
∂R

∂z

∗
= −q−2 ∂R

∂z

on L2
(
Cq)

= L2
(
Cq

, µ
)
.

Furthermore it can be proved that these are
closed normal operators on L2

(
Cq)

with a
common core consisting of finite linear com-
binations of the functions gkl(z) = χ(|z| =
qk) (Phase z)l.
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The Fourier transform:

Ff (z) =

∫
Cq

Fq(λz)f (z)dµ(z).

For k,m ∈ ZZ and l ∈ ZZ+ we introduce the
seminorms:

‖f‖k,m,l =

∥∥∥∥∥zk
(

∂R

∂z

)l

f (qm · z)

∥∥∥∥∥
L2

And define S
(
Cq)

as the space of those func-
tions from Aη all of whose ‖ · ‖k,l,m semi-
norms are finite:

S
(
Cq)

= {f ∈ Aη : ‖f‖k,l,m <∞∀k, l, m}
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Thanks to the formulae:

∂R

∂z
(Ff ) (z) =

1

1− q2

(
F

(
λf

))
(z),(

F
(

∂Lf

∂λ

))
(z) = − q−2

1− q2
z (Ff ) (z)

and the formula

∂R

∂z
f (q−1 · qz) = q2∂Lf

∂z
(2)

We see that F is a topological isomorphism
of S

(
Cq)

onto itself.

The normality of ∂R

∂z and formula (2) allows
us to forget about all the other differential
operatrs we have defined.
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Woronowicz proved that the space S
(
Cq)

is
nuclear.

Back to quantum groups — the Eq(2) group
is a C∗-algebra generated by two elements
affiliated with it (see [SLW7]) n and v with
relations

vnv∗ = qn.

It is in fact the crossed product C∞
(
Cq)×ZZ

and consists of sums of the form∑
k∈ZZ

vkfk(n)

where the fk’s belong to C∞
(
Cq)

.
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We are now investigating various conditions
on sums of the form∑

k∈ZZ

vkfk(n)

with fk ∈ S
(
Cq)

in order to properly define
the space S

(
Eq(2)

)
i.e. to have

∆: S
(
Eq(2)

)
−→ S

(
Eq(2)

)
⊗̂S

(
Eq(2)

)
.

where ∆ is the comultiplication of Eq(2).

Remark: for a classical group there is no way
a condition of that kind be satisfied. Never-
theless there is evidence it could be the right
condition for the quantum version of E(2)
(see [SLW5]).
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