EMBEDDABLE QUANTUM HOMOGENEOUS SPACES

C*-ALGEBRAS AND BANACH ALGEBRAS INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK

Piotr M. Sołtan (joint work with Paweł Kasprzak)

Department of Mathematical Methods in Physics Faculty of Physics, University of Warsaw

July 10, 2013

PIOTR M. SOŁTAN (WARSAW)

QUANTUM HOMOGENEOUS SPACES

JULY 10. 2013 1 / 20

(日)

PLAN OF TALK

1 LOCALLY COMPACT QUANTUM GROUPS

- 2 QUANTUM G-SPACES
- 3 CLOSED QUANTUM SUBGROUPS AND QUOTIENTS
- 4 W^{*}-QUANTUM HOMOGENEOUS G-SPACES
- 5 Embeddable quantum homogeneous spaces
- 6 QUOTIENT BY THE DIAGONAL SUBGROUP

DEFINITION

A **locally compact quantum group** \mathbb{G} consist of a von Neumann algebra M, a normal unital injective map

$$\Delta \colon \mathsf{M} \longrightarrow \mathsf{M} \,\bar{\otimes} \,\mathsf{M}$$

such that $(\Delta \otimes id) \circ \Delta = (id \otimes \Delta) \circ \Delta$, and two n.s.f. weights φ and ψ on M such that

$$(\mathrm{id}\otimes arphi)\Delta(x) = arphi(x)\mathbb{1}, \qquad (x\in\mathfrak{M}_{arphi}), \ (\psi\otimes\mathrm{id})\Delta(x) = \psi(x)\mathbb{1}, \qquad (x\in\mathfrak{M}_{\psi}).$$

Sac

- 4 伊ト 4 ヨト 4 ヨト - ヨ

DEFINITION

A **locally compact quantum group** \mathbb{G} consist of a von Neumann algebra M, a normal unital injective map

 $\Delta\colon \mathsf{M} \longrightarrow \mathsf{M}\,\bar{\otimes}\,\mathsf{M}$

such that $(\Delta \otimes id) \circ \Delta = (id \otimes \Delta) \circ \Delta$, and two n.s.f. weights φ and ψ on M such that

$$egin{aligned} (\mathrm{id}\otimesarphi)\Delta(x) &= arphi(x)\mathbb{1}, \qquad (x\in\mathfrak{M}_arphi), \ (\psi\otimes\mathrm{id})\Delta(x) &= \psi(x)\mathbb{1}, \qquad (x\in\mathfrak{M}_\psi). \end{aligned}$$

• We write $L^{\infty}(\mathbb{G})$ for the von Neumann algebra M.

DEFINITION

A **locally compact quantum group** \mathbb{G} consist of a von Neumann algebra M, a normal unital injective map

 $\Delta\colon \mathsf{M} \longrightarrow \mathsf{M}\,\bar{\otimes}\,\mathsf{M}$

such that $(\Delta \otimes id) \circ \Delta = (id \otimes \Delta) \circ \Delta$, and two n.s.f. weights φ and ψ on M such that

$$egin{aligned} (\mathrm{id}\otimesarphi)\Delta(x) &= arphi(x)\mathbb{1}, \qquad (x\in\mathfrak{M}_arphi), \ (\psi\otimes\mathrm{id})\Delta(x) &= \psi(x)\mathbb{1}, \qquad (x\in\mathfrak{M}_\psi). \end{aligned}$$

- We write $L^{\infty}(\mathbb{G})$ for the von Neumann algebra M.
- Each l.c.q.g. \mathbb{G} has a **dual** $\widehat{\mathbb{G}}$ and the dual of $\widehat{\mathbb{G}}$ is naturally isomorphic to \mathbb{G} .

DEFINITION

A **locally compact quantum group** \mathbb{G} consist of a von Neumann algebra M, a normal unital injective map

 $\Delta\colon \mathsf{M} \longrightarrow \mathsf{M} \mathbin{\bar{\otimes}} \mathsf{M}$

such that $(\Delta \otimes id) \circ \Delta = (id \otimes \Delta) \circ \Delta$, and two n.s.f. weights φ and ψ on M such that

$$egin{aligned} (\mathrm{id}\otimesarphi)\Delta(x) &= arphi(x)\mathbb{1}, \qquad (x\in\mathfrak{M}_arphi), \ (\psi\otimes\mathrm{id})\Delta(x) &= \psi(x)\mathbb{1}, \qquad (x\in\mathfrak{M}_\psi). \end{aligned}$$

- We write $L^{\infty}(\mathbb{G})$ for the von Neumann algebra M.
- Each l.c.q.g. \mathbb{G} has a **dual** $\widehat{\mathbb{G}}$ and the dual of $\widehat{\mathbb{G}}$ is naturally isomorphic to \mathbb{G} .
- Both L[∞](G) and L[∞](G) are naturally represented on the GNS Hilbert space of ψ called L²(G).

PIOTR M. SOŁTAN (WARSAW)

$MOTIVATING \ \mathsf{EXAMPLE}$

PIOTR M. SOLTAN (WARSAW)

QUANTUM HOMOGENEOUS SPACES

JULY 10, 2013 4 / 20

• Let *G* be a locally compact group.

PIOTR M. SOLTAN (WARSAW)

QUANTUM HOMOGENEOUS SPACES

JULY 10, 2013 4 / 20

990

$MOTIVATING \ \mathsf{EXAMPLE}$

- Let *G* be a locally compact group.
- Define $\Delta \colon L^{\infty}(G) \to L^{\infty}(G) \bar{\otimes} L^{\infty}(G)$

PIOTR M. SOLTAN (WARSAW)

QUANTUM HOMOGENEOUS SPACES

JULY 10, 2013 4 / 20

990

イロト イポト イヨト イヨト 二日

- Let *G* be a locally compact group.
- Define $\Delta \colon L^{\infty}(G) \to L^{\infty}(G) \bar{\otimes} L^{\infty}(G) \cong L^{\infty}(G \times G)$

PIOTR M. SOŁTAN (WARSAW)

QUANTUM HOMOGENEOUS SPACES

JULY 10, 2013 4 / 20

- Let *G* be a locally compact group.
- Define $\Delta \colon L^{\infty}(G) \to L^{\infty}(G) \bar{\otimes} L^{\infty}(G) \cong L^{\infty}(G \times G)$ by

 $(\Delta(f))(\mathbf{s},t) = f(\mathbf{s}t).$

- Let *G* be a locally compact group.
- Define $\Delta \colon L^{\infty}(G) \to L^{\infty}(G) \bar{\otimes} L^{\infty}(G) \cong L^{\infty}(G \times G)$ by

$$(\Delta(f))(\mathbf{s},t) = f(\mathbf{s}t).$$

• Define for $f \in L^{\infty}(G)_+$

< □ > < 同 > < 臣 > < 臣 > 三 = - の < @

- Let *G* be a locally compact group.
- Define $\Delta \colon L^{\infty}(G) \to L^{\infty}(G) \bar{\otimes} L^{\infty}(G) \cong L^{\infty}(G \times G)$ by

 $(\Delta(f))(s,t) = f(st).$

• Define for $f \in L^{\infty}(G)_+$ (i.e. $f \ge 0$)

- Let *G* be a locally compact group.
- Define $\Delta \colon L^{\infty}(G) \to L^{\infty}(G) \bar{\otimes} L^{\infty}(G) \cong L^{\infty}(G \times G)$ by

 $(\Delta(f))(s,t) = f(st).$

• Define for $f \in L^{\infty}(G)_+$ (i.e. $f \ge 0$)

$$arphi(f) = \int\limits_G f \, dh_{ extsf{L}}, \ \psi(f) = \int\limits_G f \, dh_{ extsf{R}},$$

PIOTR M. SOŁTAN (WARSAW)

JULY 10, 2013 4 / 20

- Let *G* be a locally compact group.
- Define $\Delta \colon L^{\infty}(G) \to L^{\infty}(G) \bar{\otimes} L^{\infty}(G) \cong L^{\infty}(G \times G)$ by

 $(\Delta(f))(s,t) = f(st).$

• Define for $f \in L^{\infty}(G)_+$ (i.e. $f \ge 0$)

$$arphi(f) = \int\limits_G f \, dh_{ ext{L}}, \ \psi(f) = \int\limits_G f \, dh_{ ext{R}},$$

where $h_{\rm L}$ and $h_{\rm R}$ are the left and right Haar measures of *G*.

- Let *G* be a locally compact group.
- Define $\Delta \colon L^{\infty}(G) \to L^{\infty}(G) \bar{\otimes} L^{\infty}(G) \cong L^{\infty}(G \times G)$ by

 $(\Delta(f))(s,t) = f(st).$

• Define for $f \in L^{\infty}(G)_+$ (i.e. $f \ge 0$)

$$arphi(f) = \int\limits_G f \, dh_{
m L}, \ \psi(f) = \int\limits_G f \, dh_{
m R},$$

where $h_{\rm L}$ and $h_{\rm R}$ are the left and right Haar measures of *G*. • If *G* is abelian then \widehat{G} is the Pontiagin dual of *G*.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Let *G* be a locally compact group.
- Define $\Delta \colon L^{\infty}(G) \to L^{\infty}(G) \bar{\otimes} L^{\infty}(G) \cong L^{\infty}(G \times G)$ by

 $(\Delta(f))(s,t) = f(st).$

• Define for $f \in L^{\infty}(G)_+$ (i.e. $f \ge 0$)

$$arphi(f) = \int\limits_G f \, dh_{ ext{L}}, \ \psi(f) = \int\limits_G f \, dh_{ ext{R}},$$

where $h_{\rm L}$ and $h_{\rm R}$ are the left and right Haar measures of G.

- If G is abelian then \widehat{G} is the Pontiagin dual of G.
- If *G* is not abelian, $L^{\infty}(\widehat{G})$ is the group von Neumann algebra of *G*.

C^* -Algebraic Approach

PIOTR M. SOŁTAN (WARSAW)

QUANTUM HOMOGENEOUS SPACES

JULY 10, 2013 5 / 20

C^* -Algebraic Approach

Let $\ensuremath{\mathbb{G}}$ be a locally compact quantum group.

PIOTR M. SOŁTAN (WARSAW)

QUANTUM HOMOGENEOUS SPACES

JULY 10, 2013 5 / 20

990

イロト イポト イヨト イヨト 二日

C^* -Algebraic Approach

Let $\mathbb G$ be a locally compact quantum group.

 ${\ }$ There is a C*-algebra, called $C_0({\mathbb G}),$ such that

PIOTR M. SOŁTAN (WARSAW)

QUANTUM HOMOGENEOUS SPACES

<ロ > < 部 > < 注 > < 注 > 注 の < で JULY 10. 2013 5 / 20

Let $\ensuremath{\mathbb{G}}$ be a locally compact quantum group.

- ${\ }$ There is a C*-algebra, called $C_0({\mathbb G}),$ such that
 - $C_0(\mathbb{G})$ is strongly dense in $L^{\infty}(\mathbb{G})$,

Sac

- ロト - (理ト - (ヨト - (ヨト -)ヨ)

Let $\ensuremath{\mathbb{G}}$ be a locally compact quantum group.

- ${\ensuremath{\bullet}}$ There is a C*-algebra, called $C_0(\mathbb{G}),$ such that
 - $C_0(\mathbb{G})$ is strongly dense in $L^{\infty}(\mathbb{G})$,
 - Δ restricted to $C_0(\mathbb{G})$ is a **morphism** from $C_0(\mathbb{G})$ to $C_0(\mathbb{G}) \otimes C_0(\mathbb{G})$,

Sac

イロト イポト イヨト イヨト 二日

Let $\ensuremath{\mathbb{G}}$ be a locally compact quantum group.

- ${\hfill \ }$ There is a C*-algebra, called $C_0({\mathbb G}),$ such that
 - $C_0(\mathbb{G})$ is strongly dense in $L^{\infty}(\mathbb{G})$,
 - Δ restricted to $C_0(\mathbb{G})$ is a **morphism** from $C_0(\mathbb{G})$ to $C_0(\mathbb{G}) \otimes C_0(\mathbb{G})$,
 - ► the sets $(C_0(\mathbb{G}) \otimes \mathbb{1})\Delta(C_0(\mathbb{G}))$ and $\Delta(C_0(\mathbb{G}))(\mathbb{1} \otimes C_0(\mathbb{G}))$ are dense in $C_0(\mathbb{G}) \otimes C_0(\mathbb{G})$.

Let $\mathbb G$ be a locally compact quantum group.

- ${\hfill \ }$ There is a C*-algebra, called $C_0({\mathbb G}),$ such that
 - $C_0(\mathbb{G})$ is strongly dense in $L^{\infty}(\mathbb{G})$,
 - Δ restricted to $C_0(\mathbb{G})$ is a **morphism** from $C_0(\mathbb{G})$ to $C_0(\mathbb{G}) \otimes C_0(\mathbb{G})$,
 - ► the sets $(C_0(\mathbb{G}) \otimes \mathbb{1})\Delta(C_0(\mathbb{G}))$ and $\Delta(C_0(\mathbb{G}))(\mathbb{1} \otimes C_0(\mathbb{G}))$ are dense in $C_0(\mathbb{G}) \otimes C_0(\mathbb{G})$.
- ${\ }$ The pair $(C_0(\mathbb{G}), \Delta|_{C_0(\mathbb{G})})$ determines \mathbb{G} uniquely.

Let $\ensuremath{\mathbb{G}}$ be a locally compact quantum group.

- ${\hfill \ }$ There is a C*-algebra, called $C_0({\mathbb G}),$ such that
 - $C_0(\mathbb{G})$ is strongly dense in $L^{\infty}(\mathbb{G})$,
 - Δ restricted to $C_0(\mathbb{G})$ is a **morphism** from $C_0(\mathbb{G})$ to $C_0(\mathbb{G}) \otimes C_0(\mathbb{G})$,
 - ► the sets $(C_0(\mathbb{G}) \otimes \mathbb{1})\Delta(C_0(\mathbb{G}))$ and $\Delta(C_0(\mathbb{G}))(\mathbb{1} \otimes C_0(\mathbb{G}))$ are dense in $C_0(\mathbb{G}) \otimes C_0(\mathbb{G})$.
- ${\ }$ The pair $(C_0({\mathbb G}), \Delta|_{C_0({\mathbb G})})$ determines ${\mathbb G}$ uniquely.
- G can be defined solely in C*-algebraic terms, so that the von Neumann algebraic and C*-algebraic approaches are equivalent.

Let $\ensuremath{\mathbb{G}}$ be a locally compact quantum group.

- ${\hfill \ }$ There is a C*-algebra, called $C_0({\mathbb G}),$ such that
 - $C_0(\mathbb{G})$ is strongly dense in $L^{\infty}(\mathbb{G})$,
 - Δ restricted to $C_0(\mathbb{G})$ is a **morphism** from $C_0(\mathbb{G})$ to $C_0(\mathbb{G}) \otimes C_0(\mathbb{G})$,
 - ► the sets $(C_0(\mathbb{G}) \otimes \mathbb{1})\Delta(C_0(\mathbb{G}))$ and $\Delta(C_0(\mathbb{G}))(\mathbb{1} \otimes C_0(\mathbb{G}))$ are dense in $C_0(\mathbb{G}) \otimes C_0(\mathbb{G})$.
- ${\ }$ The pair $(C_0({\mathbb G}), \Delta|_{C_0({\mathbb G})})$ determines ${\mathbb G}$ uniquely.
- G can be defined solely in C*-algebraic terms, so that the von Neumann algebraic and C*-algebraic approaches are equivalent.
- There is another C*-algebra $C_0^u(\mathbb{G})$ with a surjection $\Lambda: C_0^u(\mathbb{G}) \to C_0(\mathbb{G})$ which encodes representation theory of $\widehat{\mathbb{G}}; C_0^u(\mathbb{G})$ is called the **universal version** of $C_0(\mathbb{G})$.

Let ${\mathbb G}$ be a locally compact quantum group.

- ${\hfill \ }$ There is a C*-algebra, called $C_0({\mathbb G}),$ such that
 - $C_0(\mathbb{G})$ is strongly dense in $L^{\infty}(\mathbb{G})$,
 - Δ restricted to $C_0(\mathbb{G})$ is a **morphism** from $C_0(\mathbb{G})$ to $C_0(\mathbb{G}) \otimes C_0(\mathbb{G})$,
 - ► the sets $(C_0(\mathbb{G}) \otimes \mathbb{1})\Delta(C_0(\mathbb{G}))$ and $\Delta(C_0(\mathbb{G}))(\mathbb{1} \otimes C_0(\mathbb{G}))$ are dense in $C_0(\mathbb{G}) \otimes C_0(\mathbb{G})$.
- ${\ }$ The pair $(C_0({\mathbb G}), \Delta|_{C_0({\mathbb G})})$ determines ${\mathbb G}$ uniquely.
- G can be defined solely in C*-algebraic terms, so that the von Neumann algebraic and C*-algebraic approaches are equivalent.
- There is another C*-algebra $C_0^{\mathrm{u}}(\mathbb{G})$ with a surjection $\Lambda \colon C_0^{\mathrm{u}}(\mathbb{G}) \to C_0(\mathbb{G})$ which encodes representation theory of $\widehat{\mathbb{G}}$; $C_0^{\mathrm{u}}(\mathbb{G})$ is called the **universal version** of $C_0(\mathbb{G})$.
- By analogy with group C*-algebras, $C_0(\mathbb{G})$ is often called the **reduced** C*-algebra describing \mathbb{G} .

PIOTR M. SOLTAN (WARSAW)

QUANTUM HOMOGENEOUS SPACES

JULY 10, 2013 6 / 20

• *G* — locally compact group.

PIOTR M. SOŁTAN (WARSAW)

QUANTUM HOMOGENEOUS SPACES

JULY 10, 2013 6 / 20

200

- *G* locally compact group.
- For $f \in C_0(G)$ put

$$(\Delta(f))(s,t) = f(st),$$
 $(s,t \in G).$

PIOTR M. SOŁTAN (WARSAW)

QUANTUM HOMOGENEOUS SPACES

JULY 10, 2013 6 / 20

990

<ロト < 部ト < 注ト < 注ト = 注</p>

- *G* locally compact group.
- For $f \in C_0(G)$ put

$$(\Delta(f))(s,t) = f(st),$$
 $(s,t \in G).$

• Note that $\Delta(f) \notin C_0(G \times G) \cong C_0(G) \otimes C_0(G)$.

200

<ロト < 部ト < 注ト < 注ト = 注</p>

- *G* locally compact group.
- For $f \in C_0(G)$ put

$$(\Delta(f))(s,t) = f(st),$$
 $(s,t \in G).$

- Note that $\Delta(f) \notin C_0(G \times G) \cong C_0(G) \otimes C_0(G)$.
- Clearly $\Delta(f) \in C_B(G \times G) \cong M(C_0(G) \otimes C_0(G)).$

- *G* locally compact group.
- For $f \in C_0(G)$ put

$$(\Delta(f))(s,t) = f(st),$$
 $(s,t \in G).$

- Note that $\Delta(f) \notin C_0(G \times G) \cong C_0(G) \otimes C_0(G)$.
- Clearly $\Delta(f) \in C_{B}(G \times G) \cong M(C_{0}(G) \otimes C_{0}(G)).$
- $\Delta(C_0(G))(C_0(G) \otimes C_0(G))$ is dense in $C_0(G) \otimes C_0(G)$.

- *G* locally compact group.
- For $f \in C_0(G)$ put

$$(\Delta(f))(s,t) = f(st),$$
 $(s,t \in G).$

- Note that $\Delta(f) \notin C_0(G \times G) \cong C_0(G) \otimes C_0(G)$.
- Clearly $\Delta(f) \in C_{\scriptscriptstyle B}(G \times G) \cong M(C_0(G) \otimes C_0(G)).$
- $\Delta(C_0(G))(C_0(G) \otimes C_0(G))$ is dense in $C_0(G) \otimes C_0(G)$. (Δ is a **morphism**.)

200

イロト イポト イヨト 一日

- *G* locally compact group.
- For $f \in C_0(G)$ put

$$(\Delta(f))(s,t) = f(st),$$
 $(s,t \in G).$

- Note that $\Delta(f) \notin C_0(G \times G) \cong C_0(G) \otimes C_0(G)$.
- Clearly $\Delta(f) \in C_B(G \times G) \cong M(C_0(G) \otimes C_0(G)).$
- $\Delta(C_0(G))(C_0(G) \otimes C_0(G))$ is dense in $C_0(G) \otimes C_0(G)$. (Δ is a **morphism**.)
- In fact $\Delta(C_0(G))(\mathbb{1} \otimes C_0(G))$ and $\Delta(C_0(G))(C_0(G) \otimes \mathbb{1})$ are dense in $C_0(G) \otimes C_0(G)$.

- *G* locally compact group.
- For $f \in C_0(G)$ put

$$(\Delta(f))(s,t) = f(st),$$
 $(s,t \in G).$

- Note that $\Delta(f) \notin C_0(G \times G) \cong C_0(G) \otimes C_0(G)$.
- Clearly $\Delta(f) \in C_B(G \times G) \cong M(C_0(G) \otimes C_0(G)).$
- $\Delta(C_0(G))(C_0(G) \otimes C_0(G))$ is dense in $C_0(G) \otimes C_0(G)$. (Δ is a **morphism**.)
- In fact $\Delta(C_0(G))(\mathbb{1} \otimes C_0(G))$ and $\Delta(C_0(G))(C_0(G) \otimes \mathbb{1})$ are dense in $C_0(G) \otimes C_0(G)$.
- $C_0^u(G)$ is canonically isomorphic to $C_0(G)$.

イロト (同) (三) (三) (つ) (つ)
EXAMPLE REVISITED

- *G* locally compact group.
- For $f \in C_0(G)$ put

$$(\Delta(f))(s,t) = f(st),$$
 $(s,t \in G).$

- Note that $\Delta(f) \notin C_0(G \times G) \cong C_0(G) \otimes C_0(G)$.
- Clearly $\Delta(f) \in C_B(G \times G) \cong M(C_0(G) \otimes C_0(G)).$
- $\Delta(C_0(G))(C_0(G) \otimes C_0(G))$ is dense in $C_0(G) \otimes C_0(G)$. (Δ is a **morphism**.)
- In fact $\Delta(C_0(G))(\mathbb{1} \otimes C_0(G))$ and $\Delta(C_0(G))(C_0(G) \otimes \mathbb{1})$ are dense in $C_0(G) \otimes C_0(G)$.
- $C_0^u(G)$ is canonically isomorphic to $C_0(G)$.
- $C_0(\widehat{G})$ is the reduced group C*-algebra of *G*.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

EXAMPLE REVISITED

- *G* locally compact group.
- For $f \in C_0(G)$ put

$$(\Delta(f))(s,t) = f(st),$$
 $(s,t \in G).$

- Note that $\Delta(f) \notin C_0(G \times G) \cong C_0(G) \otimes C_0(G)$.
- Clearly $\Delta(f) \in C_B(G \times G) \cong M(C_0(G) \otimes C_0(G)).$
- $\Delta(C_0(G))(C_0(G) \otimes C_0(G))$ is dense in $C_0(G) \otimes C_0(G)$. (Δ is a **morphism**.)
- In fact $\Delta(C_0(G))(\mathbb{1} \otimes C_0(G))$ and $\Delta(C_0(G))(C_0(G) \otimes \mathbb{1})$ are dense in $C_0(G) \otimes C_0(G)$.
- $C_0^u(G)$ is canonically isomorphic to $C_0(G)$.
- $C_0(\widehat{G})$ is the reduced group C*-algebra of *G*.
- $C_0^u(\widehat{G})$ is the universal group C*-algebra of *G*.

PIOTR M. SOLTAN (WARSAW)

QUANTUM HOMOGENEOUS SPACES

• \mathbb{G} — locally compact quantum group,

PIOTR M. SOLTAN (WARSAW)

QUANTUM HOMOGENEOUS SPACES

JULY 10, 2013 7 / 20

- \mathbb{G} locally compact quantum group,
- \mathbb{X} quantum space, i.e.

- \mathbb{G} locally compact quantum group,
- \mathbb{X} quantum space, i.e. either
 - \blacktriangleright a C*-algebra called $C_0(\mathbb{X})$ is given

- \mathbb{G} locally compact quantum group,
- \mathbb{X} quantum space, i.e. either
 - a C^{*}-algebra called $C_0(\mathbb{X})$ is given

(topological structure)

- \mathbb{G} locally compact quantum group,
- \mathbb{X} quantum space, i.e. either
 - ► a C*-algebra called $C_0(X)$ is given (topological structure) or

PIOTR M. SOŁTAN (WARSAW)

QUANTUM HOMOGENEOUS SPACES

JULY 10, 2013 7 / 20

- \mathbb{G} locally compact quantum group,
- \mathbb{X} quantum space, i.e. either
 - ► a C*-algebra called $C_0(X)$ is given or

(topological structure)

► a v.N. algebra called $L^{\infty}(X)$ is given

- \mathbb{G} locally compact quantum group,
- \mathbb{X} quantum space, i.e. either
 - ► a C*-algebra called $C_0(X)$ is given (topological structure) or
 - ▶ a v.N. algebra called $L^{\infty}(\mathbb{X})$ is given (measurable structure)

- \mathbb{G} locally compact quantum group,
- \mathbb{X} quantum space, i.e. either
 - ► a C*-algebra called C₀(X) is given or

(topological structure)

(measurable structure)

- a v.N. algebra called $L^{\infty}(\mathbb{X})$ is given
- \bullet An action of $\mathbb G$ on $\mathbb X$ is described by

200

- コット (雪) (雪) (日)

- \mathbb{G} locally compact quantum group,
- X quantum space, i.e. either
 - ► a C*-algebra called $C_0(X)$ is given (topological structure) or
 - ► a v.N. algebra called $L^{\infty}(\mathbb{X})$ is given (measurable structure)
- An **action** of \mathbb{G} on \mathbb{X} is described by either
 - $\alpha \in Mor(C_0(\mathbb{X}), C_0(\mathbb{G}) \otimes C_0(\mathbb{X}))$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- \mathbb{G} locally compact quantum group,
- \mathbb{X} quantum space, i.e. either
 - ► a C*-algebra called $C_0(X)$ is given (topological structure) or
 - ► a v.N. algebra called $L^{\infty}(\mathbb{X})$ is given (measurable structure)
- \bullet An **action** of $\mathbb G$ on $\mathbb X$ is described by either
 - $\alpha \in Mor(C_0(\mathbb{X}), C_0(\mathbb{G}) \otimes C_0(\mathbb{X}))$

or

- \mathbb{G} locally compact quantum group,
- X quantum space, i.e. either
 - ► a C*-algebra called $C_0(X)$ is given (topological structure) or
 - ► a v.N. algebra called $L^{\infty}(\mathbb{X})$ is given (measurable structure)
- \bullet An **action** of $\mathbb G$ on $\mathbb X$ is described by either
 - ► $\alpha \in Mor(C_0(X), C_0(\mathbb{G}) \otimes C_0(X))$ or
 - $\blacktriangleright \ \alpha \colon L^\infty(\mathbb{X}) \to L^\infty(\mathbb{G}) \,\bar{\otimes} \, L^\infty(\mathbb{X})$

- \mathbb{G} locally compact quantum group,
- \mathbb{X} quantum space, i.e. either
 - ► a C*-algebra called $C_0(X)$ is given (topological structure) or
 - ► a v.N. algebra called $L^{\infty}(\mathbb{X})$ is given (measurable structure)
- \bullet An **action** of $\mathbb G$ on $\mathbb X$ is described by either
 - $\alpha \in \operatorname{Mor}(C_0(\mathbb{X}), C_0(\mathbb{G}) \otimes C_0(\mathbb{X}))$

or

 $\blacktriangleright \ \alpha \colon L^{\infty}(\mathbb{X}) \to L^{\infty}(\mathbb{G}) \,\bar{\otimes} \, L^{\infty}(\mathbb{X})$

such that

 $(\mathrm{id}\otimes\alpha)\circ\alpha=(\Delta\otimes\mathrm{id})\circ\alpha.$

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ . 三 . 9 < 0

- \mathbb{G} locally compact quantum group,
- X quantum space, i.e. either
 - ► a C*-algebra called $C_0(X)$ is given (topological structure) or
 - ► a v.N. algebra called $L^{\infty}(\mathbb{X})$ is given (measurable structure)
- \bullet An **action** of $\mathbb G$ on $\mathbb X$ is described by either
 - $\alpha \in Mor(C_0(\mathbb{X}), C_0(\mathbb{G}) \otimes C_0(\mathbb{X}))$

or

• $\alpha \colon L^{\infty}(\mathbb{X}) \to L^{\infty}(\mathbb{G}) \,\bar{\otimes} \, L^{\infty}(\mathbb{X})$

such that

 $(\mathrm{id}\otimes\alpha)\circ\alpha=(\Delta\otimes\mathrm{id})\circ\alpha.$

• Continuity and Podleś Condition

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ . 三 . 9 < 0

- \mathbb{G} locally compact quantum group,
- \mathbb{X} quantum space, i.e. either
 - ► a C*-algebra called $C_0(X)$ is given (topological structure) or
 - ► a v.N. algebra called $L^{\infty}(\mathbb{X})$ is given (measurable structure)
- \bullet An **action** of $\mathbb G$ on $\mathbb X$ is described by either
 - $\alpha \in Mor(C_0(\mathbb{X}), C_0(\mathbb{G}) \otimes C_0(\mathbb{X}))$

or

 $\blacktriangleright \ \alpha \colon L^{\infty}(\mathbb{X}) \to L^{\infty}(\mathbb{G}) \,\bar{\otimes} \, L^{\infty}(\mathbb{X})$

such that

 $(\mathrm{id}\otimes\alpha)\circ\alpha=(\Delta\otimes\mathrm{id})\circ\alpha.$

- **Continuity** and **Podleś Condition**: in the C*-context the conditions
 - $(\mathbf{C}_0(\mathbb{G}) \otimes \mathbb{1}) \alpha(\mathbf{C}_0(\mathbb{X})) \subset \mathbf{C}_0(\mathbb{G}) \otimes \mathbf{C}_0(\mathbb{X})$

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- \mathbb{G} locally compact quantum group,
- \mathbb{X} quantum space, i.e. either
 - ► a C*-algebra called $C_0(X)$ is given (topological structure) or
 - ► a v.N. algebra called $L^{\infty}(\mathbb{X})$ is given (measurable structure)
- An **action** of \mathbb{G} on \mathbb{X} is described by either
 - $\alpha \in Mor(C_0(\mathbb{X}), C_0(\mathbb{G}) \otimes C_0(\mathbb{X}))$

or

 $\blacktriangleright \ \alpha \colon L^{\infty}(\mathbb{X}) \to L^{\infty}(\mathbb{G}) \,\bar{\otimes} \, L^{\infty}(\mathbb{X})$

such that

 $(\mathrm{id}\otimes\alpha)\circ\alpha=(\Delta\otimes\mathrm{id})\circ\alpha.$

- **Continuity** and **Podleś Condition**: in the C*-context the conditions
 - $\blacktriangleright \ (C_0(\mathbb{G})\otimes 1)\alpha(C_0(\mathbb{X})) \subset \ C_0(\mathbb{G})\otimes C_0(\mathbb{X}) \tag{continuity}$

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- \mathbb{G} locally compact quantum group,
- \mathbb{X} quantum space, i.e. either
 - ► a C*-algebra called $C_0(X)$ is given (topological structure) or
 - ► a v.N. algebra called $L^{\infty}(\mathbb{X})$ is given (measurable structure)
- \bullet An **action** of $\mathbb G$ on $\mathbb X$ is described by either
 - $\alpha \in Mor(C_0(\mathbb{X}), C_0(\mathbb{G}) \otimes C_0(\mathbb{X}))$

or

 $\blacktriangleright \ \alpha \colon L^{\infty}(\mathbb{X}) \to L^{\infty}(\mathbb{G}) \,\bar{\otimes} \, L^{\infty}(\mathbb{X})$

such that

 $(\mathrm{id}\otimes\alpha)\circ\alpha=(\Delta\otimes\mathrm{id})\circ\alpha.$

- **Continuity** and **Podleś Condition**: in the C*-context the conditions
 - $(\mathbf{C}_0(\mathbb{G}) \otimes \mathbb{1}) \alpha(\mathbf{C}_0(\mathbb{X})) \subset \mathbf{C}_0(\mathbb{G}) \otimes \mathbf{C}_0(\mathbb{X})$

(continuity)

 $\blacktriangleright (\mathbf{C}_0(\mathbb{G}) \otimes \mathbb{1}) \alpha(\mathbf{C}_0(\mathbb{X})) \underset{\text{dense}}{\subset} \mathbf{C}_0(\mathbb{G}) \otimes \mathbf{C}_0(\mathbb{X})$

PIOTR M. SOŁTAN (WARSAW)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- \mathbb{G} locally compact quantum group,
- \mathbb{X} quantum space, i.e. either
 - ► a C*-algebra called $C_0(X)$ is given (topological structure) or
 - ► a v.N. algebra called $L^{\infty}(\mathbb{X})$ is given (measurable structure)
- \bullet An **action** of $\mathbb G$ on $\mathbb X$ is described by either
 - $\alpha \in Mor(C_0(\mathbb{X}), C_0(\mathbb{G}) \otimes C_0(\mathbb{X}))$

or

• $\alpha \colon L^{\infty}(\mathbb{X}) \to L^{\infty}(\mathbb{G}) \,\bar{\otimes} \, L^{\infty}(\mathbb{X})$

such that

 $(\mathrm{id}\otimes\alpha)\circ\alpha=(\Delta\otimes\mathrm{id})\circ\alpha.$

- **Continuity** and **Podleś Condition**: in the C*-context the conditions
 - $\bullet \ (\mathbf{C}_0(\mathbb{G}) \otimes \mathbb{1}) \alpha(\mathbf{C}_0(\mathbb{X})) \ \subset \ \mathbf{C}_0(\mathbb{G}) \otimes \mathbf{C}_0(\mathbb{X})$
 - $\blacktriangleright \ (C_0(\mathbb{G}) \otimes \mathbb{1}) \alpha(C_0(\mathbb{X})) \mathop{\subset}_{_{\mathrm{dense}}} C_0(\mathbb{G}) \otimes C_0(\mathbb{X})$

(continuity) (Podleś condition)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- \mathbb{G} locally compact quantum group,
- \mathbb{X} quantum space, i.e. either
 - ► a C*-algebra called $C_0(X)$ is given (topological structure) or
 - ► a v.N. algebra called $L^{\infty}(\mathbb{X})$ is given (measurable structure)
- \bullet An **action** of $\mathbb G$ on $\mathbb X$ is described by either
 - $\alpha \in Mor(C_0(\mathbb{X}), C_0(\mathbb{G}) \otimes C_0(\mathbb{X}))$

or

 $\blacktriangleright \ \alpha \colon L^\infty(\mathbb{X}) \to L^\infty(\mathbb{G}) \,\bar{\otimes} \, L^\infty(\mathbb{X})$

such that

 $(\mathrm{id}\otimes\alpha)\circ\alpha=(\Delta\otimes\mathrm{id})\circ\alpha.$

- **Continuity** and **Podleś Condition**: in the C*-context the conditions
 - $\blacktriangleright \ (\mathbf{C}_0(\mathbb{G}) \otimes \mathbb{1}) \alpha(\mathbf{C}_0(\mathbb{X})) \ \subset \ \mathbf{C}_0(\mathbb{G}) \otimes \mathbf{C}_0(\mathbb{X})$
 - $\blacktriangleright (C_0(\mathbb{G}) \otimes 1) \alpha(C_0(\mathbb{X})) \underset{dense}{\subset} C_0(\mathbb{G}) \otimes C_0(\mathbb{X})$

(continuity) (Podleś condition)

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

are relevant (and desirable).

PIOTR M. SOŁTAN (WARSAW)

JULY 10, 2013 7 / 20

PIOTR M. SOŁTAN (WARSAW)

QUANTUM HOMOGENEOUS SPACES

JULY 10, 2013 8 / 20

(日)

• Let *G* act on a l.c. space *X*.

PIOTR M. SOŁTAN (WARSAW)

QUANTUM HOMOGENEOUS SPACES

JULY 10, 2013 8 / 20

DQC

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Let *G* act on a l.c. space *X*.
- For $f \in C_0(X)$ define $\alpha(f) \colon G \times X \to \mathbb{C}$ by

$$\alpha(f)(g, \mathbf{x}) = f(g \cdot \mathbf{x}). \tag{(*)}$$

PIOTR M. SOŁTAN (WARSAW)

<ロト < 部 > < き > < き >

3

• Let G act on a l.c. space X.

• For $f \in C_0(X)$ define $\alpha(f) \colon G \times X \to \mathbb{C}$ by

$$\alpha(f)(g, x) = f(g \cdot x). \tag{(*)}$$

Image: A math a math

Then $\alpha(f) \in C_B(G \times X) \cong M(C_0(G) \otimes C_0(X))$

PIOTR M. SOŁTAN (WARSAW)

QUANTUM HOMOGENEOUS SPACES

< 3 > JULY 10, 2013 8 / 20

3

Sac

- Let *G* act on a l.c. space *X*.
- For $f \in C_0(X)$ define $\alpha(f) \colon G \times X \to \mathbb{C}$ by

$$\alpha(f)(g, x) = f(g \cdot x). \tag{(*)}$$

Then $\alpha(f) \in C_{\mathbb{B}}(G \times X) \cong M(C_0(G) \otimes C_0(X))$ and $\alpha \in Mor(C_0(X), C_0(G) \otimes C_0(X))$.

Sac

(日)

- Let *G* act on a l.c. space *X*.
- For $f \in C_0(X)$ define $\alpha(f) \colon G \times X \to \mathbb{C}$ by

$$\alpha(f)(\boldsymbol{g}, \boldsymbol{x}) = f(\boldsymbol{g} \cdot \boldsymbol{x}). \tag{(*)}$$

Then $\alpha(f) \in C_B(G \times X) \cong M(C_0(G) \otimes C_0(X))$ and $\alpha \in Mor(C_0(X), C_0(G) \otimes C_0(X))$.

• Since $(g_1g_2) \cdot x = g_1 \cdot (g_2 \cdot x)$, we have

$$(\alpha \otimes \mathrm{id}) \circ \alpha = (\mathrm{id} \otimes \Delta) \circ \alpha. \tag{**}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Let *G* act on a l.c. space *X*.
- For $f \in C_0(X)$ define $\alpha(f) \colon G \times X \to \mathbb{C}$ by

$$\alpha(f)(g, \mathbf{x}) = f(g \cdot \mathbf{x}). \tag{(*)}$$

Then $\alpha(f) \in C_B(G \times X) \cong M(C_0(G) \otimes C_0(X))$ and $\alpha \in Mor(C_0(X), C_0(G) \otimes C_0(X))$.

• Since $(g_1g_2) \cdot x = g_1 \cdot (g_2 \cdot x)$, we have

$$(\alpha \otimes \mathrm{id}) \circ \alpha = (\mathrm{id} \otimes \Delta) \circ \alpha. \tag{**}$$

• Given a C*-algebra A and $\alpha \in Mor(A, C_0(G) \otimes A)$ s.t. (**), the condition that $(C_0(G) \otimes 1)\alpha(A) \subset C_0(G) \otimes A$ implies existence of a **continuous** action of *G* on A such that (*) holds.

- Let *G* act on a l.c. space *X*.
- For $f \in C_0(X)$ define $\alpha(f) \colon G \times X \to \mathbb{C}$ by

$$\alpha(f)(g, \mathbf{x}) = f(g \cdot \mathbf{x}). \tag{(*)}$$

Then $\alpha(f) \in C_B(G \times X) \cong M(C_0(G) \otimes C_0(X))$ and $\alpha \in Mor(C_0(X), C_0(G) \otimes C_0(X))$.

• Since $(g_1g_2) \cdot x = g_1 \cdot (g_2 \cdot x)$, we have

$$(\alpha \otimes \mathrm{id}) \circ \alpha = (\mathrm{id} \otimes \Delta) \circ \alpha. \tag{**}$$

- Given a C*-algebra A and $\alpha \in Mor(A, C_0(G) \otimes A)$ s.t. (**), the condition that $(C_0(G) \otimes 1)\alpha(A) \subset C_0(G) \otimes A$ implies existence of a **continuous** action of *G* on A such that (*) holds.
- If, moreover, $(C_0(\mathbb{G}) \otimes 1)\alpha(A) \underset{\text{dense}}{\subset} C_0(\mathbb{G}) \otimes A$ then this action is **unital**.

PIOTR M. SOŁTAN (WARSAW)

Quantum \mathbb{G} -Spaces

PIOTR M. SOŁTAN (WARSAW)

QUANTUM HOMOGENEOUS SPACES

JULY 10, 2013 9 / 20

990

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Quantum \mathbb{G} -Spaces

 \mathbb{G} — a locally compact quantum group.

Ergodic W*-Quantum G-Spaces	Quantum Homogeneous Spaces	C*-Quantum G-Spaces
Embeddable W*-Quantum G-Spaces	Embeddable Quantum Homogeneous Spaces Quotient Type	
)	

PIOTR M. SOŁTAN (WARSAW)

QUANTUM HOMOGENEOUS SPACES

JULY 10. 2013 9 / 20

990

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 \mathbb{G} — a locally compact quantum group.

Many classes of objects, some relations unclear

PIOTR M. SOLTAN (WARSAW)

QUANTUM HOMOGENEOUS SPACES

◆ロト ◆帰 ト ◆ 臣 ト ◆ 臣 ト ● の Q ()

Quantum \mathbb{G} -Spaces

 \mathbb{G} — a locally compact quantum group.

• Von Neumann algebra language, $\alpha(x) = \mathbb{1} \otimes x \Rightarrow x \in \mathbb{C}\mathbb{1}$

PIOTR M. SOLTAN (WARSAW)

Sac

イロト イポト イヨト

 \mathbb{G} — a locally compact quantum group.

• Left coideals in $L^{\infty}(\mathbb{G})$, co-duality

PIOTR M. SOŁTAN (WARSAW)

JULY 10, 2013 9 / 20

Sac

 \mathbb{G} — a locally compact quantum group.

• C*-algebra language, Podles condition

PIOTR M. SOLTAN (WARSAW)

QUANTUM HOMOGENEOUS SPACES

Sac

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > · □

 \mathbb{G} — a locally compact quantum group.

• Compatible C*- and von Neumann description

PIOTR M. SOLTAN (WARSAW)

QUANTUM HOMOGENEOUS SPACES

◆ロト ◆帰 ト ◆ 臣 ト ◆ 臣 ト ● の Q ()
Quantum $\mathbb{G} ext{-}Spaces$

 \mathbb{G} — a locally compact quantum group.

• Defined by S. Vaes, cf. work of P. Podleś

PIOTR M. SOLTAN (WARSAW)

QUANTUM HOMOGENEOUS SPACES

Quantum $\mathbb{G} ext{-}Spaces$

 \mathbb{G} — a locally compact quantum group.

• Natural class we wish to study

PIOTR M. SOLTAN (WARSAW)

Sac

 $\bullet~\mathbb{G}$ — a compact quantum group

(ロト・日本・モント・モントを うので) PIOTR M. SOLTAN (WARSAW) QUANTUM HOMOGENEOUS SPACES JULY 10, 2013 10 / 20

 $\bullet \ \mathbb{G}$ — a compact quantum group (C_0(\mathbb{G}) is unital).

- \mathbb{G} a compact quantum group ($C_0(\mathbb{G})$ is unital).
- consider only actions on **compact** quantum spaces.

◆ロト ◆帰 ト ◆ 臣 ト ◆ 臣 ト ● の Q ()

- ${\ {\rm o} \ } {\mathbb G}$ a compact quantum group (C_0({\mathbb G}) is unital).
- consider only actions on **compact** quantum spaces.

イロト イポト イヨト

- ${\ {\rm o} \ } {\mathbb G}$ a compact quantum group (C_0({\mathbb G}) is unital).
- consider only actions on **compact** quantum spaces.

• Ergodic actions (transitivity)

PIOTR M. SOŁTAN (WARSAW)

ヨト・モヨトー

Image: A matrix and a matrix

- \mathbb{G} a compact quantum group (C_0($\mathbb{G})$ is unital).
- consider only actions on **compact** quantum spaces.

• Q.H.S.'s arising from subgroups (careful)

PIOTR M.	SOŁTAN	(WARSAW)
----------	--------	----------

Image: A matrix and a matrix

- ${\ {\rm o} \ } {\mathbb G}$ a compact quantum group (C_0({\mathbb G}) is unital).
- consider only actions on **compact** quantum spaces.

• Ergodic actions realized inside $C(\mathbb{G})$ via Δ

PIOTR M. SOŁTAN (WARSAW)

QUANTUM HOMOGENEOUS SPACES

- ${\ {\rm o} \ } {\mathbb G}$ a compact quantum group (C_0({\mathbb G}) is unital).
- consider only actions on **compact** quantum spaces.

Classically correspond to classical homogeneous spaces

QU

PIOTR M. SOŁTAN (WARSAW)

		Þ	< P	₽.	< E	► - 1		Þ	-	\$)Q(<u> </u>
ANTUM HOMOGENEOUS SPACES				e	July	10,	20	13	1	0 / 20)

PIOTR M. SOLTAN (WARSAW)

QUANTUM HOMOGENEOUS SPACES

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ JULY 10, 2013

11 / 20

DEFINITION

 $\mathbb{G}, \mathbb{H} - l.c.q.g.$'s.

ペロト・(書)・(書)・(書)・(書)、書 つくで ARSAW) QUANTUM HOMOGENEOUS SPACES JULY 10, 2013 11 / 20

PIOTR M. SOŁTAN (WARSAW)

DEFINITION

- $\mathbb{G},\,\mathbb{H}-\text{l.c.q.g.'s.}$
 - $\textcircled{0}~\mathbb{H}$ is a closed quantum subgroup of \mathbb{G} in the sense of Vaes

PIOTR M. SOŁTAN (WARSAW)

Sar

DEFINITION

- $\mathbb{G}, \mathbb{H} \text{l.c.q.g.'s.}$
 - $\textcircled{1} \mathbb{H} \text{ is a closed quantum subgroup of } \mathbb{G} \text{ in the sense of Vaes} \\ \text{if there exists a normal, unital, injective map} \\$

$$\widehat{\pi}\colon L^{\infty}(\widehat{\mathbb{H}})\longrightarrow L^{\infty}(\widehat{\mathbb{G}})$$

intertwining comultiplications.

Sac

DEFINITION

- $\mathbb{G}, \mathbb{H} \text{l.c.q.g.'s.}$
 - $\textcircled{1} \ \mathbb{H} \text{ is a closed quantum subgroup of } \mathbb{G} \text{ in the sense of Vaes} \\ \text{if there exists a normal, unital, injective map} \\$

$$\widehat{\pi}\colon L^\infty(\widehat{\mathbb{H}}) \longrightarrow L^\infty(\widehat{\mathbb{G}})$$

intertwining comultiplications.

2 \mathbb{H} is a **closed quantum subgroup** of \mathbb{G} in the sense of Woronowicz

イロト イポト イヨト 一日

DEFINITION

- $\mathbb{G}, \mathbb{H} \text{l.c.q.g.'s.}$
 - I II is a closed quantum subgroup of G in the sense of Vaes if there exists a normal, unital, injective map

$$\widehat{\pi}\colon L^\infty(\widehat{\mathbb{H}})\longrightarrow L^\infty(\widehat{\mathbb{G}})$$

intertwining comultiplications.

② ℍ is a closed quantum subgroup of G in the sense of Woronowicz if there exists a surjective *-homomorphism

$$\pi\colon \operatorname{C}^{\operatorname{u}}_0(\mathbb{G})\longrightarrow \operatorname{C}^{\operatorname{u}}_0(\mathbb{H})$$

intertwining comultiplications.

PIOTR M. SOŁTAN (WARSAW)

Sac

- ロ ト - 4 日 ト - 4 日 ト - 日 ト

DEFINITION

- $\mathbb{G}, \mathbb{H} \text{l.c.q.g.'s.}$
 - $\textcircled{1} \ \mathbb{H} \text{ is a closed quantum subgroup of } \mathbb{G} \text{ in the sense of Vaes} \\ \text{if there exists a normal, unital, injective map} \\$

$$\widehat{\pi}\colon L^\infty(\widehat{\mathbb{H}})\longrightarrow L^\infty(\widehat{\mathbb{G}})$$

intertwining comultiplications.

② ℍ is a closed quantum subgroup of G in the sense of Woronowicz if there exists a surjective *-homomorphism

$$\pi\colon \operatorname{C}^{\operatorname{u}}_0(\mathbb{G})\longrightarrow \operatorname{C}^{\operatorname{u}}_0(\mathbb{H})$$

intertwining comultiplications.

•
$$\left(\mathbb{H}_{\operatorname{Vaes}}\mathbb{G}\right) \Longrightarrow \left(\mathbb{H}_{\operatorname{SLW}}\mathbb{G}\right),$$

PIOTR M. SOŁTAN (WARSAW)

Sac

- ロ ト - 4 日 ト - 4 日 ト - 日 ト

DEFINITION

- $\mathbb{G}, \mathbb{H} \text{l.c.q.g.'s.}$
 - $\textcircled{1} \ \mathbb{H} \text{ is a closed quantum subgroup of } \mathbb{G} \text{ in the sense of Vaes} \\ \text{if there exists a normal, unital, injective map} \\$

$$\widehat{\pi}\colon L^\infty(\widehat{\mathbb{H}})\longrightarrow L^\infty(\widehat{\mathbb{G}})$$

intertwining comultiplications.

② ℍ is a closed quantum subgroup of G in the sense of Woronowicz if there exists a surjective *-homomorphism

$$\pi\colon \operatorname{C}^{\operatorname{u}}_0(\mathbb{G})\longrightarrow \operatorname{C}^{\operatorname{u}}_0(\mathbb{H})$$

intertwining comultiplications.

$$\bullet \ \left(\mathbb{H}_{\underset{\mathrm{Vaes}}{\subset}} \mathbb{G} \right) \Longrightarrow \left(\mathbb{H}_{\underset{\mathrm{SLW}}{\subset}} \mathbb{G} \right),$$

• converse unclear, true in many cases.

PIOTR M. SOLTAN (WARSAW)

Sac

(日) (四) (王) (王) (王)

JULY 10, 2013 12 / 20 QUANTUM HOMOGENEOUS SPACES

PIOTR M. SOLTAN (WARSAW)

• Let \mathbb{H} be a closed quantum subgroup of \mathbb{G} in the sense of Vaes with $\widehat{\pi} \colon L^{\infty}(\widehat{\mathbb{H}}) \hookrightarrow L^{\infty}(\widehat{\mathbb{G}})$

PIOTR M. SOŁTAN (WARSAW)

Э

ヨトィヨト

Image: A matrix and a matrix

- Let \mathbb{H} be a closed quantum subgroup of \mathbb{G} in the sense of Vaes with $\widehat{\pi} \colon L^{\infty}(\widehat{\mathbb{H}}) \hookrightarrow L^{\infty}(\widehat{\mathbb{G}})$
- \bullet Define a right action of $\mathbb H$ on $\mathbb G$ by

 $\alpha(\boldsymbol{x}) = \big[(\widehat{\pi} \otimes \mathrm{id}) \boldsymbol{W}^{\mathbb{H}} \big] (\mathbb{1} \otimes \boldsymbol{x}) \big[(\widehat{\pi} \otimes \mathrm{id}) \boldsymbol{W}^{\mathbb{H}} \big]^*$

PIOTR M. SOŁTAN (WARSAW)

QUANTUM HOMOGENEOUS SPACES

JULY 10. 2013 12 / 20

200

- ロト - (理ト - (ヨト - (ヨト -)ヨ)

- Let \mathbb{H} be a closed quantum subgroup of \mathbb{G} in the sense of Vaes with $\widehat{\pi} \colon L^{\infty}(\widehat{\mathbb{H}}) \hookrightarrow L^{\infty}(\widehat{\mathbb{G}})$
- \bullet Define a right action of $\mathbb H$ on $\mathbb G$ by

 $\alpha(\boldsymbol{x}) = \big[(\widehat{\pi} \otimes \mathrm{id}) W^{\mathbb{H}} \big] (\mathbbm{1} \otimes \boldsymbol{x}) \big[(\widehat{\pi} \otimes \mathrm{id}) W^{\mathbb{H}} \big]^*,$

where $W^{\mathbb{H}} \in L^{\infty}(\widehat{\mathbb{H}}) \, \bar{\otimes} \, L^{\infty}(\mathbb{H})$ is the Kac-Takesaki operator of \mathbb{H}

- Let \mathbb{H} be a closed quantum subgroup of \mathbb{G} in the sense of Vaes with $\widehat{\pi} \colon L^{\infty}(\widehat{\mathbb{H}}) \hookrightarrow L^{\infty}(\widehat{\mathbb{G}})$
- \bullet Define a right action of $\mathbb H$ on $\mathbb G$ by

 $\alpha(\boldsymbol{x}) = \big[(\widehat{\pi} \otimes \mathrm{id}) W^{\mathbb{H}} \big] (\mathbbm{1} \otimes \boldsymbol{x}) \big[(\widehat{\pi} \otimes \mathrm{id}) W^{\mathbb{H}} \big]^*,$

where $W^{\mathbb{H}} \in L^{\infty}(\widehat{\mathbb{H}}) \otimes L^{\infty}(\mathbb{H})$ is the Kac-Takesaki operator of \mathbb{H} (right regular representation).

- Let \mathbb{H} be a closed quantum subgroup of \mathbb{G} in the sense of Vaes with $\widehat{\pi} \colon L^{\infty}(\widehat{\mathbb{H}}) \hookrightarrow L^{\infty}(\widehat{\mathbb{G}})$
- \bullet Define a right action of $\mathbb H$ on $\mathbb G$ by

 $\alpha(\boldsymbol{x}) = \big[(\widehat{\pi} \otimes \mathrm{id}) \boldsymbol{W}^{\mathbb{H}} \big] (\mathbb{1} \otimes \boldsymbol{x}) \big[(\widehat{\pi} \otimes \mathrm{id}) \boldsymbol{W}^{\mathbb{H}} \big]^*,$

where $W^{\mathbb{H}} \in L^{\infty}(\widehat{\mathbb{H}}) \bar{\otimes} L^{\infty}(\mathbb{H})$ is the Kac-Takesaki operator of \mathbb{H} (right regular representation). ($\alpha \colon L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G}) \bar{\otimes} L^{\infty}(\mathbb{H})$, formally $\alpha = (\mathrm{id} \otimes \pi) \circ \Delta_{\mathbb{G}}$)

- Let \mathbb{H} be a closed quantum subgroup of \mathbb{G} in the sense of Vaes with $\widehat{\pi} \colon L^{\infty}(\widehat{\mathbb{H}}) \hookrightarrow L^{\infty}(\widehat{\mathbb{G}})$
- \bullet Define a right action of $\mathbb H$ on $\mathbb G$ by

 $\alpha(\boldsymbol{x}) = \big[(\widehat{\pi} \otimes \mathrm{id}) \boldsymbol{W}^{\mathbb{H}} \big] (\mathbbm{1} \otimes \boldsymbol{x}) \big[(\widehat{\pi} \otimes \mathrm{id}) \boldsymbol{W}^{\mathbb{H}} \big]^*,$

where $W^{\mathbb{H}} \in L^{\infty}(\widehat{\mathbb{H}}) \bar{\otimes} L^{\infty}(\mathbb{H})$ is the Kac-Takesaki operator of \mathbb{H} (right regular representation). ($\alpha \colon L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G}) \bar{\otimes} L^{\infty}(\mathbb{H})$, formally $\alpha = (\mathrm{id} \otimes \pi) \circ \Delta_{\mathbb{G}}$)

 \bullet Define a quantum space $\mathbb X$ setting

$$L^{\infty}(\mathbb{X}) = \big\{ \mathbf{x} \in L^{\infty}(\mathbb{G}) \, \big| \, \alpha(\mathbf{x}) = \mathbf{x} \otimes \mathbb{1} \big\}.$$

- Let \mathbb{H} be a closed quantum subgroup of \mathbb{G} in the sense of Vaes with $\widehat{\pi} \colon L^{\infty}(\widehat{\mathbb{H}}) \hookrightarrow L^{\infty}(\widehat{\mathbb{G}})$
- \bullet Define a right action of $\mathbb H$ on $\mathbb G$ by

 $\alpha(\boldsymbol{x}) = \big[(\widehat{\pi} \otimes \mathrm{id}) \boldsymbol{W}^{\mathbb{H}} \big] (\mathbbm{1} \otimes \boldsymbol{x}) \big[(\widehat{\pi} \otimes \mathrm{id}) \boldsymbol{W}^{\mathbb{H}} \big]^*,$

where $W^{\mathbb{H}} \in L^{\infty}(\widehat{\mathbb{H}}) \bar{\otimes} L^{\infty}(\mathbb{H})$ is the Kac-Takesaki operator of \mathbb{H} (right regular representation). ($\alpha \colon L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G}) \bar{\otimes} L^{\infty}(\mathbb{H})$, formally $\alpha = (\mathrm{id} \otimes \pi) \circ \Delta_{\mathbb{G}}$)

• Define a quantum space X setting

$$L^{\infty}(\mathbb{X}) = \{ x \in L^{\infty}(\mathbb{G}) | \alpha(x) = x \otimes \mathbb{1} \}.$$

• X is by definition the quotient space \mathbb{G}/\mathbb{H} .

- Let \mathbb{H} be a closed quantum subgroup of \mathbb{G} in the sense of Vaes with $\widehat{\pi} \colon L^{\infty}(\widehat{\mathbb{H}}) \hookrightarrow L^{\infty}(\widehat{\mathbb{G}})$
- \bullet Define a right action of $\mathbb H$ on $\mathbb G$ by

 $\alpha(\boldsymbol{x}) = \big[(\widehat{\pi} \otimes \mathrm{id}) \boldsymbol{W}^{\mathbb{H}} \big] (\mathbbm{1} \otimes \boldsymbol{x}) \big[(\widehat{\pi} \otimes \mathrm{id}) \boldsymbol{W}^{\mathbb{H}} \big]^*,$

where $W^{\mathbb{H}} \in L^{\infty}(\widehat{\mathbb{H}}) \bar{\otimes} L^{\infty}(\mathbb{H})$ is the Kac-Takesaki operator of \mathbb{H} (right regular representation). ($\alpha \colon L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G}) \bar{\otimes} L^{\infty}(\mathbb{H})$, formally $\alpha = (\mathrm{id} \otimes \pi) \circ \Delta_{\mathbb{G}}$)

 \bullet Define a quantum space $\mathbb X$ setting

$$L^{\infty}(\mathbb{X}) = \{ x \in L^{\infty}(\mathbb{G}) | \alpha(x) = x \otimes \mathbb{1} \}.$$

- X is by definition the quotient space \mathbb{G}/\mathbb{H} .
- $L^{\infty}(\mathbb{X})$ is a left coideal in $L^{\infty}(\mathbb{G})$

- Let \mathbb{H} be a closed quantum subgroup of \mathbb{G} in the sense of Vaes with $\widehat{\pi} \colon L^{\infty}(\widehat{\mathbb{H}}) \hookrightarrow L^{\infty}(\widehat{\mathbb{G}})$
- \bullet Define a right action of $\mathbb H$ on $\mathbb G$ by

 $\alpha(\boldsymbol{x}) = \big[(\widehat{\pi} \otimes \mathrm{id}) \boldsymbol{W}^{\mathbb{H}} \big] (\mathbbm{1} \otimes \boldsymbol{x}) \big[(\widehat{\pi} \otimes \mathrm{id}) \boldsymbol{W}^{\mathbb{H}} \big]^*,$

where $W^{\mathbb{H}} \in L^{\infty}(\widehat{\mathbb{H}}) \bar{\otimes} L^{\infty}(\mathbb{H})$ is the Kac-Takesaki operator of \mathbb{H} (right regular representation). ($\alpha \colon L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G}) \bar{\otimes} L^{\infty}(\mathbb{H})$, formally $\alpha = (\mathrm{id} \otimes \pi) \circ \Delta_{\mathbb{G}}$)

 \bullet Define a quantum space $\mathbb X$ setting

$$L^{\infty}(\mathbb{X}) = \{ \mathbf{x} \in L^{\infty}(\mathbb{G}) \, | \, \alpha(\mathbf{x}) = \mathbf{x} \otimes \mathbb{1} \}.$$

- X is by definition the quotient space \mathbb{G}/\mathbb{H} .
- $L^{\infty}(\mathbb{X})$ is a left coideal in $L^{\infty}(\mathbb{G})$, i.e. an **embeddable** W^{*}-quantum G-space.

$\mbox{Embeddable W^*-quantum \mathbb{G}-spaces}$

PIOTR M. SOŁTAN (WARSAW)

QUANTUM HOMOGENEOUS SPACES

JULY 10, 2013 13 / 20

DEFINITION

A quantum space \mathbb{X} is an **embeddable** W^* -**quantum** \mathbb{G} -space if $L^{\infty}(\mathbb{X}) \subset L^{\infty}(\mathbb{G})$ and $\Delta_{\mathbb{G}}(L^{\infty}(\mathbb{X})) \subset L^{\infty}(\mathbb{G}) \otimes L^{\infty}(\mathbb{X})$.

Sac

(日) (四) (王) (日) (日)

DEFINITION

A quantum space \mathbb{X} is an **embeddable** W^* -**quantum** \mathbb{G} -space if $L^{\infty}(\mathbb{X}) \subset L^{\infty}(\mathbb{G})$ and $\Delta_{\mathbb{G}}(L^{\infty}(\mathbb{X})) \subset L^{\infty}(\mathbb{G}) \otimes L^{\infty}(\mathbb{X})$.

Another possibility

Sac

イロト イポト イヨト イヨト

DEFINITION

A quantum space \mathbb{X} is an **embeddable** W^* -**quantum** \mathbb{G} -space if $L^{\infty}(\mathbb{X}) \subset L^{\infty}(\mathbb{G})$ and $\Delta_{\mathbb{G}}(L^{\infty}(\mathbb{X})) \subset L^{\infty}(\mathbb{G}) \otimes L^{\infty}(\mathbb{X})$.

- Another possibility:
 - $\bullet \ \alpha \colon L^\infty(\mathbb{X}) \to L^\infty(\mathbb{G}) \, \bar{\otimes} \, L^\infty(\mathbb{X}) \text{action},$

DEFINITION

A quantum space \mathbb{X} is an **embeddable** W^* -**quantum** \mathbb{G} -space if $L^{\infty}(\mathbb{X}) \subset L^{\infty}(\mathbb{G})$ and $\Delta_{\mathbb{G}}(L^{\infty}(\mathbb{X})) \subset L^{\infty}(\mathbb{G}) \bar{\otimes} L^{\infty}(\mathbb{X})$.

- Another possibility:
 - $\blacktriangleright \ \alpha \colon L^\infty(\mathbb{X}) \to L^\infty(\mathbb{G}) \, \bar{\otimes} \, L^\infty(\mathbb{X}) \text{action},$
 - $(\alpha(\mathbf{x}) = \mathbb{1} \otimes \mathbf{x}) \Rightarrow (\mathbf{x} \in \mathbb{C}\mathbb{1}),$

DEFINITION

A quantum space \mathbb{X} is an **embeddable** W^* -**quantum** \mathbb{G} -space if $L^{\infty}(\mathbb{X}) \subset L^{\infty}(\mathbb{G})$ and $\Delta_{\mathbb{G}}(L^{\infty}(\mathbb{X})) \subset L^{\infty}(\mathbb{G}) \bar{\otimes} L^{\infty}(\mathbb{X})$.

• Another possibility:

$$\blacktriangleright \ \alpha \colon L^{\infty}(\mathbb{X}) \to L^{\infty}(\mathbb{G}) \,\bar{\otimes} \, L^{\infty}(\mathbb{X}) - \text{action},$$

$$\bullet \ (\alpha(x) = \mathbb{1} \otimes x) \Rightarrow (x \in \mathbb{C}\mathbb{1}),$$

•
$$\gamma: L^{\infty}(\mathbb{X}) \to L^{\infty}(\mathbb{G})$$
 — such that $(\mathrm{id} \otimes \gamma) \circ \alpha = \Delta \circ \gamma$

Sac

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

DEFINITION

A quantum space \mathbb{X} is an **embeddable** W^* -**quantum** \mathbb{G} -space if $L^{\infty}(\mathbb{X}) \subset L^{\infty}(\mathbb{G})$ and $\Delta_{\mathbb{G}}(L^{\infty}(\mathbb{X})) \subset L^{\infty}(\mathbb{G}) \bar{\otimes} L^{\infty}(\mathbb{X})$.

- Another possibility:
 - $\blacktriangleright \ \alpha \colon L^\infty(\mathbb{X}) \to L^\infty(\mathbb{G}) \, \bar{\otimes} \, L^\infty(\mathbb{X}) \text{action,}$
 - $(\alpha(x) = \mathbb{1} \otimes x) \Rightarrow (x \in \mathbb{C}\mathbb{1}),$
 - ► $\gamma: L^{\infty}(\mathbb{X}) \to L^{\infty}(\mathbb{G})$ such that $(\mathrm{id} \otimes \gamma) \circ \alpha = \Delta \circ \gamma$

then γ is injective.
DEFINITION

A quantum space \mathbb{X} is an **embeddable** W^* -**quantum** \mathbb{G} -space if $L^{\infty}(\mathbb{X}) \subset L^{\infty}(\mathbb{G})$ and $\Delta_{\mathbb{G}}(L^{\infty}(\mathbb{X})) \subset L^{\infty}(\mathbb{G}) \bar{\otimes} L^{\infty}(\mathbb{X})$.

- Another possibility:
 - $\blacktriangleright \ \alpha \colon L^\infty(\mathbb{X}) \to L^\infty(\mathbb{G}) \, \bar{\otimes} \, L^\infty(\mathbb{X}) \text{action,}$
 - $(\alpha(\mathbf{x}) = \mathbb{1} \otimes \mathbf{x}) \Rightarrow (\mathbf{x} \in \mathbb{C}\mathbb{1}),$
 - ► $\gamma: L^{\infty}(\mathbb{X}) \to L^{\infty}(\mathbb{G})$ such that $(\mathrm{id} \otimes \gamma) \circ \alpha = \Delta \circ \gamma$

then γ is injective.

THEOREM (CO-DUAL)

ヘロア ヘロア ヘロア

DEFINITION

A quantum space \mathbb{X} is an **embeddable** W^* -**quantum** \mathbb{G} -space if $L^{\infty}(\mathbb{X}) \subset L^{\infty}(\mathbb{G})$ and $\Delta_{\mathbb{G}}(L^{\infty}(\mathbb{X})) \subset L^{\infty}(\mathbb{G}) \bar{\otimes} L^{\infty}(\mathbb{X})$.

• Another possibility:

- $\blacktriangleright \ \alpha \colon L^\infty(\mathbb{X}) \to L^\infty(\mathbb{G}) \, \bar{\otimes} \, L^\infty(\mathbb{X}) \text{action,}$
- $(\alpha(x) = \mathbb{1} \otimes x) \Rightarrow (x \in \mathbb{C}\mathbb{1}),$
- ► $\gamma: L^{\infty}(\mathbb{X}) \to L^{\infty}(\mathbb{G})$ such that $(\mathrm{id} \otimes \gamma) \circ \alpha = \Delta \circ \gamma$

then γ is injective.

THEOREM (CO-DUAL)

Define $\widetilde{\mathbb{X}}$ by setting

$$L^{\infty}(\widetilde{\mathbb{X}}) = \left\{ y \in L^{\infty}(\widehat{\mathbb{G}}) \, \middle| \, \forall \, x \in L^{\infty}(\mathbb{X}) \, xy = yx
ight\}$$

PIOTR M. SOŁTAN (WARSAW)

ヘロア ヘロア ヘビア ヘビア

DEFINITION

A quantum space \mathbb{X} is an **embeddable** W^* -**quantum** \mathbb{G} -space if $L^{\infty}(\mathbb{X}) \subset L^{\infty}(\mathbb{G})$ and $\Delta_{\mathbb{G}}(L^{\infty}(\mathbb{X})) \subset L^{\infty}(\mathbb{G}) \bar{\otimes} L^{\infty}(\mathbb{X})$.

• Another possibility:

- $\blacktriangleright \ \alpha \colon L^\infty(\mathbb{X}) \to L^\infty(\mathbb{G}) \, \bar{\otimes} \, L^\infty(\mathbb{X}) \text{action,}$
- $(\alpha(x) = \mathbb{1} \otimes x) \Rightarrow (x \in \mathbb{C}\mathbb{1}),$
- ► $\gamma: L^{\infty}(\mathbb{X}) \to L^{\infty}(\mathbb{G})$ such that $(\mathrm{id} \otimes \gamma) \circ \alpha = \Delta \circ \gamma$

then γ is injective.

THEOREM (CO-DUAL)

Define $\widetilde{\mathbb{X}}$ by setting

$$L^{\infty}(\widetilde{\mathbb{X}}) = \left\{ y \in L^{\infty}(\widehat{\mathbb{G}}) \, \middle| \, \forall \, x \in L^{\infty}(\mathbb{X}) \, xy = yx \right\} = L^{\infty}(\mathbb{X})' \cap L^{\infty}(\widehat{\mathbb{G}}).$$

ヘロア ヘロア ヘビア ヘビア

DEFINITION

A quantum space \mathbb{X} is an **embeddable** W^* -**quantum** \mathbb{G} -space if $L^{\infty}(\mathbb{X}) \subset L^{\infty}(\mathbb{G})$ and $\Delta_{\mathbb{G}}(L^{\infty}(\mathbb{X})) \subset L^{\infty}(\mathbb{G}) \bar{\otimes} L^{\infty}(\mathbb{X})$.

- Another possibility:
 - $\blacktriangleright \ \alpha \colon L^\infty(\mathbb{X}) \to L^\infty(\mathbb{G}) \, \bar{\otimes} \, L^\infty(\mathbb{X}) \text{action,}$
 - $(\alpha(x) = \mathbb{1} \otimes x) \Rightarrow (x \in \mathbb{C}\mathbb{1}),$
 - ► $\gamma : L^{\infty}(\mathbb{X}) \to L^{\infty}(\mathbb{G})$ such that $(\mathrm{id} \otimes \gamma) \circ \alpha = \Delta \circ \gamma$

then γ is injective.

THEOREM (CO-DUAL)

Define $\widetilde{\mathbb{X}}$ by setting

$$L^{\infty}(\widetilde{\mathbb{X}}) = \left\{ y \in L^{\infty}(\widehat{\mathbb{G}}) \, \middle| \, \forall \, x \in L^{\infty}(\mathbb{X}) \, xy = yx \right\} = L^{\infty}(\mathbb{X})' \cap L^{\infty}(\widehat{\mathbb{G}}).$$

Then $\widetilde{\mathbb{X}}$ is an embeddable W^* -quantum $\widehat{\mathbb{G}}$ -space.

PIOTR M. SOŁTAN (WARSAW)

ヘロア ヘロア ヘロア

$\widetilde{\mathbb{X}}$ is a $W^*\text{-}\mathsf{guantum}\ \widehat{\mathbb{G}}\text{-}\mathsf{space}$

<ロ> <目> <目> <目> <目> <目> <目> <目> <目> <目> <<□> <</p> JULY 10, 2013 14 / 20 QUANTUM HOMOGENEOUS SPACES

PIOTR M. SOLTAN (WARSAW)

$\widetilde{\mathbb{X}}$ is a $W^*\text{-}\mathsf{guantum}\ \widehat{\mathbb{G}}\text{-}\mathsf{space}$

PROOF.

Take

• $y \in L^{\infty}(\widetilde{\mathbb{X}})$,

PIOTR M. SOLTAN (WARSAW)

QUANTUM HOMOGENEOUS SPACES

<ロト < 部 > < E > < E > E の Q (* JULY 10, 2013 14 / 20

```
\widetilde{\mathbb{X}} is a W^*\text{-}\mathsf{guantum}\ \widehat{\mathbb{G}}\text{-}\mathsf{space}
```

Take

- $y \in L^{\infty}(\widetilde{\mathbb{X}})$,
- $x \in L^{\infty}(\mathbb{X})$.

PIOTR M. SOŁTAN (WARSAW)

QUANTUM HOMOGENEOUS SPACES

JULY 10, 2013 14 / 20

€ 990

<ロト < 団ト < 団ト < 団ト < 団ト -

```
\widetilde{\mathbb{X}} is a W^*\text{-}\mathsf{guantum}\ \widehat{\mathbb{G}}\text{-}\mathsf{space}
```

PROOF. Take • $y \in L^{\infty}(\widetilde{X})$, • $x \in L^{\infty}(X)$. Then

PIOTR M. SOŁTAN (WARSAW)

QUANTUM HOMOGENEOUS SPACES

JULY 10, 2013 14 / 20

<ロト < 団ト < 団ト < 団ト < 団ト -

```
\widetilde{\mathbb{X}} is a W^*\text{-}\mathsf{guantum}\ \widehat{\mathbb{G}}\text{-}\mathsf{space}
```

PROOF. Take • $y \in L^{\infty}(\widetilde{\mathbb{X}}),$ • $x \in L^{\infty}(\mathbb{X}).$ Then $\Delta_{\widehat{\mathbb{G}}}(y)(\mathbb{1} \otimes x) = \widehat{W}(y \otimes \mathbb{1})\widehat{W}^*(\mathbb{1} \otimes x)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

```
\widetilde{\mathbb{X}} is a W^*\text{-}\mathsf{guantum}\ \widehat{\mathbb{G}}\text{-}\mathsf{space}
```

PROOF. Take • $y \in L^{\infty}(\widetilde{\mathbb{X}}),$ • $x \in L^{\infty}(\mathbb{X}).$ Then $\Delta_{\widehat{\mathbb{G}}}(y)(\mathbb{1} \otimes x) = \widehat{W}(y \otimes \mathbb{1})\widehat{W}^*(\mathbb{1} \otimes x)$ $= \Sigma W^* \Sigma(y \otimes \mathbb{1})\Sigma W \Sigma(\mathbb{1} \otimes x)$

<ロト < 団ト < 団ト < 団ト < 団ト -

```
\widetilde{\mathbb{X}} is a W^*\text{-}\mathsf{guantum}\ \widehat{\mathbb{G}}\text{-}\mathsf{space}
```

PROOF. Take • $y \in L^{\infty}(\widetilde{\mathbb{X}})$, • $x \in L^{\infty}(\mathbb{X})$. Then $\Delta_{\widehat{\mathbb{G}}}(y)(\mathbb{1} \otimes x) = \widehat{W}(y \otimes \mathbb{1})\widehat{W}^*(\mathbb{1} \otimes x)$ $= \Sigma W^* \Sigma(y \otimes \mathbb{1})\Sigma W \Sigma(\mathbb{1} \otimes x) \Sigma W^* W \Sigma$

JULY 10, 2013 14 / 20

```
\widetilde{\mathbb{X}} is a W^*\text{-}\mathsf{guantum}\ \widehat{\mathbb{G}}\text{-}\mathsf{space}
```

PROOF. Take • $y \in L^{\infty}(\widetilde{\mathbb{X}})$, • $x \in L^{\infty}(\mathbb{X})$. Then $\Delta_{\widehat{\mathbb{G}}}(y)(\mathbb{1} \otimes x) = \widehat{W}(y \otimes \mathbb{1})\widehat{W}^*(\mathbb{1} \otimes x)$ $= \Sigma W^*\Sigma(y \otimes \mathbb{1})\Sigma W\Sigma(\mathbb{1} \otimes x)\Sigma W^*W\Sigma$ $= \Sigma W^*(\mathbb{1} \otimes y)W(x \otimes \mathbb{1})W^*W\Sigma$

```
\widetilde{\mathbb{X}} is a W^*\text{-}\mathsf{guantum}\ \widehat{\mathbb{G}}\text{-}\mathsf{space}
```

Take

- $y \in L^{\infty}(\widetilde{\mathbb{X}})$,
- $x \in L^{\infty}(\mathbb{X})$.

Then $\Delta_{\widehat{\mathbb{G}}}(y)(\mathbb{1}\otimes x) = \widehat{W}(y\otimes \mathbb{1})\widehat{W}^*(\mathbb{1}\otimes x)$

- $= \quad \Sigma W^* \Sigma (y \otimes 1) \Sigma W \Sigma (1 \otimes x) \Sigma W^* W \Sigma$
- $= \quad \Sigma W^*(\mathbb{1} \otimes y) W(x \otimes \mathbb{1}) W^* W \Sigma$

$$= \Sigma W^*(I \otimes y) \Delta_{\mathbb{G}}(x) W \Sigma$$

PIOTR M. SOŁTAN (WARSAW)

QUANTUM HOMOGENEOUS SPACES

JULY 10, 2013 14 / 20

```
\widetilde{\mathbb{X}} is a W^*\text{-}\mathsf{guantum}\ \widehat{\mathbb{G}}\text{-}\mathsf{space}
```

Take

- $y \in L^{\infty}(\widetilde{\mathbb{X}})$,
- $x \in L^{\infty}(\mathbb{X})$.

Then $\Delta_{\widehat{\mathbb{G}}}(y)(\mathbb{1}\otimes x) = \widehat{W}(y\otimes \mathbb{1})\widehat{W}^*(\mathbb{1}\otimes x)$

- $= \Sigma W^* \Sigma (\boldsymbol{y} \otimes \mathbb{1}) \Sigma W \Sigma (\mathbb{1} \otimes \boldsymbol{x}) \Sigma W^* W \Sigma$
- $= \Sigma W^*(\mathbb{1} \otimes y) W(x \otimes \mathbb{1}) W^* W \Sigma$
- $= \Sigma W^*(I \otimes y) \Delta_{\mathbb{G}}(x) W \Sigma$

$$= \Sigma W^* \Delta_{\mathbb{G}}(x) (\mathbb{1} \otimes y) W \Sigma$$

PIOTR M. SOŁTAN (WARSAW)

```
\widetilde{\mathbb{X}} is a W^*\text{-}\mathsf{guantum}\ \widehat{\mathbb{G}}\text{-}\mathsf{space}
```

Take

- $y \in L^{\infty}(\widetilde{\mathbb{X}})$,
- $x \in L^{\infty}(\mathbb{X})$.

Then $\Delta_{\widehat{\mathbb{G}}}(y)(\mathbb{1}\otimes x) = \widehat{W}(y\otimes \mathbb{1})\widehat{W}^*(\mathbb{1}\otimes x)$

- $= W(y \otimes 1)W^*(1 \otimes x)$ $= \Sigma W^* \Sigma(u \otimes 1) \Sigma W \Sigma(1 \otimes x) \Sigma W$
- $= \Sigma W^* \Sigma (y \otimes 1) \Sigma W \Sigma (1 \otimes x) \Sigma W^* W \Sigma$
- $= \Sigma W^*(\mathbb{1} \otimes y) W(x \otimes \mathbb{1}) W^* W \Sigma$
- $= \Sigma W^*(I \otimes y) \Delta_{\mathbb{G}}(x) W \Sigma$
- $= \Sigma W^* \Delta_{\mathbb{G}}(x) (\mathbb{1} \otimes y) W \Sigma$
- $= (\mathbb{1} \otimes \boldsymbol{x}) \Sigma \boldsymbol{W}^* (\mathbb{1} \otimes \boldsymbol{y}) \boldsymbol{W} \Sigma$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

```
\widetilde{\mathbb{X}} is a W^*\text{-}\mathsf{guantum}\ \widehat{\mathbb{G}}\text{-}\mathsf{space}
```

Take

- $y \in L^{\infty}(\widetilde{\mathbb{X}})$,
- $x \in L^{\infty}(\mathbb{X})$.

Then $\Delta_{\widehat{\mathbb{G}}}(y)(\mathbb{1}\otimes x) = \widehat{W}(y\otimes \mathbb{1})\widehat{W}^*(\mathbb{1}\otimes x)$

- $= \Sigma W^* \Sigma (y \otimes 1) \Sigma W \Sigma (1 \otimes x) \Sigma W^* W \Sigma$
- $= \Sigma W^*(\mathbb{1} \otimes y) W(x \otimes \mathbb{1}) W^* W \Sigma$
- $= \Sigma W^*(I \otimes y) \Delta_{\mathbb{G}}(x) W \Sigma$
- $= \Sigma W^* \Delta_{\mathbb{G}}(x) (\mathbb{1} \otimes y) W \Sigma$
- $= (\mathbb{1} \otimes x) \Sigma W^* (\mathbb{1} \otimes y) W \Sigma$

 $= (\mathbb{1} \otimes x) \Delta_{\widehat{\mathbb{G}}}(y).$

PIOTR M. SOŁTAN (WARSAW)

QUANTUM HOMOGENEOUS SPACES

JULY 10, 2013 14 / 20

```
\widetilde{\mathbb{X}} is a W^*\text{-}\mathsf{guantum}\ \widehat{\mathbb{G}}\text{-}\mathsf{space}
```

Take

- $y \in L^{\infty}(\widetilde{\mathbb{X}})$,
- $x \in L^{\infty}(\mathbb{X})$.

Then $\Delta_{\widehat{\mathbb{G}}}(y)(\mathbb{1}\otimes x) = \widehat{W}(y\otimes \mathbb{1})\widehat{W}^*(\mathbb{1}\otimes x)$

- $= \Sigma W^* \Sigma (y \otimes 1) \Sigma W \Sigma (1 \otimes x) \Sigma W^* W \Sigma$
- $= \Sigma W^*(\mathbb{1} \otimes y) W(x \otimes \mathbb{1}) W^* W \Sigma$
- $= \Sigma W^*(I \otimes y) \Delta_{\mathbb{G}}(x) W \Sigma$
- $= \Sigma W^* \Delta_{\mathbb{G}}(x) (\mathbb{1} \otimes y) W \Sigma$
- $= (\mathbb{1} \otimes x) \Sigma W^* (\mathbb{1} \otimes y) W \Sigma$

 $= (\mathbb{1} \otimes x) \Delta_{\widehat{\mathbb{G}}}(y).$

990

PIOTR M. SOŁTAN (WARSAW) QUANTUM HOMOGENEOUS SPACES JULY 10, 2013

15 / 20

THEOREM

The co-dual of $\widetilde{\mathbb{X}}$ *is equal to* \mathbb{X} *.*

PIOTR M. SOLTAN (WARSAW)

QUANTUM HOMOGENEOUS SPACES

ヨトメヨト JULY 10, 2013 15 / 20

1

990

Image: A matrix and a matrix

THEOREM

The co-dual of \mathbb{X} is equal to \mathbb{X} .

• The proof uses duality for crossed products by l.c.q.g.-actions (Vaes).

PIOTR M. SOŁTAN (WARSAW)

QUANTUM HOMOGENEOUS SPACES

Image: A matrix and a matrix JULY 10. 2013 15 / 20

3

Image: A matrix

THEOREM

The co-dual of $\widetilde{\mathbb{X}}$ is equal to \mathbb{X} .

- The proof uses duality for crossed products by l.c.q.g.-actions (Vaes).
- We get equality

3

Image: A matrix and a matrix

< 67 ▶

THEOREM

The co-dual of $\widetilde{\mathbb{X}}$ is equal to \mathbb{X} .

- The proof uses duality for crossed products by l.c.q.g.-actions (Vaes).
- We get equality (not isomorphism)

3

Image: A matrix and a matrix

THEOREM

The co-dual of $\widetilde{\mathbb{X}}$ is equal to \mathbb{X} .

- The proof uses duality for crossed products by l.c.q.g.-actions (Vaes).
- We get equality (not isomorphism) because we work with "embedded" $\mathbb{G} ext{-}$ and $\widehat{\mathbb{G}} ext{-}$ spaces.

THEOREM

The co-dual of $\widetilde{\mathbb{X}}$ is equal to \mathbb{X} .

- The proof uses duality for crossed products by l.c.q.g.-actions (Vaes).
- We get equality (not isomorphism) because we work with "embedded" \mathbb{G} and $\widehat{\mathbb{G}}$ -spaces.
- For $\mathbb{G} = G$ classical and $\mathbb{X} = G/H$ (*H* subgroup of *G*)

THEOREM

The co-dual of $\widetilde{\mathbb{X}}$ is equal to \mathbb{X} .

- The proof uses duality for crossed products by l.c.q.g.-actions (Vaes).
- We get equality (not isomorphism) because we work with "embedded" $\mathbb{G} ext{-}$ and $\widehat{\mathbb{G}} ext{-}$ spaces.
- For $\mathbb{G} = G$ classical and $\mathbb{X} = G/H$ (H subgroup of G), we have $L^{\infty}(\widetilde{\mathbb{X}}) = L^{\infty}(\widehat{H}) \subset L^{\infty}(\widehat{G})$.

Image: A matrix and a matrix

THEOREM

The co-dual of $\widetilde{\mathbb{X}}$ is equal to \mathbb{X} .

- The proof uses duality for crossed products by l.c.q.g.-actions (Vaes).
- We get equality (not isomorphism) because we work with "embedded" \mathbb{G} and $\widehat{\mathbb{G}}$ -spaces.
- For $\mathbb{G} = G$ classical and $\mathbb{X} = G/H$ (*H* subgroup of *G*), we have $L^{\infty}(\widetilde{\mathbb{X}}) = L^{\infty}(\widehat{H}) \subset L^{\infty}(\widehat{G})$.
 - ► In this case $L^{\infty}(\hat{H})$ is the group von Neumann algebra of *H*.

프 + 프 + - 프

Image: A matrix and a matrix

THEOREM

The co-dual of $\widetilde{\mathbb{X}}$ is equal to \mathbb{X} .

- The proof uses duality for crossed products by l.c.q.g.-actions (Vaes).
- We get equality (not isomorphism) because we work with "embedded" $\mathbb{G} ext{-}$ and $\widehat{\mathbb{G}} ext{-}$ spaces.
- For $\mathbb{G} = G$ classical and $\mathbb{X} = G/H$ (*H* subgroup of *G*), we have $L^{\infty}(\widetilde{\mathbb{X}}) = L^{\infty}(\widehat{H}) \subset L^{\infty}(\widehat{G})$.
 - In this case $L^{\infty}(\widehat{H})$ is the group von Neumann algebra of *H*.
- For $\mathbb{X} = \mathbb{G}$, we have $\widetilde{\mathbb{X}} = \text{point}$

ㅋト イヨト - ヨ

THEOREM

The co-dual of $\widetilde{\mathbb{X}}$ is equal to \mathbb{X} .

- The proof uses duality for crossed products by l.c.q.g.-actions (Vaes).
- We get equality (not isomorphism) because we work with "embedded" $\mathbb{G} ext{-}$ and $\widehat{\mathbb{G}} ext{-}$ spaces.
- For $\mathbb{G} = G$ classical and $\mathbb{X} = G/H$ (*H* subgroup of *G*), we have $L^{\infty}(\widetilde{\mathbb{X}}) = L^{\infty}(\widehat{H}) \subset L^{\infty}(\widehat{G})$.
 - ► In this case $L^{\infty}(\hat{H})$ is the group von Neumann algebra of *H*.
- For $\mathbb{X} = \mathbb{G}$, we have $\widetilde{\mathbb{X}} = \text{point } (L^{\infty}(\widetilde{\mathbb{X}}) = \mathbb{C}\mathbb{1}_{L^{\infty}(\widehat{\mathbb{G}})}).$

(日)

THEOREM

The co-dual of $\widetilde{\mathbb{X}}$ is equal to \mathbb{X} .

- The proof uses duality for crossed products by l.c.q.g.-actions (Vaes).
- We get equality (not isomorphism) because we work with "embedded" $\mathbb{G} ext{-}$ and $\widehat{\mathbb{G}} ext{-}$ spaces.
- For $\mathbb{G} = G$ classical and $\mathbb{X} = G/H$ (*H* subgroup of *G*), we have $L^{\infty}(\widetilde{\mathbb{X}}) = L^{\infty}(\widehat{H}) \subset L^{\infty}(\widehat{G})$.
 - ▶ In this case $L^{\infty}(\widehat{H})$ is the group von Neumann algebra of *H*.

For
$$\mathbb{X} = \mathbb{G}$$
, we have $\widetilde{\mathbb{X}} = \text{point } (L^{\infty}(\widetilde{\mathbb{X}}) = \mathbb{C}\mathbb{1}_{L^{\infty}(\widehat{\mathbb{G}})}).$

THEOREM

6

 \mathbb{X} is of quotient type iff there exists a closed quantum subgroup \mathbb{H} of \mathbb{G} such that $L^{\infty}(\widetilde{\mathbb{X}})$ is the image of $L^{\infty}(\widehat{\mathbb{H}})$ in $L^{\infty}(\widehat{\mathbb{G}})$.

PIOTR M. SOŁTAN (WARSAW)

1

Sac

Image: A match a ma

PIOTR M. SOŁTAN (WARSAW) QUANTUM HOMOGENEOUS SPACES

JULY 10, 2013 16 / 20

DEFINITION

• \mathbb{G} — locally compact quantum group,

= 990

<ロト < 部ト < ミト < ミト -

DEFINITION

- \mathbb{G} locally compact quantum group,
- X embeddable W^{*}-quantum G-space,

= 990

◆ロト ◆聞 ト ◆ ヨト ◆ ヨト -

DEFINITION

- \mathbb{G} locally compact quantum group,
- \mathbb{X} embeddable W^{*}-quantum \mathbb{G} -space, $(L^{\infty}(\mathbb{X}) \subset L^{\infty}(\mathbb{G}))$

= 990

<ロト < 回 > < 回 > < 回 > .

DEFINITION

- \mathbb{G} locally compact quantum group,
- \mathbb{X} embeddable W^{*}-quantum \mathbb{G} -space, $(L^{\infty}(\mathbb{X}) \subset L^{\infty}(\mathbb{G}))$

 $\mathbb X$ is an embeddable quantum homogeneous space if there is a C*-subalgebra

 $\mathrm{C}_0(\mathbb{X}) \subset L^\infty(\mathbb{X})$

such that

= nar

Image: A match a ma

DEFINITION

- \mathbb{G} locally compact quantum group,
- \mathbb{X} embeddable W^{*}-quantum \mathbb{G} -space, $(L^{\infty}(\mathbb{X}) \subset L^{\infty}(\mathbb{G}))$

 $\mathbb X$ is an embeddable quantum homogeneous space if there is a C*-subalgebra

 $\mathrm{C}_0(\mathbb{X}) \subset L^\infty(\mathbb{X})$

such that

• $\mathrm{C}_0(\mathbb{X})$ is strongly dense in $L^\infty(\mathbb{X})$,

= 990

Image: A match a ma

DEFINITION

- \mathbb{G} locally compact quantum group,
- \mathbb{X} embeddable W^{*}-quantum \mathbb{G} -space, $(L^{\infty}(\mathbb{X}) \subset L^{\infty}(\mathbb{G}))$

 $\mathbb X$ is an embeddable quantum homogeneous space if there is a C*-subalgebra

 $\mathrm{C}_0(\mathbb{X}) \subset L^\infty(\mathbb{X})$

such that

- $C_0(\mathbb{X})$ is strongly dense in $L^{\infty}(\mathbb{X})$,
- $\Delta_{\mathbb{G}}(L^{\infty}(\mathbb{X})) \subset M(\mathcal{K}(L^{2}(\mathbb{G})) \otimes C_{0}(\mathbb{X})),$

= nar

<ロト < 部 ト < き ト < き ト -
EMBEDDABLE QUANTUM HOMOGENEOUS SPACES

DEFINITION

- \mathbb{G} locally compact quantum group,
- \mathbb{X} embeddable W*-quantum \mathbb{G} -space, $(L^{\infty}(\mathbb{X}) \subset L^{\infty}(\mathbb{G}))$

 $\mathbb X$ is an embeddable quantum homogeneous space if there is a C*-subalgebra

$$\mathrm{C}_0(\mathbb{X}) \subset L^\infty(\mathbb{X})$$

such that

- $\mathrm{C}_0(\mathbb{X})$ is strongly dense in $L^\infty(\mathbb{X})$,
- $\Delta_{\mathbb{G}}(L^{\infty}(\mathbb{X})) \subset M(\mathcal{K}(L^{2}(\mathbb{G})) \otimes C_{0}(\mathbb{X})),$

The map

$$\Delta_{\mathbb{G}}\big|_{L^{\infty}(\mathbb{X})} \colon L^{\infty}(\mathbb{X}) \longrightarrow \mathsf{M}\big(\mathcal{K}(L^{2}(\mathbb{G})) \otimes \mathsf{C}_{0}(\mathbb{X})\big)$$

is **strict**

PIOTR M. SOŁTAN (WARSAW)

= 990

<ロト < 部ト < ミト < ミト -

EMBEDDABLE QUANTUM HOMOGENEOUS SPACES

DEFINITION

- \mathbb{G} locally compact quantum group,
- \mathbb{X} embeddable W^{*}-quantum \mathbb{G} -space, $(L^{\infty}(\mathbb{X}) \subset L^{\infty}(\mathbb{G}))$

 $\mathbb X$ is an embeddable quantum homogeneous space if there is a C*-subalgebra

 $\mathrm{C}_0(\mathbb{X}) \subset L^\infty(\mathbb{X})$

such that

- $\mathrm{C}_0(\mathbb{X})$ is strongly dense in $L^\infty(\mathbb{X})$,
- $\Delta_{\mathbb{G}}(L^{\infty}(\mathbb{X})) \subset M(\mathcal{K}(L^{2}(\mathbb{G})) \otimes C_{0}(\mathbb{X})),$

The map

$$\Delta_{\mathbb{G}}\big|_{L^{\infty}(\mathbb{X})} \colon L^{\infty}(\mathbb{X}) \longrightarrow \mathbf{M}\big(\mathcal{K}(L^{2}(\mathbb{G})) \otimes \mathbf{C}_{0}(\mathbb{X})\big)$$

is **strict**, i.e. strong^{*}–strict continuous on $\|\cdot\|$ -bounded subsets.

PIOTR M. SOŁTAN (WARSAW)

Sac

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

WHAT?!

PIOTR M. SOŁTAN (WARSAW) QUANTUM HOMOGENEOUS SPACES

JULY 10, 2013 17 / 20

PIOTR M. SOŁTAN (WARSAW)

QUANTUM HOMOGENEOUS SPACES

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• It is a highly non-trivial theorem of Vaes, that the quotient type W*-quantum G-spaces are embeddable quantum homogeneous spaces.

JULY 10, 2013 17 / 20

- It is a highly non-trivial theorem of Vaes, that the quotient type W*-quantum G-spaces are embeddable quantum homogeneous spaces.
- The idea behind the definition is that X should have compatible W^{*}- and C^{*}-versions.

- It is a highly non-trivial theorem of Vaes, that the quotient type W*-quantum G-spaces are embeddable quantum homogeneous spaces.
- The idea behind the definition is that X should have compatible W^{*}- and C^{*}-versions.
- $C_0(X)$ and $L^{\infty}(X)$ determine one another uniquely.

- It is a highly non-trivial theorem of Vaes, that the quotient type W*-quantum G-spaces are embeddable quantum homogeneous spaces.
- \bullet The idea behind the definition is that $\mathbb X$ should have compatible W*- and C*-versions.
- $C_0(\mathbb{X})$ and $L^{\infty}(\mathbb{X})$ determine one another uniquely.
- The Podleś condition is satisfied.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- It is a highly non-trivial theorem of Vaes, that the quotient type W*-quantum G-spaces are embeddable quantum homogeneous spaces.
- \bullet The idea behind the definition is that $\mathbb X$ should have compatible W*- and C*-versions.
- $C_0(\mathbb{X})$ and $L^{\infty}(\mathbb{X})$ determine one another uniquely.
- The Podleś condition is satisfied.
- Example: take $\mathbb{X} = \mathbb{G}$.

- It is a highly non-trivial theorem of Vaes, that the quotient type W*-quantum G-spaces are embeddable quantum homogeneous spaces.
- $\bullet\,$ The idea behind the definition is that $\mathbb X$ should have compatible W*- and C*-versions.
- $C_0(X)$ and $L^{\infty}(X)$ determine one another uniquely.
- The Podleś condition is satisfied.
- Example: take $\mathbb{X} = \mathbb{G}$.
- For classical groups, embeddable quantum homogeneous spaces correspond to homogeneous spaces.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

PIOTR M. SOLTAN (WARSAW)

QUANTUM HOMOGENEOUS SPACES

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ JULY 10, 2013

18 / 20

• *G* — locally compact group.

PIOTR M. SOŁTAN (WARSAW)

QUANTUM HOMOGENEOUS SPACES

<ロ ト < □ ト < □ ト < 三 ト < 三 ト < 三 ト ○ Q (~ JULY 10, 2013 18 / 20

- *G* locally compact group.
- $G \cong \{(t,t) \mid t \in G\} \subset G \times G$ the diagonal subgroup

Sac

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- *G* locally compact group.
- $G \cong \{(t,t) \mid t \in G\} \subset G \times G$ the diagonal subgroup
- $(G \times G)/G$ is homeomorphic to G via

 $\left[(t,s)\right]\longmapsto ts^{-1}.$

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- *G* locally compact group.
- $G \cong \{(t,t) \mid t \in G\} \subset G \times G$ the diagonal subgroup
- $(G \times G)/G$ is homeomorphic to G via

 $\left[(t,s)\right]\longmapsto ts^{-1}.$

• Change the picture to *G* embedded in $G \times G^{op}$ as

 $\left\{(t,t^{-1}) \,\middle|\, t \in G\right\} \subset G imes G^{\operatorname{op}}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- *G* locally compact group.
- $G \cong \{(t,t) \mid t \in G\} \subset G \times G$ the diagonal subgroup
- $(G \times G)/G$ is homeomorphic to G via

$$\left[(t,s)\right]\longmapsto ts^{-1}.$$

• Change the picture to *G* embedded in *G* × *G*^{op} as

$$\left\{(t,t^{-1}) \mid t \in G\right\} \subset G \times G^{\operatorname{op}}.$$

 ${\ensuremath{\, \bullet }}$ Then the quotient $(G\times G^{\operatorname{op}})/G$ is homeomorphic to G via

 $[(t, s)] \mapsto ts.$

PIOTR M. SOLTAN (WARSAW)

JULY 10, 2013 18 / 20

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- *G* locally compact group.
- $G \cong \{(t,t) \mid t \in G\} \subset G \times G$ the diagonal subgroup
- $(G \times G)/G$ is homeomorphic to G via

$$\left[(t,s)\right]\longmapsto ts^{-1}.$$

• Change the picture to *G* embedded in $G \times G^{op}$ as

$$\left\{(t,t^{-1}) \,\middle|\, t \in G
ight\} \subset G imes G^{\operatorname{op}}.$$

 ${\ensuremath{\, \bullet }}$ Then the quotient $(G\times G^{\operatorname{op}})/G$ is homeomorphic to G via

$$[(t, s)] \mapsto ts.$$

• Can consider the quantum analog of this construction

200

イロト イポト イヨト イヨト 二日

- *G* locally compact group.
- $G \cong \{(t,t) \mid t \in G\} \subset G \times G$ the diagonal subgroup
- $(G \times G)/G$ is homeomorphic to G via

$$\left[(t,s)\right]\longmapsto ts^{-1}.$$

• Change the picture to *G* embedded in $G \times G^{op}$ as

$$\left\{(t,t^{-1}) \,\middle|\, t \in G\right\} \subset G imes G^{\operatorname{op}}.$$

 ${\ensuremath{\, \bullet }}$ Then the quotient $(G\times G^{\operatorname{op}})/G$ is homeomorphic to G via

$$[(t, s)] \mapsto ts.$$

- Can consider the quantum analog of this construction:
 - $\bullet \ \text{ define } L^\infty(\mathbb{X}) = \Delta_{\mathbb{G}} \big(L^\infty(\mathbb{G}) \big) \subset L^\infty(\mathbb{G}) \, \bar{\otimes} \, L^\infty(\mathbb{G}^{\mathrm{op}}),$

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- *G* locally compact group.
- $G \cong \{(t,t) \mid t \in G\} \subset G \times G$ the diagonal subgroup
- $(G \times G)/G$ is homeomorphic to G via

$$\left[(t,s)\right]\longmapsto ts^{-1}.$$

• Change the picture to *G* embedded in $G \times G^{op}$ as

$$\left\{(t,t^{-1}) \,\middle|\, t \in G\right\} \subset G imes G^{\operatorname{op}}.$$

 ${\ensuremath{\, \bullet }}$ Then the quotient $(G\times G^{\operatorname{op}})/G$ is homeomorphic to G via

$$[(t, s)] \mapsto ts.$$

- Can consider the quantum analog of this construction:
 - $\bullet \text{ define } L^{\infty}(\mathbb{X}) = \Delta_{\mathbb{G}} \big(L^{\infty}(\mathbb{G}) \big) \subset L^{\infty}(\mathbb{G}) \, \bar{\otimes} \, L^{\infty}(\mathbb{G}^{\mathrm{op}}),$
 - then \mathbb{X} is a W^{*}-quantum $\mathbb{G} \times \mathbb{G}^{op}$ -space,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- *G* locally compact group.
- $G \cong \{(t,t) \mid t \in G\} \subset G \times G$ the diagonal subgroup
- $(G \times G)/G$ is homeomorphic to G via

$$\left[(t,s)\right]\longmapsto ts^{-1}.$$

• Change the picture to *G* embedded in $G \times G^{op}$ as

$$\left\{(t,t^{-1}) \,\middle|\, t\in G
ight\}\subset G imes G^{\operatorname{op}}.$$

 ${\ensuremath{\, \bullet }}$ Then the quotient $(G\times G^{\operatorname{op}})/G$ is homeomorphic to G via

$$[(t, s)] \mapsto ts.$$

- Can consider the quantum analog of this construction:
 - $\bullet \ \text{ define } L^\infty(\mathbb{X}) = \Delta_{\mathbb{G}} \big(L^\infty(\mathbb{G}) \big) \subset L^\infty(\mathbb{G}) \, \bar{\otimes} \, L^\infty(\mathbb{G}^{\mathrm{op}}),$
 - then \mathbb{X} is a W^{*}-quantum $\mathbb{G} \times \mathbb{G}^{op}$ -space,
 - moreover, \mathbb{X} is an embeddable quantum homogeneous space for $\mathbb{G} \times \mathbb{G}^{\text{op}}$ with $C_0(\mathbb{X}) = \Delta_{\mathbb{G}}(C_0(\mathbb{G}))$.

PIOTR M. SOŁTAN (WARSAW) QUANTUM HOMOGENEOUS SPACES JULY

JULY 10, 2013 19 / 20

• X is defined by

$$L^{\infty}(\mathbb{X}) = \Delta_{\mathbb{G}}(L^{\infty}(\mathbb{G})) \subset L^{\infty}(\mathbb{G}) \, \bar{\otimes} \, L^{\infty}(\mathbb{G}^{\mathrm{op}}).$$

PIOTR M. SOLTAN (WARSAW)

QUANTUM HOMOGENEOUS SPACES

<ロト < 部ト < ミト < ミト -Ξ 9 Q (P JULY 10, 2013

19 / 20

• X is defined by

$$L^{\infty}(\mathbb{X}) = \Delta_{\mathbb{G}}(L^{\infty}(\mathbb{G})) \subset L^{\infty}(\mathbb{G}) \, \bar{\otimes} \, L^{\infty}(\mathbb{G}^{\mathrm{op}}).$$

 ● Performing the same construction for G we obtain a W*-quantum G-space Y:

$$L^\infty(\mathbb{Y}) = \Delta_{\widehat{\mathbb{G}}} \big(L^\infty(\widehat{\mathbb{G}}) \big) \subset L^\infty(\widehat{\mathbb{G}}) \, \bar{\otimes} \, L^\infty(\widehat{\mathbb{G}}^{\operatorname{op}}).$$

1

ヨト・モヨトー

• X is defined by

$$L^{\infty}(\mathbb{X}) = \Delta_{\mathbb{G}}(L^{\infty}(\mathbb{G})) \subset L^{\infty}(\mathbb{G}) \, \bar{\otimes} \, L^{\infty}(\mathbb{G}^{\mathrm{op}}).$$

Performing the same construction for G
 ^ˆG
 we obtain a W^{*}-quantum G
 ^ˆSpace Y:

$$L^{\infty}(\mathbb{Y}) = \Delta_{\widehat{\mathbb{G}}} \left(L^{\infty}(\widehat{\mathbb{G}})
ight) \subset L^{\infty}(\widehat{\mathbb{G}}) \, \bar{\otimes} \, L^{\infty}(\widehat{\mathbb{G}}^{\mathrm{op}}).$$

THEOREM

There is an order-two, normal automorphism α of $B(L^2(\mathbb{G}))$

3

▶ < ∃ ▶</p>

• X is defined by

$$L^{\infty}(\mathbb{X}) = \Delta_{\mathbb{G}}(L^{\infty}(\mathbb{G})) \subset L^{\infty}(\mathbb{G}) \, \bar{\otimes} \, L^{\infty}(\mathbb{G}^{\mathrm{op}}).$$

Performing the same construction for G
 ^ˆG
 we obtain a W^{*}-quantum G
 ^ˆSpace Y:

$$L^{\infty}(\mathbb{Y}) = \Delta_{\widehat{\mathbb{G}}} ig(L^{\infty}(\widehat{\mathbb{G}}) ig) \subset L^{\infty}(\widehat{\mathbb{G}}) \, ar{\otimes} \, L^{\infty}(\widehat{\mathbb{G}}^{\mathrm{op}}).$$

THEOREM

There is an order-two, normal automorphism α of $B(L^2(\mathbb{G}))$ which maps $L^{\infty}(\widehat{\mathbb{G}}^{op})$ onto $L^{\infty}(\widehat{\mathbb{G}}')$ such that

3

▶ < ∃ ▶</p>

• X is defined by

$$L^{\infty}(\mathbb{X}) = \Delta_{\mathbb{G}}(L^{\infty}(\mathbb{G})) \subset L^{\infty}(\mathbb{G}) \, \bar{\otimes} \, L^{\infty}(\mathbb{G}^{\mathrm{op}}).$$

Performing the same construction for G
 ^ˆG
 we obtain a W^{*}-quantum G
 ^ˆG-space Y:

$$L^{\infty}(\mathbb{Y}) = \Delta_{\widehat{\mathbb{G}}} ig(L^{\infty}(\widehat{\mathbb{G}}) ig) \subset L^{\infty}(\widehat{\mathbb{G}}) \, ar{\otimes} \, L^{\infty}(\widehat{\mathbb{G}}^{\mathrm{op}}).$$

THEOREM

There is an order-two, normal automorphism α of $B(L^2(\mathbb{G}))$ which maps $L^{\infty}(\widehat{\mathbb{G}}^{op})$ onto $L^{\infty}(\widehat{\mathbb{G}}')$ such that

$$L^{\infty}(\widetilde{\mathbb{X}}) = (\mathrm{id} \otimes lpha) (L^{\infty}(\mathbb{Y})) \subset L^{\infty}(\widehat{\mathbb{G}}) \, \bar{\otimes} \, L^{\infty}(\widehat{\mathbb{G}}')$$

and

PIOTR M. SOŁTAN (WARSAW)

1

イロト イポト イヨト

• X is defined by

$$L^\infty(\mathbb{X}) = \Delta_{\mathbb{G}}ig(L^\infty(\mathbb{G})ig) \subset L^\infty(\mathbb{G})\,ar\otimes\, L^\infty(\mathbb{G}^{\mathrm{op}}).$$

Performing the same construction for G
 ^ˆG
 we obtain a W^{*}-quantum G
 ^ˆSpace Y:

$$L^{\infty}(\mathbb{Y}) = \Delta_{\widehat{\mathbb{G}}} (L^{\infty}(\widehat{\mathbb{G}})) \subset L^{\infty}(\widehat{\mathbb{G}}) \, \bar{\otimes} \, L^{\infty}(\widehat{\mathbb{G}}^{\mathrm{op}}).$$

THEOREM

There is an order-two, normal automorphism α of $B(L^2(\mathbb{G}))$ which maps $L^{\infty}(\widehat{\mathbb{G}}^{op})$ onto $L^{\infty}(\widehat{\mathbb{G}}')$ such that

$$L^{\infty}(\widetilde{\mathbb{X}}) = (\mathrm{id} \otimes lpha) (L^{\infty}(\mathbb{Y})) \subset L^{\infty}(\widehat{\mathbb{G}}) \, \bar{\otimes} \, L^{\infty}(\widehat{\mathbb{G}}')$$

and

$$\Delta_{\widehat{\mathbb{G}}\times\widehat{\mathbb{G}^{\mathrm{op}}}}\big|_{L^{\infty}(\widetilde{\mathbb{X}})} \circ (\mathrm{id}\otimes\alpha) = (\mathrm{id}\otimes\alpha) \circ \Delta_{\widehat{\mathbb{G}}\times\widehat{\mathbb{G}}^{\mathrm{op}}}\big|_{L^{\infty}(\mathbb{Y})}.$$

3

イロト イポト イヨト

PIOTR M. SOŁTAN (WARSAW)

QUANTUM HOMOGENEOUS SPACES

<□▶ < 部 > < 注 > < 注 > 注 の Q (?)
JULY 10, 2013 20 / 20

α is defined as *α*(*x*) = *JJxJJ*, where *J* and *J* are modular conjugations of the right Haar weights of G and G.

JULY 10, 2013 20 / 20

1

ヨト・ヨトー

- α is defined as α(x) = JJxJJ, where J and J are modular conjugations of the right Haar weights of G and G.
- In fact, α is an isomorphism of quantum groups

$$\widehat{\mathbb{G}}^{\mathrm{op}} \longrightarrow \widehat{\mathbb{G}}',$$

1

E + 4 E +

- *α* is defined as *α*(*x*) = *JJxJJ*, where *J* and *J* are modular conjugations of the right Haar weights of G and G.
- In fact, α is an isomorphism of quantum groups

$$\widehat{\mathbb{G}}^{\mathrm{op}} \longrightarrow \widehat{\mathbb{G}}', \qquad \qquad \mathbb{G}^{\mathrm{op}} \longrightarrow \mathbb{G}'.$$

1

E + 4 E +

- α is defined as α(x) = JJxJJ, where J and J are modular conjugations of the right Haar weights of G and G.
- In fact, α is an isomorphism of quantum groups

$$\widehat{\mathbb{G}}^{\mathrm{op}} \longrightarrow \widehat{\mathbb{G}}', \qquad \qquad \mathbb{G}^{\mathrm{op}} \longrightarrow \mathbb{G}'.$$

• We use description of $\widetilde{\mathbb{X}}$ to prove

- α is defined as α(x) = JJxJJ, where J and J are modular conjugations of the right Haar weights of G and G.
- In fact, α is an isomorphism of quantum groups

$$\widehat{\mathbb{G}}^{\mathrm{op}} \longrightarrow \widehat{\mathbb{G}}', \qquad \qquad \mathbb{G}^{\mathrm{op}} \longrightarrow \mathbb{G}'.$$

• We use description of $\widetilde{\mathbb{X}}$ to prove

THEOREM

If $\mathbb X$ is of quotient type then $\mathbb G$ is a classical locally compact group.

- α is defined as α(x) = JJxJJ, where J and J are modular conjugations of the right Haar weights of G and G.
- In fact, α is an isomorphism of quantum groups

$$\widehat{\mathbb{G}}^{\mathrm{op}} \longrightarrow \widehat{\mathbb{G}}', \qquad \qquad \mathbb{G}^{\mathrm{op}} \longrightarrow \mathbb{G}'.$$

• We use description of $\widetilde{\mathbb{X}}$ to prove

THEOREM

If $\mathbb X$ is of quotient type then $\mathbb G$ is a classical locally compact group.

• In particular we find that **quantum** groups do not have diagonal subgroups.

PIOTR M. SOŁTAN (WARSAW)

4 ■ ▶ 4 ■ ▶ ■ のQC JULY 10, 2013 20 / 20