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L.C.Q.G.’S

DEFINITION

A locally compact quantum group G consist of a von

Neumann algebra M, a normal unital injective map

∆: M −→ M ⊗̄M

such that (∆ ⊗ id)◦∆ = (id⊗∆)◦∆, and two n.s.f. weights ϕ and

ψ on M such that

(id⊗ ϕ)∆(x) = ϕ(x)1, (x ∈ Mϕ),

(ψ ⊗ id)∆(x) = ψ(x)1, (x ∈ Mψ).
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(id⊗ ϕ)∆(x) = ϕ(x)1, (x ∈ Mϕ),

(ψ ⊗ id)∆(x) = ψ(x)1, (x ∈ Mψ).

We write L∞(G) for the von Neumann algebra M.

Each l.c.q.g. G has a dual Ĝ and the dual of Ĝ is naturally

isomorphic to G.

Both L∞(G) and L∞(Ĝ) are naturally represented on the

GNS Hilbert space of ψ called L2(G).
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ϕ( f ) =

∫

G

f dh L,

ψ( f ) =

∫

G

f dh R,

where h L and h R are the left and right Haar measures of G.

If G is abelian then Ĝ is the Pontiagin dual of G.

If G is not abelian, L∞(Ĝ) is the group von Neumann

algebra of G.
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The pair (C0(G), ∆|C0(G)) determines G uniquely.

G can be defined solely in C∗-algebraic terms, so that the

von Neumann algebraic and C∗-algebraic approaches are

equivalent.

There is another C∗-algebra Cu

0(G) with a surjection

Λ: Cu

0(G) → C0(G) which encodes representation theory of

Ĝ; Cu

0(G) is called the universal version of C0(G).

By analogy with group C∗-algebras, C0(G) is often called the

reduced C∗-algebra describing G.
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such that
(id⊗ α)◦α = (∆⊗ id)◦α.

Continuity and Podleś Condition: in the C∗-context the
conditions

◮ (C0(G)⊗ 1)α(C0(X)) ⊂ C0(G)⊗ C0(X) (continuity)
◮ (C0(G)⊗ 1)α(C0(X)) ⊂

dense

C0(G)⊗ C0(X) (Podleś condition)

are relevant (and desirable).
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Let G act on a l.c. space X .

For f ∈ C0(X) define α( f ) : G × X → C by

α( f )(g, x) = f (g · x). (⋆)
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Then α( f ) ∈ CB(G × X) ∼= M(C0(G)⊗ C0(X))
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Then α( f ) ∈ CB(G × X) ∼= M(C0(G)⊗ C0(X)) and
α ∈ Mor(C0(X),C0(G)⊗ C0(X)).

Since (g1g2) · x = g1 · (g2 · x), we have

(α⊗ id)◦α = (id⊗∆)◦α. (⋆⋆)
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Then α( f ) ∈ CB(G × X) ∼= M(C0(G)⊗ C0(X)) and
α ∈ Mor(C0(X),C0(G)⊗ C0(X)).

Since (g1g2) · x = g1 · (g2 · x), we have

(α⊗ id)◦α = (id⊗∆)◦α. (⋆⋆)

Given a C∗-algebra A and α ∈ Mor(A,C0(G)⊗ A) s.t. (⋆⋆), the
condition that (C0(G)⊗ 1)α(A) ⊂ C0(G)⊗ A implies

existence of a continuous action of G on A such that (⋆)
holds.
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Then α( f ) ∈ CB(G × X) ∼= M(C0(G)⊗ C0(X)) and
α ∈ Mor(C0(X),C0(G)⊗ C0(X)).

Since (g1g2) · x = g1 · (g2 · x), we have

(α⊗ id)◦α = (id⊗∆)◦α. (⋆⋆)

Given a C∗-algebra A and α ∈ Mor(A,C0(G)⊗ A) s.t. (⋆⋆), the
condition that (C0(G)⊗ 1)α(A) ⊂ C0(G)⊗ A implies

existence of a continuous action of G on A such that (⋆)
holds.

If, moreover, (C0(G)⊗ 1)α(A) ⊂
dense

C0(G)⊗ A then this action

is unital.
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QUANTUM G-SPACES

G — a locally compact quantum group.

Ergodic

W∗-Quantum

G-Spaces
Quantum Homogeneous

Spaces

Embeddable Quantum

Homogeneous Spaces

Embeddable

W∗-Quantum

G-Spaces

C∗-Quantum

G-Spaces

Quotient Type
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G — a locally compact quantum group.

Ergodic

W∗-Quantum

G-Spaces
Quantum Homogeneous

Spaces

Embeddable Quantum

Homogeneous Spaces

Embeddable

W∗-Quantum

G-Spaces

C∗-Quantum

G-Spaces

Quotient Type

Many classes of objects, some relations unclear
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Ergodic

W∗-Quantum

G-Spaces
Quantum Homogeneous

Spaces

Embeddable Quantum

Homogeneous Spaces

Embeddable

W∗-Quantum

G-Spaces

Quotient Type

Von Neumann algebra language, α(x) = 1⊗ x ⇒ x ∈ C1
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Quantum Homogeneous
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Embeddable Quantum

Homogeneous Spaces

Embeddable

W∗-Quantum

G-Spaces

C∗-Quantum

G-Spaces

Quotient Type

Embeddable

W∗-Quantum

G-Spaces

Quotient Type

Embeddable Quantum

Homogeneous Spaces

Left coideals in L∞(G), co-duality
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Quantum Homogeneous

Spaces

Embeddable Quantum

Homogeneous Spaces

Embeddable

W∗-Quantum

G-Spaces

C∗-Quantum

G-Spaces

Quotient Type

C∗-algebra language, Podleś condition
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G — a locally compact quantum group.

Ergodic

W∗-Quantum

G-Spaces
Quantum Homogeneous

Spaces

Embeddable Quantum

Homogeneous Spaces

Embeddable

W∗-Quantum

G-Spaces

C∗-Quantum

G-Spaces

Quotient Type

Quantum Homogeneous

Spaces

Embeddable Quantum

Homogeneous Spaces

Quotient Type

Compatible C∗- and von Neumann description
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QUANTUM G-SPACES

G — a locally compact quantum group.

Ergodic

W∗-Quantum

G-Spaces
Quantum Homogeneous

Spaces

Embeddable Quantum

Homogeneous Spaces

Embeddable

W∗-Quantum

G-Spaces

C∗-Quantum

G-Spaces

Quotient TypeQuotient Type

Defined by S. Vaes, cf. work of P. Podleś
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QUANTUM G-SPACES

G — a locally compact quantum group.

Ergodic

W∗-Quantum

G-Spaces
Quantum Homogeneous

Spaces

Embeddable Quantum

Homogeneous Spaces

Embeddable

W∗-Quantum

G-Spaces

C∗-Quantum

G-Spaces

Quotient Type

Embeddable Quantum

Homogeneous Spaces

Quotient Type

Natural class we wish to study
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G — a compact quantum group (C0(G) is unital).

consider only actions on compact quantum spaces.
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G — a compact quantum group (C0(G) is unital).

consider only actions on compact quantum spaces.

Quantum Homogeneous spaces

Embeddable Quantum

Homogeneous spaces

Quotient Quantum

Homogeneous spaces
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CASE OF COMPACT QUANTUM GROUPS (P. PODLEŚ)

G — a compact quantum group (C0(G) is unital).

consider only actions on compact quantum spaces.

Quantum Homogeneous spaces

Embeddable Quantum

Homogeneous spaces

Quotient Quantum

Homogeneous spaces

Quantum Homogeneous spaces

Embeddable Quantum

Homogeneous spaces

Quotient Quantum

Homogeneous spaces

Ergodic actions (transitivity)
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CASE OF COMPACT QUANTUM GROUPS (P. PODLEŚ)

G — a compact quantum group (C0(G) is unital).

consider only actions on compact quantum spaces.

Quantum Homogeneous spaces

Embeddable Quantum

Homogeneous spaces

Quotient Quantum

Homogeneous spaces

Quotient Quantum

Homogeneous spaces

Q.H.S.’s arising from subgroups (careful)
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CASE OF COMPACT QUANTUM GROUPS (P. PODLEŚ)

G — a compact quantum group (C0(G) is unital).

consider only actions on compact quantum spaces.

Quantum Homogeneous spaces

Embeddable Quantum

Homogeneous spaces

Quotient Quantum

Homogeneous spaces

Embeddable Quantum

Homogeneous spaces

Quotient Quantum

Homogeneous spaces

Ergodic actions realized inside C(G) via ∆
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CASE OF COMPACT QUANTUM GROUPS (P. PODLEŚ)

G — a compact quantum group (C0(G) is unital).

consider only actions on compact quantum spaces.

Quantum Homogeneous spaces

Embeddable Quantum

Homogeneous spaces

Quotient Quantum

Homogeneous spaces

Embeddable Quantum

Homogeneous spaces

Quotient Quantum

Homogeneous spaces

Classically correspond to classical homogeneous spaces
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CLOSED QUANTUM SUBGROUPS

DEFINITION

G, H — l.c.q.g.’s.
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CLOSED QUANTUM SUBGROUPS

DEFINITION

G, H — l.c.q.g.’s.

1 H is a closed quantum subgroup of G in the sense of Vaes
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CLOSED QUANTUM SUBGROUPS

DEFINITION

G, H — l.c.q.g.’s.

1 H is a closed quantum subgroup of G in the sense of Vaes

if there exists a normal, unital, injective map

π̂ : L∞(Ĥ) −→ L∞(Ĝ)

intertwining comultiplications.
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2 H is a closed quantum subgroup of G in the sense of

Woronowicz if there exists a surjective ∗-homomorphism

π : Cu
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intertwining comultiplications.

PIOTR M. SOŁTAN (WARSAW ) QUANTUM HOMOGENEOUS SPACES JULY 10, 2013 11 / 20



CLOSED QUANTUM SUBGROUPS

DEFINITION

G, H — l.c.q.g.’s.

1 H is a closed quantum subgroup of G in the sense of Vaes

if there exists a normal, unital, injective map
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intertwining comultiplications.

2 H is a closed quantum subgroup of G in the sense of

Woronowicz if there exists a surjective ∗-homomorphism

π : Cu

0(G) −→ Cu

0(H)

intertwining comultiplications.

(
H ⊂

Vaes
G

)
=⇒

(
H ⊂

SLW
G

)
,
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CLOSED QUANTUM SUBGROUPS

DEFINITION

G, H — l.c.q.g.’s.

1 H is a closed quantum subgroup of G in the sense of Vaes

if there exists a normal, unital, injective map

π̂ : L∞(Ĥ) −→ L∞(Ĝ)

intertwining comultiplications.

2 H is a closed quantum subgroup of G in the sense of

Woronowicz if there exists a surjective ∗-homomorphism

π : Cu

0(G) −→ Cu

0(H)

intertwining comultiplications.

(
H ⊂

Vaes
G

)
=⇒

(
H ⊂

SLW
G

)
,

converse unclear, true in many cases.
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QUOTIENT CONSTRUCTION

Let H be a closed quantum subgroup of G in the sense of

Vaes with π̂ : L∞(Ĥ) →֒ L∞(Ĝ)

PIOTR M. SOŁTAN (WARSAW ) QUANTUM HOMOGENEOUS SPACES JULY 10, 2013 12 / 20



QUOTIENT CONSTRUCTION

Let H be a closed quantum subgroup of G in the sense of

Vaes with π̂ : L∞(Ĥ) →֒ L∞(Ĝ)

Define a right action of H on G by

α(x) =
[
(π̂ ⊗ id)WH

]
(1⊗ x)

[
(π̂ ⊗ id)WH

]
∗
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Define a right action of H on G by

α(x) =
[
(π̂ ⊗ id)WH

]
(1⊗ x)

[
(π̂ ⊗ id)WH

]
∗

,

where WH ∈ L∞(Ĥ) ⊗̄L∞(H) is the Kac-Takesaki operator of

H
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where WH ∈ L∞(Ĥ) ⊗̄L∞(H) is the Kac-Takesaki operator of

H (right regular representation).
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]
∗

,

where WH ∈ L∞(Ĥ) ⊗̄L∞(H) is the Kac-Takesaki operator of

H (right regular representation).

(α : L∞(G) → L∞(G) ⊗̄L∞(H), formally α = (id ⊗ π)◦∆G)
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QUOTIENT CONSTRUCTION

Let H be a closed quantum subgroup of G in the sense of

Vaes with π̂ : L∞(Ĥ) →֒ L∞(Ĝ)

Define a right action of H on G by

α(x) =
[
(π̂ ⊗ id)WH

]
(1⊗ x)

[
(π̂ ⊗ id)WH

]
∗

,

where WH ∈ L∞(Ĥ) ⊗̄L∞(H) is the Kac-Takesaki operator of

H (right regular representation).
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(α : L∞(G) → L∞(G) ⊗̄L∞(H), formally α = (id ⊗ π)◦∆G)

Define a quantum space X setting

L∞(X) =
{
x ∈ L∞(G) α(x) = x ⊗ 1

}
.

X is by definition the quotient space G/H.

L∞(X) is a left coideal in L∞(G), i.e. an embeddable

W∗-quantum G-space.
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y ∈ L∞(Ĝ) ∀ x ∈ L∞(X) xy = yx

}
= L∞(X)′ ∩ L∞(Ĝ).
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,
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then γ is injective.
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Define X̃ by setting

L∞(X̃) =
{
y ∈ L∞(Ĝ) ∀ x ∈ L∞(X) xy = yx

}
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Then X̃ is an embeddable W∗-quantum Ĝ-space.
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THEOREM
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DOUBLE CO-DUAL

THEOREM

The co-dual of X̃ is equal to X.

The proof uses duality for crossed products by

l.c.q.g.-actions (Vaes).

We get equality (not isomorphism) because we work with

“embedded” G- and Ĝ-spaces.

For G = G — classical and X = G/H (H — subgroup of G),

we have L∞(X̃) = L∞(Ĥ) ⊂ L∞(Ĝ).

◮ In this case L∞(Ĥ) is the group von Neumann algebra of H.

For X = G, we have X̃ = point (L∞(X̃) = C1
L∞(Ĝ)).

THEOREM

X is of quotient type iff there exists a closed quantum subgroup H

of G such that L∞(X̃) is the image of L∞(Ĥ) in L∞(Ĝ).
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)
,

The map

∆G

∣∣
L∞(X)

: L∞(X) −→ M
(
K(L2(G))⊗ C0(X)

)

is strict, i.e. strong∗–strict continuous on ‖ · ‖-bounded
subsets.
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It is a highly non-trivial theorem of Vaes, that the quotient

type W∗-quantum G-spaces are embeddable quantum

homogeneous spaces.
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It is a highly non-trivial theorem of Vaes, that the quotient

type W∗-quantum G-spaces are embeddable quantum

homogeneous spaces.

The idea behind the definition is that X should have

compatible W∗- and C∗-versions.

C0(X) and L∞(X) determine one another uniquely.

The Podleś condition is satisfied.

Example: take X = G.

For classical groups, embeddable quantum homogeneous

spaces correspond to homogeneous spaces.
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Then the quotient (G ×Gop)/G is homeomorphic to G via

[
(t, s)

]
7−→ ts.

Can consider the quantum analog of this construction:
◮ define L∞(X) = ∆G

(
L∞(G)

)
⊂ L∞(G) ⊗̄ L∞(Gop),

◮ then X is a W∗-quantum G×Gop-space,
◮ moreover, X is an embeddable quantum homogeneous space

for G×Gop with C0(X) = ∆G

(
C0(G)

)
.
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W∗-quantum Ĝ-space Y:
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Ĝ

(
L∞(Ĝ)
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W∗-quantum Ĝ-space Y:
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L∞(X̃) = (id⊗ α)
(
L∞(Y)

)
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and
∆
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α is defined as α(x) = ĴJ x JĴ , where J and Ĵ are modular
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α is defined as α(x) = ĴJ x JĴ , where J and Ĵ are modular

conjugations of the right Haar weights of G and Ĝ.

In fact, α is an isomorphism of quantum groups

Ĝ
op −→ Ĝ

′, G
op −→ G

′.

We use description of X̃ to prove

THEOREM

If X is of quotient type then G is a classical locally compact group.

In particular we find that quantum groups do not have

diagonal subgroups.
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