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QUANTUM SPACES THE GELFAND-NAIMARK DUALITY
THEOREM

The assignment to a locally compact topological space X of the

C*-algebra Cy(X) defines an anti-equivalence of categories
between

9 the category of commutative C*-algebras with morphisms of
C*-algebras
and

o the category of locally compact topological spaces with
continuous maps.

o A locally compact space is by definition Hausdorff.

o The “inverse” functor is defined as the assignment to a
commutative C*-algebra A its spectrum A.

o A morphism of C*-algebras from A to B is a
x-homomorphism ¢ : A — M(B) such that &(A)B = B.
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QUANTUM SPACES

THE GELFAND-NAIMARK DUALITY

L.C. Top. Sp.

Commutative C*-algs.

X Co(X)
0:X—->Y ® € Mor(Co(Y) Co(X))
X — compact Co(X) — unital
X — finite Co(X) — finite-dimensional

X — metrizable

Co(X) — separable

probab. measure on X

state on Cy(X)

XxY

Co(X) ®Co(Y)

o Note: M(Co(X)) = Cy(X).
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QUANTUM SPACES QUANTUM SPACES

DEFINITION

A Quantum space is an object of the category dual to the
category of C*-algebras.

o A theorem about quantum spaces is nothing else than a
theorem about C*-algebras.

9o A quantum space X is called compact if the corresponding
C*-algebra Cy(X) is unital (in this case we write C(X)).

o Similarly, finite quantum spaces correspond to
finite-dimensional C*-algebras.

o Classical (ordinary) locally compact spaces are particular
examples of quantum spaces.
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QUANTUM FAMILIES OF MAPS CLASSICAL FAMILIES OF MAPS

THEOREM (JAMES R. JACKSON, 1952)

Let X, Y and Z be topological spaces such that X is Hausdorff
and Z is locally compact. Then the assignment to any
e C(X x Z,Y) of the map

Zsz—Y(-,2z) e C(X,Y)

is a homeomorphism of C(X x Z,Y) onto C(Z,C(X,Y)) with all
three spaces of maps topologized by their respective
compact-open topologies.

o Assume that X, Y and Z are locally compact. Then a
continuous family of continuous maps from X to Y indexed

by Z, i.e. a continuous map from Z to C(X,Y) is the same
thing as an element of

Mor (Co(Y), Co(X) ® Co(Z)).
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QUANTUM FAMILIES OF MAPS QUANTUM FAMILIES OF MAPS

DEFINITION

Let X,y and Z be quantum spaces. A quantum family of
maps from X to Y indexed by Z is an element

® € Mor(Co (), Co(X) ® Co(2)).

o A quantum family of maps is a very general object.

o Consequently interesting quantum families of maps must
have additional features.

o How about a quantum version of the space C(X,Y) of all
continuous maps from X to Y?
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QUANTUM FAMILIES OF MAPS QUANTUM FAMILY OF ALL MAPS

DEFINITION
Let X,y and Z be quantum spaces and let

® € Mor(Co(Y),Co(X) ® Co(Z)) be a quantum family of maps.

We say that

0 Z is the quantum space of all maps from X to Y
and

o & is the quantum family of all maps from X to Y

if for any quantum space Z’ and any quantum family
¥ € Mor (Co(Y),Co(X) ® Co(Z')) there exists a unique
A € Mor(Co(Z),Co(Z")) such that

Co(Y) —2—=Co(X) ®Co(2)
e
Co(Y) Co(X)®Co(Z2)
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QUANTUM FAMILIES OF MAPS QUANTUM FAMILY OF ALL MAPS

o Let X,Y and Z be locally compact spaces. For the quantum
space of all maps from X to Y to exist it is necessary that
C(X,Y) be locally compact in the compact-open topology.

o This will certainly be the case when X is finite and Y is
compact.

THEOREM (S.L. WorRoONOWICZ 1979, P.S. 2009)

Let X be a finite quantum space and let Y be a compact quantum
space such that C() is finitely generated. Then the quantum
space of all maps from X to Y exists and it is compact.

o Let Z be the quantum space of all maps & — Y.
o The universal family

® € Mor(C(Y),C(X) ® C(Z2))
corresponds to the evaluation mapping
XxCX,Y)a(x,¢) —(x)eY
for classical spaces X and Y.
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QUANTUM FAMILIES OF MAPS QUANTUM FAMILY OF ALL MAPS

EXAMPLE

o Consider X such that C(X) = M.
o Take Y = {e, 0}, i.e. C(Y) = C2.
o Let Z be the quantum space of all maps X — .

o Then C(Z) is the universal unital C*-algebra generated by
three elements p, q and z with relations

p=Dp* p=p*+2zz zp = (1-q)z,
q=q", q=q +zz*
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QUANTUM FAMILIES OF MAPS COMPOSITION OF QUANTUM FAMILIES

DEFINITION
Let X, X2, X3,P; and Py be quantum spaces and let

U9 € Mor(C(X2),C(X1) ® C(P1)),
Wo3 € Mor(C(X3),C(X2) ® C(P2))

be quantum families of maps. The composition of V35 and Vg,
is

U194 Vo = (V15®id)oWa3 € Mor(C(X3), C(X1)Q(C(P2)QC(P2))).

o The composition of classical families (with classical
parameter spaces) is exactly the family of all compositions
of elements of both families.

o Composition is associative:
(V128 Wo3) AWz = WUig A (Va3 A Wsg).
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TWO-PERSON FINITE INPUT-OUTPUT GAMES HOW THE GAME IS PLAYED

RULES:

Aa, b, x,y) € {0, 1}

Input set Iy
Output set Og

Input set I,
Output set O,

77

/7

BILL

(FATHER WILLIAM)

V A~/
e,
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V /

7 /
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TWO-PERSON FINITE INPUT-OUTPUT GAMES SOURCES OF STRATEGIES

o The strategies {p(a, b|x,y)} can be classical:

p(a,blx,y) = P({fx = a, g, = b}),

where
{fii: Q- OA}erA and {g,: Q — OA}yeIB

are random variables on a probability space (2, P).
o They can be quantum

p(a, blx,y) = (¥|Exq ® Fy | 1),
where VU € /4, ® 74 is a state and

{Ex’a}(xﬂ)EIA>< Oa and {Fy’b}(y,b)eﬁs xOp

are quantum measurements:

Vx,y Y Exa=1, > Fyp=1.
acOp beOp
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C*_ALGEBRAS OF SYNCHRONOUS GAMES THE QUANTUM SPACE OF STRATEGIES

o A game is synchronous if [, = Iy = I, O, = Oy = O and
<a7ré b) = (A(a,b,x,x) =O)

for all x e I.

o The quantum space of strategies P of the game is defined
by setting C(P) to be the universal C*-algebra generated by
projections

{vaa}(x,a)eIxO
such that ) pxq =1 for all xeI and

acO
DPx,aPy,p = M@, b, X, Y)Px,aPy,b-

for all x,ye I and a,b e O.
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THE ASSOCIATED QUANTUM FAMILIES OF MAPS THE ACTION OF STRATEGIES ON THE INPUT AND OUTPUT SETS

o We fix a synchronous game (I, O, \).

PROPOSITION
There exists a unique ® € Mor(C°,C' @ C(P)) such that

O(eq) = ) ex®Pxa,  a€O,

xel

where {eg}qco and {ex}xe; are standard basis of C! and CP°.

i

o Thus there is a natural quantum family of maps from I to O
indexed by the quantum space P.
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THE ASSOCIATED QUANTUM FAMILIES OF MAPS THE UNIVERSAL PROPERTY

THEOREM

For any quantum space X and any quantum family
¥ € Mor(C?,CT'® Co(X)) such that

(6x ® 6y ®id) (¥ (eq)13¥(ep)23)

= )\(a, b, X, y)‘((sx ® 5y ® id) (\I/(ea)IB\Ij(eb)ZS)

Jorallx,yel and a, b € O there exists a unique

© € Mor(C(P),Co(X))

such that
co 2 Cc'ec(P)
-
CO— 2 - CI®CH(X)
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QUANTUM SEMIGROUP STRUCTURE

o Consider now a game with I = O and such that

()\(i,j,k,l)zo) — (Vr,se[ A(ij, 1, ST, s, K, 1) =o) )

THEOREM
For a synchronous game with O = I and rules satisfying
condition (x)

@ there exists a unique A € Mor(C(P),C(P) ® C(P)) such that

(P®id)od = (Id® A)o?,

@ A is coassociative: (A ®id)oA = (id ® A)oA and
consequently endows P with the structure of a compact
quantum semigroup; moreover ¢ is an action of this quantum
semigroup on 1.

~
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QUANTUM GROUPS

o Consider a synchronous game with I = O and condition ().
o The fact that ® € Mor(C!,C' ® C(P)) preserves the uniform

measure , on I:
(n®id)®(a) = u(a)l,  aeC!

translates to  p;; =1 for all je I.
iel

o Define C(P) as the universal C*-algebra generated by
projections {p;;}ijer such that

o pk,ipl.j = )‘(la.,la ka l)pk,ipl.j for all iaja ka le I’

o Ypyj=1foralliel, }p;j=1foralljel.
Jel iel
o There exists a unique quantum family of maps
® € Mor(C!,C' ® C(P) such that

ble) =Y ey ®piy, Jel

iel
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QUANTUM GROUPS

THEOREM
In the situation described on the previous slide
@ there exits a unique A € Mor (C(’IN?, C(P® C(7~3) such that

30 (id@X)od,

@ A is coassociative,

@ Pisa compact quantum group.

o When the game is the graph endomorphism game of a
finite graph ¢, the quantum group P is the quantum
automorphism group of ¢4 defined by T. Banica.
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SOME REFERENCES

Thank you
for your attention.
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