SYNCHRONOUS GAMES AND QUANTUM FAMILIES OF MAPS

QUANTUM GROUP SEMINAR

Piotr M. Sołtan

Department of Mathematical Methods in Physics Faculty of Physics, University of Warsaw

July 21, 2020, 4pm GMT

QUANTUM SPACES

- 2 QUANTUM FAMILIES OF MAPS
- 3 Two-person finite input-output games
- 4 C*-ALGEBRAS OF SYNCHRONOUS GAMES
- 5 The associated quantum families of maps
- 6 QUANTUM SEMIGROUP STRUCTURE
- **7** QUANTUM GROUPS

THEOREM

The assignment to a locally compact topological space X of the C*-algebra $C_0(X)$ defines an anti-equivalence of categories between

• the category of commutative C*-algebras with morphisms of C*-algebras

and

- *the category of locally compact topological spaces with continuous maps.*
- A locally compact space is by definition Hausdorff.
- The "inverse" functor is defined as the assignment to a commutative C*-algebra A its spectrum \hat{A} .
- A morphism of C*-algebras from A to B is a *-homomorphism $\Phi : A \to M(B)$ such that $\overline{\Phi(A)B} = B$.

L.C. Top. Sp.	Commutative C*-algs.
X	$C_0(X)$
$\varphi:X \to Y$	$\Phi \in \mathrm{Mor}\big(\mathrm{C}_0(Y)\mathrm{C}_0(X)\big)$
X – compact	$C_0(X)$ – unital
X – finite	$C_0(X)$ – finite-dimensional
X – metrizable	$C_0(X)$ – separable
probab. measure on X	state on $C_0(X)$
X imes Y	$\mathrm{C}_0(X)\otimes\mathrm{C}_0(Y)$

• Note: $M(C_0(X)) = C_b(X)$.

A **Guantum space** is an object of the category dual to the category of C*-algebras.

- A theorem about quantum spaces is nothing else than a theorem about C*-algebras.
- A quantum space \mathcal{X} is called **compact** if the corresponding C*-algebra $C_0(\mathcal{X})$ is unital (in this case we write $C(\mathcal{X})$).
- Similarly, **finite** quantum spaces correspond to finite-dimensional C*-algebras.
- Classical (ordinary) locally compact spaces are particular examples of quantum spaces.

THEOREM (JAMES R. JACKSON, 1952)

Let *X*, *Y* and *Z* be topological spaces such that *X* is Hausdorff and *Z* is locally compact. Then the assignment to any $\psi \in C(X \times Z, Y)$ of the map

$$Z \ni \mathbf{Z} \longmapsto \psi(\cdot, \mathbf{Z}) \in \mathbf{C}(X, Y)$$

is a homeomorphism of $C(X \times Z, Y)$ onto C(Z, C(X, Y)) with all three spaces of maps topologized by their respective compact-open topologies.

• Assume that *X*, *Y* and *Z* are locally compact. Then a continuous family of continuous maps from *X* to *Y* indexed by *Z*, i.e. a continuous map from *Z* to C(*X*, *Y*) is the same thing as an element of

$$\operatorname{Mor}(\operatorname{C}_0(Y), \operatorname{C}_0(X) \otimes \operatorname{C}_0(Z)).$$

Let \mathcal{X}, \mathcal{Y} and \mathcal{Z} be quantum spaces. A **quantum family of maps** from \mathcal{X} to \mathcal{Y} indexed by \mathcal{Z} is an element

 $\Phi \in \mathrm{Mor}\big(\mathrm{C}_0(\boldsymbol{\mathcal{Y}}), \mathrm{C}_0(\boldsymbol{\mathcal{X}}) \otimes \mathrm{C}_0(\boldsymbol{\mathcal{Z}})\big).$

- A quantum family of maps is a very general object.
- Consequently interesting quantum families of maps must have additional features.
- How about a quantum version of the space C(*X*, *Y*) of all continuous maps from *X* to *Y*?

Let \mathcal{X}, \mathcal{Y} and \mathcal{Z} be quantum spaces and let $\Phi \in \operatorname{Mor}(C_0(\mathcal{Y}), C_0(\mathcal{X}) \otimes C_0(\mathcal{Z}))$ be a quantum family of maps. We say that

 $\bullet~ \mathcal{Z}$ is the quantum~space~of~all~maps from \mathcal{X} to \mathcal{Y} and

• Φ is the **quantum family of all maps** from \mathcal{X} to \mathcal{Y} if for any quantum space \mathcal{Z}' and any quantum family $\Psi \in \operatorname{Mor}(C_0(\mathcal{Y}), C_0(\mathcal{X}) \otimes C_0(\mathcal{Z}'))$ there exists a unique $\Lambda \in \operatorname{Mor}(C_0(\mathcal{Z}), C_0(\mathcal{Z}'))$ such that

$$\begin{array}{c} C_0(\boldsymbol{\mathcal{Y}}) & \xrightarrow{\Phi} & C_0(\boldsymbol{\mathcal{X}}) \otimes C_0(\boldsymbol{\mathcal{Z}}) \\ \\ \| & & & & \\ & & & \\ C_0(\boldsymbol{\mathcal{Y}}) & \xrightarrow{\Psi} & C_0(\boldsymbol{\mathcal{X}}) \otimes C_0(\boldsymbol{\mathcal{Z}}') \end{array}$$

- Let *X*, *Y* and *Z* be locally compact spaces. For the quantum space of all maps from *X* to *Y* to exist it is necessary that C(X, Y) be locally compact in the compact-open topology.
- This will certainly be the case when *X* is finite and *Y* is compact.

THEOREM (S.L. WORONOWICZ 1979, P.S. 2009)

Let \mathcal{X} be a finite quantum space and let \mathcal{Y} be a compact quantum space such that $C(\mathcal{Y})$ is finitely generated. Then the quantum space of all maps from \mathcal{X} to \mathcal{Y} exists and it is compact.

- Let \mathcal{Z} be the quantum space of all maps $\mathcal{X} \to \mathcal{Y}$.
- The universal family

$$\boldsymbol{\Phi} \in \mathrm{Mor}\big(C(\boldsymbol{\mathcal{Y}}), C(\boldsymbol{\mathcal{X}}) \otimes C(\boldsymbol{\mathcal{Z}})\big)$$

corresponds to the evaluation mapping

$$X\times \mathrm{C}(X,Y)\ni (\mathbf{X},\psi)\longmapsto \psi(\mathbf{X})\in Y$$

for classical spaces *X* and *Y*.

EXAMPLE

- Consider \mathcal{X} such that $C(\mathcal{X}) = M_2$.
- Take $\mathcal{Y} = \{\bullet, \bullet\}$, i.e. $C(\mathcal{Y}) = \mathbb{C}^2$.
- Let \mathcal{Z} be the quantum space of all maps $\mathcal{X} \to \mathcal{Y}$.
- Then C(\mathcal{Z}) is the universal unital C*-algebra generated by three elements *p*, *q* and *z* with relations

$$p = p^*,$$
 $p = p^2 + z^* z,$ $zp = (1-q)z,$
 $q = q^*,$ $q = q^2 + zz^*.$

Let $\mathcal{X}_1, \mathcal{X}_2, \mathcal{X}_3, \mathcal{P}_1$ and \mathcal{P}_2 be quantum spaces and let

$$\begin{split} \Psi_{12} &\in \mathrm{Mor}\big(\mathrm{C}(\mathcal{X}_2), \mathrm{C}(\mathcal{X}_1) \otimes \mathrm{C}(\mathcal{P}_1)\big), \\ \Psi_{23} &\in \mathrm{Mor}\big(\mathrm{C}(\mathcal{X}_3), \mathrm{C}(\mathcal{X}_2) \otimes \mathrm{C}(\mathcal{P}_2)\big) \end{split}$$

be quantum families of maps. The **composition** of Ψ_{32} and Ψ_{21} is

 $\Psi_{12} \,\vartriangle\, \Psi_{23} = \big(\Psi_{12} \,\otimes\, id\big) \circ \Psi_{23} \in \mathrm{Mor}\big(C(\boldsymbol{\mathcal{X}}_3), C(\boldsymbol{\mathcal{X}}_1) \,\otimes\, (C(\boldsymbol{\mathcal{P}}_2) \,\otimes\, C(\boldsymbol{\mathcal{P}}_2))\big).$

- The composition of classical families (with classical parameter spaces) is exactly the family of all compositions of elements of both families.
- Composition is associative:

$$(\Psi_{12} \bigtriangleup \Psi_{23}) \bigtriangleup \Psi_{34} = \Psi_{12} \bigtriangleup (\Psi_{23} \bigtriangleup \Psi_{34}).$$

P.M. SOŁTAN (WARSAW)

P.M. SOLTAN (WARSAW)

• The strategies $\{p(a, b|x, y)\}$ can be **classical**:

$$p(a,b|x,y) = \mathbb{P}(\{f_x = a, g_y = b\}),$$

where

$$\{f_x \colon \Omega \to O_{\mathsf{A}}\}_{x \in I_{\mathsf{A}}} \text{ and } \{g_y \colon \Omega \to O_{\mathsf{A}}\}_{y \in I_{\mathsf{B}}}$$

are random variables on a probability space (Ω, ℙ).
They can be **quantum**

$$p(a,b|x,y) = \langle \Psi | E_{x,a} \otimes F_{y,b} | \Psi \rangle,$$

where $\Psi \in \mathscr{H}_{\scriptscriptstyle\! A} \, {\otimes} \, \mathscr{H}_{\scriptscriptstyle\! B}$ is a state and

$$\{E_{x,a}\}_{(x,a)\in I_{\mathrm{A}}\times O_{\mathrm{A}}}$$
 and $\{F_{y,b}\}_{(y,b)\in I_{\mathrm{B}}\times O_{\mathrm{B}}}$

are quantum measurements:

$$orall x, y \quad \sum_{a \in O_{\mathrm{A}}} E_{x,a} = \mathbb{1}, \quad \sum_{b \in O_{\mathrm{B}}} F_{y,b} = \mathbb{1}.$$

• A game is **synchronous** if $I_A = I_B = I$, $O_A = O_B = O$ and

$$\left(a \neq b \right) \implies \left(\lambda(a,b,x,x) = 0 \right)$$

for all $x \in I$.

 The quantum space of strategies *P* of the game is defined by setting C(*P*) to be the universal C*-algebra generated by projections

$$\left\{p_{x,a}
ight\}_{(x,a)\in I imes O}$$

such that $\sum_{a \in O} p_{x,a} = 1$ for all $x \in I$ and

$$p_{x,a}p_{y,b} = \lambda(a, b, x, y)p_{x,a}p_{y,b}.$$

for all $x, y \in I$ and $a, b \in O$.

• We fix a synchronous game (I, O, λ) .

PROPOSITION

There exists a unique $\Phi \in Mor(\mathbb{C}^O, \mathbb{C}^I \otimes C(\mathcal{P}))$ such that

$$\Phi(e_a) = \sum_{x \in I} e_x \otimes p_{x,a}, \qquad a \in O,$$

where $\{e_a\}_{a\in O}$ and $\{e_x\}_{x\in I}$ are standard basis of \mathbb{C}^I and \mathbb{C}^O .

• Thus there is a natural quantum family of maps from *I* to *O* indexed by the quantum space \mathcal{P} .

THEOREM

For any quantum space \mathcal{X} and any quantum family $\Psi \in \operatorname{Mor}(\mathbb{C}^O, \mathbb{C}^I \otimes C_0(\mathcal{X}))$ such that

$$\begin{aligned} (\delta_x \otimes \delta_y \otimes \mathrm{id}) \big(\Psi(e_a)_{13} \Psi(e_b)_{23} \big) \\ &= \lambda(a, b, x, y) \cdot (\delta_x \otimes \delta_y \otimes \mathrm{id}) \big(\Psi(e_a)_{13} \Psi(e_b)_{23} \big) \end{aligned}$$

for all $x, y \in I$ and $a, b \in O$ there exists a unique

$$\Theta \in \operatorname{Mor}(C(\mathcal{P}), C_0(\mathcal{X}))$$

such that

• Consider now a game with I = O and such that

$$\left(\lambda(i,j,k,l)=0
ight) \implies \left(\forall r,s\in I \quad \lambda(i,j,r,s)\lambda(r,s,k,l)=0
ight)$$
 (*)

THEOREM

For a synchronous game with O = I and rules satisfying condition (*)

() there exists a unique $\Delta \in Mor(C(\mathcal{P}), C(\mathcal{P}) \otimes C(\mathcal{P}))$ such that

$$(\Phi \otimes \operatorname{id}) \circ \Phi = (\operatorname{id} \otimes \Delta) \circ \Phi,$$

2 Δ is coassociative: $(\Delta \otimes id) \circ \Delta = (id \otimes \Delta) \circ \Delta$ and consequently endows \mathcal{P} with the structure of a compact quantum semigroup; moreover Φ is an action of this quantum semigroup on I.

- Consider a synchronous game with I = O and condition (*).
- The fact that Φ ∈ Mor(C^I, C^I ⊗ C(P)) preserves the uniform measure µ on I:

$$(\mu \otimes \mathrm{id})\Phi(a) = \mu(a)\mathbb{1}, \qquad a \in \mathbb{C}^{I}$$

translates to $\sum_{i \in I} p_{i,j} = 1$ for all $j \in I$.

Define C(*P̃*) as the universal C*-algebra generated by projections {*p̃*_{i,j}}_{i,j∈I} such that

•
$$p_{k,i}p_{l,j} = \lambda(i,j,k,l)p_{k,i}p_{l,j}$$
 for all $i,j,k,l \in I$,

•
$$\sum_{j \in I} p_{i,j} = \mathbb{1}$$
 for all $i \in I$, $\sum_{i \in I} p_{i,j} = \mathbb{1}$ for all $j \in I$.

• There exists a unique quantum family of maps $\widetilde{\Phi} \in \operatorname{Mor}(\mathbb{C}^{I}, \mathbb{C}^{I} \otimes C(\widetilde{\mathcal{P}})$ such that

$$\widetilde{\Phi}(e_j) = \sum_{i \in I} e_{i,j} \otimes \widetilde{p}_{i,j}, \quad j \in I.$$

THEOREM

In the situation described on the previous slide

① there exits a unique $\widetilde{\Delta} \in Mor(C(\widetilde{\mathcal{P}}, C(\widetilde{\mathcal{P}} \otimes C(\widetilde{\mathcal{P}})$ such that

$$\widetilde{\Phi} \, \vartriangle \, \widetilde{\Phi} = (\operatorname{id} \otimes \widetilde{\Delta}) \, \circ \, \widetilde{\Phi},$$

2)
$$\tilde{\Delta}$$
 is coassociative,

3 \mathcal{P} is a compact quantum group.

When the game is the graph endomorphism game of a finite graph G, the quantum group P̃ is the quantum automorphism group of G defined by T. Banica.

- Michael Brannan, Alexandru Chirvasitu, Kari Eifler, Samuel Harris, Vern I. Paulsen, Xiaoyu Su, Mateusz Wasilewski: Bigalois extensions and the graph isomorphism game. *Comm. Math. Phys.* **375** (2020), 1777–1809.
- J. William Helton, Kyle P. Meyer, Vern I. Paulsen, Matthew Satriano: Algebras, synchronous games, and chromatic numbers of graphs. *New York J. Math.* **25** (2019), 328–361.
- Laura Maninska, David E. Roberson: Quantum homomorphisms. J. Combin. Theory Ser. B 118 (2016), 228–267.
- Piotr M. Sołtan: Quantum semigroups from synchronous games. *J. Math. Phys.* **60** (2019), 042203, 8 pp.

Thank you for your attention.

