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QUANTUM SPACES THE GELFAND-NAIMARK DUALITY

THEOREM

The assignment to a locally compact topological space X of the

C˚-algebra C0pXq defines an anti-equivalence of categories

between

the category of commutative C˚-algebras with morphisms of

C˚-algebras

and

the category of locally compact topological spaces with

continuous maps.

A locally compact space is by definition Hausdorff.

The “inverse” functor is defined as the assignment to a

commutative C˚-algebra A its spectrum pA.

A morphism of C˚-algebras from A to B is a

˚-homomorphism Φ : A Ñ MpBq such that ΦpAqB “ B.
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QUANTUM SPACES THE GELFAND-NAIMARK DUALITY

L.C. Top. Sp. Commutative C˚-algs.

X C0pXq

ϕ : X Ñ Y Φ P Mor
`
C0pY q C0pXq

˘

X – compact C0pXq – unital

X – finite C0pXq – finite-dimensional

X – metrizable C0pXq – separable

probab. measure on X state on C0pXq

X ˆ Y C0pXq b C0pY q

Note: M
`
C0pXq

˘
“ CbpXq.
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QUANTUM SPACES QUANTUM SPACES

DEFINITION

A Quantum space is an object of the category dual to the

category of C˚-algebras.

A theorem about quantum spaces is nothing else than a

theorem about C˚-algebras.

A quantum space X is called compact if the corresponding

C˚-algebra C0pX q is unital (in this case we write CpX q).

Similarly, finite quantum spaces correspond to

finite-dimensional C˚-algebras.

Classical (ordinary) locally compact spaces are particular

examples of quantum spaces.
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QUANTUM FAMILIES OF MAPS CLASSICAL FAMILIES OF MAPS

THEOREM (JAMES R. JACKSON, 1952)

Let X, Y and Z be topological spaces such that X is Hausdorff

and Z is locally compact. Then the assignment to any

ψ P CpX ˆ Z ,Y q of the map

Z Q z ÞÝÑ ψp ¨ , zq P CpX ,Y q

is a homeomorphism of CpX ˆ Z ,Y q onto C
`
Z ,CpX ,Y q

˘
with all

three spaces of maps topologized by their respective

compact-open topologies.

Assume that X , Y and Z are locally compact. Then a

continuous family of continuous maps from X to Y indexed

by Z , i.e. a continuous map from Z to CpX ,Y q is the same

thing as an element of

Mor
`
C0pY q,C0pXq b C0pZq

˘
.
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QUANTUM FAMILIES OF MAPS QUANTUM FAMILIES OF MAPS

DEFINITION

Let X ,Y and Z be quantum spaces. A quantum family of

maps from X to Y indexed by Z is an element

Φ P Mor
`
C0pYq,C0pX q b C0pZq

˘
.

A quantum family of maps is a very general object.

Consequently interesting quantum families of maps must

have additional features.

How about a quantum version of the space CpX ,Y q of all

continuous maps from X to Y?
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QUANTUM FAMILIES OF MAPS QUANTUM FAMILY OF ALL MAPS

DEFINITION

Let X ,Y and Z be quantum spaces and let

Φ P Mor
`
C0pYq,C0pX q b C0pZq

˘
be a quantum family of maps.

We say that

Z is the quantum space of all maps from X to Y

and

Φ is the quantum family of all maps from X to Y

if for any quantum space Z 1 and any quantum family

Ψ P Mor
`
C0pYq,C0pX q b C0pZ 1q

˘
there exists a unique

Λ P Mor
`
C0pZq,C0pZ 1q

˘
such that

C0pYq
Φ

C0pX q b C0pZq

idbΛ

C0pYq
Ψ

C0pX q b C0pZ 1q
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QUANTUM FAMILIES OF MAPS QUANTUM FAMILY OF ALL MAPS

Let X ,Y and Z be locally compact spaces. For the quantum

space of all maps from X to Y to exist it is necessary that

CpX ,Y q be locally compact in the compact-open topology.

This will certainly be the case when X is finite and Y is

compact.

THEOREM (S.L. WORONOWICZ 1979, P.S. 2009)

Let X be a finite quantum space and let Y be a compact quantum

space such that CpYq is finitely generated. Then the quantum

space of all maps from X to Y exists and it is compact.

Let Z be the quantum space of all maps X Ñ Y.

The universal family

Φ P Mor
`
CpYq,CpX q b CpZq

˘

corresponds to the evaluation mapping

X ˆ CpX ,Y q Q px , ψq ÞÝÑ ψpxq P Y

for classical spaces X and Y .
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QUANTUM FAMILIES OF MAPS QUANTUM FAMILY OF ALL MAPS

EXAMPLE

Consider X such that CpX q “ M2.

Take Y “ t‚, ‚u, i.e. CpYq “ C
2.

Let Z be the quantum space of all maps X Ñ Y.

Then CpZq is the universal unital C˚-algebra generated by

three elements p,q and z with relations

p “ p˚, p “ p2 ` z˚z, zp “ p1 ´ qqz,

q “ q˚, q “ q2 ` zz˚.
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QUANTUM FAMILIES OF MAPS COMPOSITION OF QUANTUM FAMILIES

DEFINITION

Let X 1,X 2,X 3,P1 and P2 be quantum spaces and let

Ψ12 P Mor
`
CpX 2q,CpX 1q b CpP1q

˘
,

Ψ23 P Mor
`
CpX 3q,CpX 2q b CpP2q

˘

be quantum families of maps. The composition of Ψ32 and Ψ21

is

Ψ12△Ψ23 “ pΨ12 b idq̋ Ψ23 P Mor
`
CpX 3q,CpX 1qbpCpP2qbCpP2qq

˘
.

The composition of classical families (with classical

parameter spaces) is exactly the family of all compositions

of elements of both families.

Composition is associative:

pΨ12△Ψ23q△Ψ34 “ Ψ12△pΨ23△Ψ34q.
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TWO-PERSON FINITE INPUT -OUTPUT GAMES HOW THE GAME IS PLAYED

ALICEBILL
(FATHER WILLIAM)

Input set IA

Output set OA

Input set IB

Output set OB
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RULES:
λpa,b, x ,yq P t0,1u

 
ppa,b|x ,yq

(
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TWO-PERSON FINITE INPUT -OUTPUT GAMES SOURCES OF STRATEGIES

The strategies
 
ppa,b|x ,yq

(
can be classical:

ppa,b|x ,yq “ P
` 

fx “ a, gy “ b
(˘
,

where  
fx : Ω Ñ OA

(
xPIA

and
 
gy : Ω Ñ OA

(
yPIB

are random variables on a probability space pΩ,Pq.

They can be quantum

ppa,b|x ,yq “
@
Ψ
ˇ̌
Ex ,a b Fy,b

ˇ̌
Ψ
D
,

where Ψ P HA b HB is a state and
 
Ex ,a

(
px ,aqPIAˆOA

and
 
Fy,b

(
py,bqPIBˆOB

are quantum measurements:

@ x ,y
ÿ

aPOA

Ex ,a “ 1,
ÿ

bPOB

Fy,b “ 1.
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C˚-ALGEBRAS OF SYNCHRONOUS GAMES THE QUANTUM SPACE OF STRATEGIES

A game is synchronous if IA “ IB “ I, OA “ OB “ O and

´
a ‰ b

¯
ùñ

´
λpa,b, x , xq “ 0

¯

for all x P I.

The quantum space of strategies P of the game is defined

by setting CpPq to be the universal C˚-algebra generated by

projections  
px ,a

(
px ,aqPIˆO

such that
ř

aPO

px ,a “ 1 for all x P I and

px ,apy,b “ λpa,b, x ,yqpx ,apy,b.

for all x ,y P I and a,b P O.
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THE ASSOCIATED QUANTUM FAMILIES OF MAPS THE ACTION OF STRATEGIES ON THE INPUT AND OUTPUT SETS

We fix a synchronous game pI ,O, λq.

PROPOSITION

There exists a unique Φ P Mor
`
C

O,CI b CpPq
˘

such that

Φpeaq “
ÿ

xPI

ex b px ,a , a P O,

where teauaPO and texuxPI are standard basis of CI and C
O.

Thus there is a natural quantum family of maps from I to O

indexed by the quantum space P.
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THE ASSOCIATED QUANTUM FAMILIES OF MAPS THE UNIVERSAL PROPERTY

THEOREM

For any quantum space X and any quantum family

Ψ P Mor
`
C

O,CI b C0pX q
˘

such that

pδx b δy b idq
`
Ψpeaq13Ψpebq23

˘

“ λpa,b, x ,yq¨pδx b δy b idq
`
Ψpeaq13Ψpebq23

˘

for all x ,y P I and a,b P O there exists a unique

Θ P Mor
`
CpPq,C0pX q

˘

such that

C
O Φ

C
I b CpPq

idbΘ

C
O Ψ

C
I b C0pX q
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QUANTUM SEMIGROUP STRUCTURE

Consider now a game with I “ O and such that

´
λpi, j,k, lq “ 0

¯
ùñ

´
@r, s P I λpi, j, r, sqλpr, s,k, lq “ 0

¯
(‹)

THEOREM

For a synchronous game with O “ I and rules satisfying

condition (‹)

1 there exists a unique ∆ P MorpCpPq,CpPq b CpPqq such that

pΦ b idq˝Φ “ pid b ∆q˝Φ,

2 ∆ is coassociative: p∆ b idq˝∆ “ pid b ∆q˝∆ and

consequently endows P with the structure of a compact

quantum semigroup; moreover Φ is an action of this quantum

semigroup on I.
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QUANTUM GROUPS

Consider a synchronous game with I “ O and condition (‹).

The fact that Φ P Mor
`
C

I ,CI b CpPq
˘

preserves the uniform

measure µ on I:

pµb idqΦpaq “ µpaq1, a P C
I

translates to
ř
iPI

pi,j “ 1 for all j P I.

Define CprPq as the universal C˚-algebra generated by
projections trpi,jui,jPI such that

pk,ipl,j “ λpi, j,k, lqpk,ipl,j for all i, j,k, l P I ,
ř
jPI

pi,j “ 1 for all i P I ,
ř
iPI

pi,j “ 1 for all j P I .

There exists a unique quantum family of maps
rΦ P Mor

`
C

I ,CI b Cp rP
˘

such that

rΦpejq “
ÿ

iPI

ei,j b rpi,j, j P I .
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QUANTUM GROUPS

THEOREM

In the situation described on the previous slide

1 there exits a unique r∆ P Mor
`
Cp rP ,CprP b CprP

˘
such that

rΦ△ rΦ “ pid b r∆q˝rΦ,

2 r∆ is coassociative,

3 rP is a compact quantum group.

When the game is the graph endomorphism game of a

finite graph G , the quantum group rP is the quantum

automorphism group of G defined by T. Banica.
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SOME REFERENCES

Thank you
for your attention.
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