On some invariants of quantum groups

QUANTUM GROUPS AND INTERACTIONS

Piotr M. Sołtan (joint work with **Jacek Krajczok**)

Department of Mathematical Methods in Physics Faculty of Physics, University of Warsaw

May 24, 2023

- 1 Examples of type III
 - First invariants
 - Application
- MORE SYSTEMATIC APPROACH TO INVARIANTS
 - Reductions
 - Some examples
- INNER SCALING AUTOMORPHISMS AND KAC TYPE
 - First case with positive answer
 - Second case with positive answer

MOTIVATION

- In recent work with J. Krajczok we looked at examples of compact quantum groups \mathbb{G} such that $L^{\infty}(\mathbb{G})$ is an injective factor of type III.
- ullet We constructed many such examples by taking ${\mathbb G}$ of the form

$$\mathbb{G} = \sum_{n=1}^{\infty} \mathbb{H}_{\nu_n, q_n},$$

where $\{\mathbb{H}_{\nu_n,q_n}\}_{n\in\mathbb{N}}$ is a sequence of compact quantum groups defined as

$$\mathbb{H}_{\nu_n,q_n}=\mathbb{Q}\bowtie \mathrm{SU}_{q_n}(2)$$

with the action of $r \in \mathbb{Q}$ by the automorphism $\tau_{\nu_n r}^{\mathrm{SU}_{q_n}(2)}$.

• We always assume that $\nu_n \log |q_n| \notin \pi \mathbb{Q}$.

MOTIVATION

- With appropriate choice of $\{(\nu_n,q_n)\}_{n\in\mathbb{N}}$ we obtained examples with $\mathsf{L}^\infty(\mathbb{G})$ injective and
 - of type III_{λ} for $\lambda \in]0, 1[$,
 - of type III₁,
 - of type III₀ (uncountably many pairwise non-isomorphic factors).
- Next we aimed at constructing families of pairwise non-isomorphic quantum groups sharing the same injective factor.
- In order to distinguish between our examples we introduced some invariants.

THE INVARIANTS

DEFINITION

Let \mathbb{G} be a locally compact quantum group. We define

$$\begin{split} T^{\tau}(\mathbb{G}) &= \big\{ t \in \mathbb{R} \, \big| \, \tau_t^{\mathbb{G}} = \mathrm{id} \big\}, \\ T^{\tau}_{\mathrm{Inn}}(\mathbb{G}) &= \big\{ t \in \mathbb{R} \, \big| \, \tau_t^{\mathbb{G}} \in \mathrm{Inn}(\mathsf{L}^{\infty}(\mathbb{G})) \big\}, \\ T^{\tau}_{\overline{\mathrm{Inn}}}(\mathbb{G}) &= \big\{ t \in \mathbb{R} \, \big| \, \tau_t^{\mathbb{G}} \in \overline{\mathrm{Inn}}(\mathsf{L}^{\infty}(\mathbb{G})) \big\}, \end{split}$$

where $\overline{\mathrm{Inn}}(\cdot)$ denotes the approximately inner automorphisms.

- If \mathbb{G} and \mathbb{H} are isomorphic then $T^{\tau}(\mathbb{G}) = T^{\tau}(\mathbb{H})$.
- $T^{\tau}(\mathbb{G}) \subset T^{\tau}_{\text{Inn}}(\mathbb{G}) \subset T^{\tau}_{\overline{\text{Inn}}}(\mathbb{G})$ and each invariant is a subgroup of \mathbb{R} .
- We have $T^{\tau}(\mathbb{G}) = T^{\tau}(\widehat{\mathbb{G}})$.
- A compact \mathbb{G} is of Kac type if and only of $T^{\tau}(\mathbb{G}) = \mathbb{R}$.

EXAMPLES

•
$$T^{\tau}(\mathrm{SU}_q(2)) = T_{\mathrm{Inn}}^{\tau}(\mathrm{SU}_q(2)) = T_{\overline{\mathrm{Inn}}}^{\tau}(\mathrm{SU}_q(2)) = \frac{\pi}{\log |q|} \mathbb{Z}.$$

$$\bullet \ T^\tau(\mathbb{H}_{\nu,q}) = \tfrac{\pi}{\log|q|}\mathbb{Z}, \ T^\tau_{\mathrm{Inn}}(\mathbb{H}_{\nu,q}) = \nu\mathbb{Q} + \tfrac{\pi}{\log|q|}\mathbb{Z}, \ T^\tau_{\overline{\mathrm{Inn}}}(\mathbb{H}_{\nu,q}) = \mathbb{R}.$$

MORE EXAMPLES

Now let
$$\mathbb{G} = \underset{n=1}{\overset{\infty}{\times}} \mathbb{H}_{\nu_n,q_n}$$
.

- If $(\nu_n, q_n) = (\nu, q)$ for all n then $L^{\infty}(\mathbb{G})$ is the injective factor of type III_{q^2} and $T^{\tau}(\mathbb{G}) = T^{\tau}_{\mathrm{Inn}}(\mathbb{G}) = \frac{\pi}{\log|q|}\mathbb{Z}$, $T^{\tau}_{\overline{\mathrm{Inn}}}(\mathbb{G}) = \mathbb{R}$.
- One can choose $((\nu_n, q_n))_{n \in \mathbb{N}}$ so that $\mathsf{L}^\infty(\mathbb{G})$ is the injective factor of type III_1 and $T^\tau(\mathbb{G}) = T^\tau_{\mathsf{Inn}}(\mathbb{G}) = \{0\}, \, T^\tau_{\mathsf{Inn}}(\mathbb{G}) = \mathbb{R}.$
- One can choose $((\nu_n, q_n))_{n \in \mathbb{N}}$ so that $\mathsf{L}^\infty(\mathbb{G})$ an injective factor of type III_0 (can get uncountably many of them) and $T^\tau(\mathbb{G}) = T^\tau_{\mathsf{Inn}}(\mathbb{G}) = \mathbb{Z}$, $T^\tau_{\mathsf{Inn}}(\mathbb{G}) = \mathbb{R}$.

APPLICATION OF THE INVARIANTS

- We constructed examples of compact quantum groups $\mathbb G$ of the form $\underset{n=1}{\overset{\infty}{\times}}\mathbb H_n$ such that
 - for any countable subgroup $\Gamma \subset \mathbb{R}$ (taken with discrete topology),
 - with $\mathbb{K} = \Gamma \bowtie \mathbb{G}$ (action by the scaling automorphisms)

we have

$$T^{\tau}_{\mathrm{Inn}}(\mathbb{K}) = \Gamma + \bigcap_{n=1}^{\infty} T^{\tau}(\mathbb{H}_n),$$

$$T_{\overline{\text{Inn}}}^{\tau}(\mathbb{K}) = \mathbb{R}.$$

- In this construction we can have $L^{\infty}(\mathbb{K})$ isomorphic to the injective factor of type III_{λ} (0 < $\lambda \leqslant$ 1) and $\bigcap_{n=1}^{\infty} T^{\tau}(\mathbb{H}_n) = \{0\}.$
- There are uncountably many countable subgroups $\Gamma \subset \mathbb{R}$.

MORE INVARIANTS

DEFINITION

Let \mathbb{G} be a locally compact quantum group with left Haar measure \boldsymbol{h} . In addition to $T^{\tau}(\mathbb{G})$, $T^{\tau}_{\operatorname{Inn}}(\mathbb{G})$ and $T^{\tau}_{\overline{\operatorname{Inn}}}(\mathbb{G})$ we define

$$T^{\sigma}(\mathbb{G}) = \left\{ t \in \mathbb{R} \,\middle|\, \sigma_{t}^{\boldsymbol{h}} = \mathrm{id} \right\},$$

$$T^{\sigma}_{\mathrm{Inn}}(\mathbb{G}) = \left\{ t \in \mathbb{R} \,\middle|\, \sigma_{t}^{\boldsymbol{h}} \in \mathrm{Inn}(\mathsf{L}^{\infty}(\mathbb{G})) \right\},$$

$$T^{\underline{\sigma}}_{\overline{\mathrm{Inn}}}(\mathbb{G}) = \left\{ t \in \mathbb{R} \,\middle|\, \sigma_{t}^{\boldsymbol{h}} \in \overline{\mathrm{Inn}}(\mathsf{L}^{\infty}(\mathbb{G})) \right\},$$

$$\mathrm{Mod}(\mathbb{G}) = \left\{ t \in \mathbb{R} \,\middle|\, \delta^{\mathrm{i}t} = \mathbb{1} \right\},$$

where δ is the modular element of \mathbb{G} .

- Clearly $T_{\operatorname{Inn}}^{\sigma}(\mathbb{G}) = T(\mathsf{L}^{\infty}(\mathbb{G})).$
- $T_{\bullet}^{\circ}(\mathbb{X})$, $\operatorname{Mod}(\mathbb{X})$ with $\circ \in \{\tau, \sigma\}$, $\bullet \in \{\tau, \overline{\operatorname{Inn}}\}$ and $\mathbb{X} \in \{\mathbb{G}, \widehat{\mathbb{G}}\}$ yield 14 invariants.

PROPOSITION

For any locally compact quantum group \mathbb{G} we have

$$T^{\sigma}(\mathbb{G}) = T^{\tau}(\mathbb{G}) \cap \operatorname{Mod}(\widehat{\mathbb{G}}),$$

$$T^{\sigma}_{\operatorname{Inn}}(\mathbb{G}) \cap \operatorname{Mod}(\widehat{\mathbb{G}}) = T^{\tau}_{\operatorname{Inn}}(\mathbb{G}) \cap \operatorname{Mod}(\widehat{\mathbb{G}}),$$

$$T^{\sigma}_{\overline{\operatorname{Inn}}}(\mathbb{G}) \cap \operatorname{Mod}(\widehat{\mathbb{G}}) = T^{\tau}_{\overline{\operatorname{Inn}}}(\mathbb{G}) \cap \operatorname{Mod}(\widehat{\mathbb{G}}),$$

$$\operatorname{Mod}(\mathbb{G}) \cap \operatorname{Mod}(\widehat{\mathbb{G}}) \subset \frac{1}{2} T^{\tau}(\mathbb{G}).$$

- The first equality above together with $T^{\tau}(\mathbb{G}) = T^{\tau}(\widehat{\mathbb{G}})$ reduces the list to 11 (invariants $T^{\sigma}(\mathbb{G})$, $T^{\sigma}(\widehat{\mathbb{G}})$ and $T^{\tau}(\widehat{\mathbb{G}})$ are determined by the remaining ones).
- If \mathbb{G} is compact then $\operatorname{Mod}(\mathbb{G}) = T^{\tau}_{\operatorname{Inn}}(\widehat{\mathbb{G}}) = T^{\sigma}_{\operatorname{Inn}}(\widehat{\mathbb{G}}) = T^{\tau}_{\operatorname{Inn}}(\widehat{\mathbb{G}}) = T^{\sigma}_{\operatorname{Inn}}(\widehat{\mathbb{G}}) = \mathbb{R}$.
- If additionally $L^{\infty}(\mathbb{G})$ is semifinite then $T^{\sigma}_{\text{Inn}}(\mathbb{G}) = T^{\sigma}_{\overline{\text{Inn}}}(\mathbb{G}) = \mathbb{R}$.

• The invariants can be calculated for a number of well-known quantum groups.

EXAMPLE

With $\mathbb{G} = \mathrm{E}_q(2)$ for some $q \in]0,1[$ we have

$$T^{\tau}(\mathbb{G}) = T^{\tau}_{\mathrm{Inn}}(\mathbb{G}) = T^{\tau}_{\overline{\mathrm{Inn}}}(\mathbb{G}) = T^{\sigma}(\mathbb{G}) = T^{\tau}(\widehat{\mathbb{G}}) = T^{\sigma}(\widehat{\mathbb{G}}) = \mathrm{Mod}(\widehat{\mathbb{G}}) = \frac{\pi}{\log q} \mathbb{Z}$$
$$T^{\sigma}_{\mathrm{Inn}}(\mathbb{G}) = T^{\sigma}_{\overline{\mathrm{Inn}}}(\mathbb{G}) = T^{\tau}_{\overline{\mathrm{Inn}}}(\widehat{\mathbb{G}}) = T^{\tau}_{\overline{\mathrm{Inn}}}(\widehat{\mathbb{G}}) = T^{\sigma}_{\overline{\mathrm{Inn}}}(\widehat{\mathbb{G}}) = \mathrm{Mod}(\mathbb{G}) = \mathbb{R}.$$

ullet The invariants can also be calculated for q-deformations of compact semisimple Lie groups. In particular

$$T_{\mathrm{Inn}}^{\tau} \left(\mathrm{SU}_q(3) \right) = \frac{\pi}{2 \log q} \mathbb{Z}$$
 and $T^{\tau} \left(\mathrm{SU}_q(3) \right) = \frac{\pi}{\log q} \mathbb{Z}$.

CAN ALL SCALING AUTOMORPHISMS BE INNER?

"CONJECTURE"

Let $\mathbb G$ be a compact quantum group such that $T^{\tau}_{\operatorname{Inn}}(\mathbb G)=\mathbb R.$ Then $\mathbb G$ is of Kac type.

• Suppose we know that \mathbb{G} is not of Kac type. Then the validity of the "conjecture" for \mathbb{G} reduces to whether $T_{\mathrm{Inn}}^{\tau}(\mathbb{G})=\mathbb{R}$ or not.

THEOREM (JACEK KRAJCZOK + P.M.S.)

Let \mathbb{G} be a compact quantum group with a two-dimensional representation U such that $2 = \dim U < \dim_{\mathfrak{g}} U$. Then $T^{\tau}_{\mathrm{Inn}}(\mathbb{G}) \neq \mathbb{R}$.

- ullet In what follows we will assume that $\Bbb G$ is a compact quantum group.
- If U is an irreducible representation of \mathbb{G} we let ρ_U denote the associated invertible positive element of $\operatorname{Mor}(U, U^{\operatorname{cc}})$ such that $\operatorname{Tr}(\rho_U) = \operatorname{Tr}(\rho_U^{-1})$.
- Furthermore, let $\Gamma(U) = \max \operatorname{Sp}(\rho_U)$ and $\gamma(U) = \min \operatorname{Sp}(\rho_U)$.

THEOREM

Let $\{U^n\}_{n\in\mathbb{N}}$ be a family of irreducible representations of \mathbb{G} such that

$$\bullet \Gamma(U^n) \xrightarrow[n\to\infty]{} +\infty,$$

$$\quad \circ \inf_{n \in \mathbb{N}} \min \left\{ \frac{1}{\gamma(U^n) \operatorname{dim}_{\mathbf{q}} U^n}, \frac{\Gamma(U^n)}{\operatorname{dim}_{\mathbf{q}} U^n} \right\} > 0.$$

Then $T_{\operatorname{Inn}}^{\tau}(\mathbb{G}) \neq \mathbb{R}$.

SKETCH OF PROOF

- ① Let us assume that $T_{\text{Inn}}^{\tau}(\mathbb{G}) = \mathbb{R}$.
- ② Then there is a strongly continuous group $\{v_t\}_{t\in\mathbb{R}}$ of unitaries in $\mathsf{L}^\infty(\mathbb{G})$ such that $\tau_t^\mathbb{G} = \mathrm{Ad}_{v_t}$ for all t.
- 3 We let $\varepsilon_t = \|v_t 1\|_2$ (clearly $\varepsilon_t \xrightarrow[t \to 0]{} 0$).
- **4** We note that $v_t \in L^{\infty}(\mathbb{G})^{\sigma}$.
- 6 Using the orthogonality relations (on G) we find that

$$\|X_n\|_2^2 = \frac{1}{\gamma(U^n)\dim_{\mathbf{q}}U^n} \frac{\Gamma(U^n)}{\dim_{\mathbf{q}}U^n},$$

so that $||X_n||_2 \ge c$, where

$$c = \inf_{n \in \mathbb{N}} \min \left\{ \frac{1}{\gamma(U^n) \operatorname{dim}_{\mathbf{q}} U^n}, \frac{\Gamma(U^n)}{\operatorname{dim}_{\mathbf{q}} U^n} \right\}.$$

SKETCH OF PROOF

- It follows that

$$\Big|\Big(\frac{\gamma(U^n)}{\Gamma(U^n)}\Big)^{2\mathrm{i}t}-1\Big|c\leqslant \Big|\Big(\frac{\gamma(U^n)}{\Gamma(U^n)}\Big)^{2\mathrm{i}t}-1\Big|\|X_n\|_2=\big\|\tau_t^\mathbb{H}(X_n)\Omega_\mathbb{H}-X_n\Omega_\mathbb{H}\big\|.$$

9 Next, using the fact that $\tau_t^{\mathbb{H}} = \operatorname{Ad}_{v_t \otimes v_t}$, $v_t \in \mathsf{L}^{\infty}(\mathbb{G})^{\sigma}$ and $X_n \in \mathsf{L}^{\infty}(\mathbb{H})^{\sigma}$ we arrive at the estimate

$$\left|\left(rac{\gamma(U^n)}{\Gamma(U^n)}
ight)^{2\mathrm{i}t}-1
ight|c\leqslant 4arepsilon_t.$$

- **10** Let $t_1 > 0$ be such that $\varepsilon_t < \frac{c}{4}$ for $t \in]0, t_1]$.
- ① Furthermore, as $\Gamma(U^n) \xrightarrow[n \to \infty]{} +\infty$ and $\gamma(U^n) \leq 1$, there exists m such that

$$\log\!\left(\frac{\Gamma(U^m)}{\gamma(U^m)}\right) \geqslant \frac{\pi}{2t_1}.$$

SKETCH OF PROOF

- 1 It follows that $t_2 = \frac{\pi}{2} \log \left(\frac{\Gamma(U^m)}{\gamma(U^m)} \right)^{-1}$ belongs to $]0, t_1]$, i.e. $4\varepsilon_{t_2} < c$.
- Finally note that

$$\left|\left(rac{\gamma(U^m)}{\Gamma(U^m)}
ight)^{2\mathrm{i}t_2}-1
ight|=2,$$

so

$$2c = \left|\left(rac{\gamma(U^m)}{\Gamma(U^m)}
ight)^{2\mathrm{i}t_2} - 1
ight|c\leqslant 4arepsilon_{t_2} < c.$$

This contradiction shows that not all scaling automorphisms of $\mathbb G$ are inner.

PROPOSITION

If \mathbb{G} is a compact quantum group with a representation U such that $2 = \dim U < \dim_q U$ then a sequence of irreducible representations $\{U^n\}_{n \in \mathbb{N}}$ as in the previous theorem can be constructed.

- Representations $\{U^n\}_{n\in\mathbb{N}}$ are constructed as subrepresentations of *n*-fold tensor products of copies of U and \overline{U} .
- The estimates on $\Gamma(U^n)$ and $\gamma(U^n)$ follow from properties of the fundamental representation of U_F^+ which maps "onto" U.

DUALS OF TYPE I DISCRETE QUANTUM GROUPS

THEOREM (JACEK KRAJCZOK + P.M.S.)

Let $\mathbb F$ be a second countable discrete quantum group of type I. Then the "conjecture" holds for $\widehat{\mathbb F}$.

- A locally compact quantum group \mathbb{G} is **second countable** if $\mathrm{C}^\mathrm{u}_0(\mathbb{G})$ is a separable C*-algebra (equivalently either of $\mathrm{C}_0(\mathbb{G})$, $\mathsf{L}^1(\mathbb{G})$ or $\mathsf{L}^2(\mathbb{G})$ is separable).
- \mathbb{G} is of **type** I if $C_0^u(\widehat{\mathbb{G}})$ is a type I C*-algebra.

REMARK

One cannot remove the assumption of $\mathbb G$ being second countable because taking bicrossed product by discretized $\mathbb R$ acting by scaling automorphisms one can construct non-Kac type compact quantum groups with all scaling automorphisms inner.

P.M. SOŁTAN (KMMF) INVARIANTS OF QUANTUM GROUPS MAY 24, 2023 17 / 19

ON THE PROOF

- The Hilbert space $\mathsf{L}^2(\widehat{\mathbb{\Gamma}})$ is decomposed as a direct integral $\int_{\operatorname{Irr} \mathbb{\Gamma}}^{\oplus} \operatorname{HS}(\mathscr{H}_{\pi}) \, \mathrm{d}\mu(\pi)$ with $x \in \mathsf{L}^{\infty}(\widehat{\mathbb{\Gamma}})$ acting as $\int_{\mathbb{R}^{n}}^{\oplus} x_{\pi} \otimes \mathbb{1}_{\overline{\mathscr{H}_{\pi}}} \, \mathrm{d}\mu(\pi)$ (upon identification of $\operatorname{B}(\operatorname{HS}(\mathscr{H}_{\pi})) = \operatorname{B}(\mathscr{H}_{\pi}) \, \overline{\otimes} \, \operatorname{B}(\overline{\mathscr{H}_{\pi}})$).
- We have $\boldsymbol{h}_{\widehat{\mathbb{F}}}(x) = \int_{\operatorname{Irr} \mathbb{F}} \operatorname{Tr}(D_{\pi}^{-2}x_{\pi}) \, \mathrm{d}\mu(\pi)$ for a certain measurable field $\pi \mapsto D_{\pi}$ of non-singular positive self-adjoint operators.
- The proof relies on careful accounting of how elements of the direct integral decomposition of matrix elements of irreps of $\widehat{\Gamma}$ shift spectral subspaces of the operators D_{π} .
- The outcome is that for $\alpha \in \operatorname{Irr} \widehat{\mathbb{F}}$ and $t \in T_{\operatorname{Inn}}^{\tau}(\widehat{\mathbb{F}})$ the number $\Gamma(U^{\alpha})^{2it}$ is a root of unity. This implies that if $\widehat{\mathbb{F}}$ is not of Kac type then $T_{\operatorname{Inn}}^{\tau}(\widehat{\mathbb{F}})$ is countable.

Thank you for your attention