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EXAMPLES OF TYPE III

MOTIVATION

o In recent work with J. Krajczok we looked at examples of compact quantum
groups G such that L*(G) is an injective factor of type III.

o We constructed many such examples by taking G of the form

where {H,, 4.}, is @ sequence of compact quantum groups defined as

neN
H,,. g, = Q> SUg,(2)
. . . SUgn(2)
with the action of r € Q by the automorphism 7, .
o We always assume that v, log|qn| ¢ 7Q.

P.M. SorTaN (KMMF) INVARIANTS OF QUANTUM GROUPS May 24, 2023 3/19



EXAMPLES OF TYPE III

MOTIVATION

o With appropriate choice of {(vn, qn)},  We obtained examples with L*(G)
injective and
o of type III for A € ]0, 1],
o of type III;,
o of type Il (uncountably many pairwise non-isomorphic factors).

o Next we aimed at constructing families of pairwise non-isomorphic quantum
groups sharing the same injective factor.

o In order to distinguish between our examples we introduced some
invariants.
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EXAMPLES OF TYPE III FIRST INVARIANTS

THE INVARIANTS

DEFINITION
Let G be a locally compact quantum group. We define

T7(G) = {te R |7 =id},
. (G) = {t eR ‘ T,E_G € Inn(LOO(G))},
TEL(G) = {te R| 7 e Im(L*(G))},

where Inn(-) denotes the approximately inner automorphisms.

o If G and H are isomorphic then 77(G) = T7(H).
o T7(G) < Ty,,,(G) = T{=(G) and each invariant is a subgroup of R.

A~

o We have 77(G) = T7(G).
o A compact G is of Kac type if and only of 77(G) = R.
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EXAMPLES OF TYPE III FIRST INVARIANTS

EXAMPLES

o T7(SUq(2)) = T7,,(SU4(2)) = TT—(SUq(z)) = Tz
o T7(H, ) = Z, 17 (Hy q) = vQ + woela T (Hy,q) = R.

log ‘Q| Inn Inn

MORE EXAMPLES

a0
Now let G = X H,, g,

n=1
o If (vn, gn) = (v, q) for all n then L*(G) is the injective factor of type Il » and

TT(G) = Tfl—ln(G) l()g7r\q|Z TT (G) =R.

© One can choose ((vn, qn))neN so that L®(G) is the injective factor of type III;
and T7(G) = T{,(G) — {0}, T=(G) - R.

© One can choose ((vn, qn))neN so that L*(G) an injective factor of type Illp (can
get uncountably many of them) and 77(G) = Ty, (G) = Z, T7—(G) = R.
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EXAMPLES OF TYPE III APPLICATION

APPLICATION OF THE INVARIANTS

o0
o We constructed examples of compact quantum groups G of the form X Hj,

n=1
such that
o for any countable subgroup I' c R (taken with discrete topology),
o with K =T < G (action by the scaling automorphisms)

we have
o T(K) =T7(G) = T, (G) = N T"(Hy),

n=1
0
o ThuK) =T+ () T7(Hy),
n=1
° TITIT](K) =R.
o In this construction we can have L*(K) isomorphic to the injective factor of

Q0
type I, (O < A< 1)and () 7T7(Hy) = {0}.
n=1
o There are uncountably many countable subgroups I' c R.
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MORE SYSTEMATIC APPROACH TO INVARIANTS

MORE INVARIANTS

DEFINITION

Let G be a locally compact quantum group with left Haar measure h. In addition

to T7(G), 11,,(G) and T7_(G) we define

T°G) = {te R| o™ = id},
ToW(G) = {te R‘at € Inn(L*(G))},
T2 (G) = {teR| oft € Tnn(L*(G))},
Mod(G) = {t e R4 = 1},

where § is the modular element of G.
o Clearly 77 (G) = T(L*(G)).
o T2(X), Mod(X) with o € {r,0}, e € { ,Inn,Inn} and X € {G, G} yield 14 invariants.
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MORE SYSTEMATIC APPROACH TO INVARIANTS REDUCTIONS

PROPOSITION

For any locally compact quantum group G we have

T°(G) = T™(G) n Mod(G),
TEu(G) 0 Mod(G) = T7,(G) N Mod(G)
TZ(G) n Mod(G) = TE—(G) n Mod(G)
Mod(G) n Mod(G) c 1 T7(G).

o The first equality above together with 77(G) = TT(@) reduces the list to 11

(invariants 7°(G), T"(G) and TT(G) are determined by the remaining ones).
o If G is compact then Mod(G) = T}, (G) = 77 (G) = TZ(G) = TZ(G) = R.
o If additionally L*(G) is semifinite then 77 (G) = T7—(G) = R.
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MORE SYSTEMATIC APPROACH TO INVARIANTS SOME EXAMPLES
o The invariants can be calculated for a number of well-known quantum
groups.

EXAMPLE
With G = E4(2) for some g € |0, 1| we have

T™(G) = Tiu(G) = TE(G) = T(G) = T(G) = T%(G) = Mod(G) = (Z.Z

= logg
Tin(G) = TEH(G) = Tin(G) = Ti(G) = Tin(G) = TE5(G) = Mod(G) = R.

Inn

o The invariants can also be calculated for g-deformations of compact
semisimple Lie groups. In particular

Ti(SU4(3)) = Z and T7(SUg(3)) = = Z.

2Tog q log q log q
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INNER SCALING AUTOMORPHISMS AND KAC TYPE

CAN ALL SCALING AUTOMORPHISMS BE INNER?

“CONJECTURE”
Let G be a compact quantum group such that 77 (G) = R. Then G is of Kac type.
o Suppose we know that G is not of Kac type. Then the validity of the
“conjecture” for G reduces to whether 77 (G) = R or not.

THEOREM (JACEK KRAJCZOK + P.M.S.)

Let G be a compact quantum group with a two-dimensional representation U such
that 2 = dim U < dim,U. Then Tf, (G) # R.

Inn
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INNER SCALING AUTOMORPHISMS AND KAC TYPE FIRST CASE WITH POSITIVE ANSWER

o In what follows we will assume that G is a compact quantum group.

o If U is an irreducible representation of G we let pyy denote the associated
invertible positive element of Mor(U, U*) such that Tr(py) = Tr(pg).

o Furthermore, let I'(U) = max Sp(py) and «(U) = min Sp(py).

THEOREM

Let {U™} ey be a family of irreducible representations of G such that

n—oo
i i 1 QD)
o inf min sromrimon dugh | > O
Then TI;n(G) # R.
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INNER SCALING AUTOMORPHISMS AND KAC TYPE FIRST CASE WITH POSITIVE ANSWER

SKETCH OF PROOF

@ Let us assume that 77, (G) = R.

@ Then there is a strongly continuous group {v;}«r of unitaries in L*(G) such
that ¥ = Ad,, for all ¢.

@ We let ¢4 = v — 1|2 (clearly & — 0).

@ We note that v; € L*(G)“.

® Let H=G x G and let X, = (U'y;,, yn) ® (Udimun,1) € Pol(H).
©® Using the orthogonality relations (on G) we find that

1 (")
HX ”2 — ~(U") dimqU™ dimq U™

so that | X, |2 > ¢, where

1 rwn)

¢ = inf min{ srodimo g |
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INNER SCALING AUTOMORPHISMS AND KAC TYPE FIRST CASE WITH POSITIVE ANSWER

SKETCH OF PROOF

hy H (U™ 2it
@ We calculate that for all t we have ¢,%(X,) = X, and 7, (X,) = ( ) Xn.
It follows that

(U™ 1o < [ (HE2)™ — 1[Il = 72 ()2 — X2,

@ Next, using the fact that 7} = Ady,gu,, Ut € L°(G)? and X, € L*(H)° we arrive

at the estimate )
y(um) |
‘(F(U”)) — 1‘C<4Et.

@ Let t; > 0 be such that ¢; <  for t € ]O, t1].
@ Furthermore, as I'(U™) — and v(U™) < 1, there exists m such that
n—

log(%) = 5q-
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INNER SCALING AUTOMORPHISMS AND KAC TYPE FIRST CASE WITH POSITIVE ANSWER

SKETCH OF PROOF

W rum\ 1 :
@ It follows that tp = 5 log< > belongs to |0, t;], i.e. 4, < c.

(U™
@ Finally note that

(em) ™ -1 -2

SO it
m i
20=‘<%> 2—1‘c<45t2<c.

This contradiction shows that not all scaling automorphisms of G are inner.
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INNER SCALING AUTOMORPHISMS AND KAC TYPE FIRST CASE WITH POSITIVE ANSWER

PROPOSITION

If G is a compact quantum group with a representation U such that

2 = dim U < dim,U then a sequence of irreducible representations {U"},ey as in
the previous theorem can be constructed.

o Representations {U™"},cn are constructed as subrepresentations of n-fold
tensor products of copies of U and U.

o The estimates on I'(U™") and v(U") follow from properties of the fundamental
representation of U which maps “onto” U.
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INNER SCALING AUTOMORPHISMS AND KAC TYPE SECOND CASE WITH POSITIVE ANSWER

DUALS OF TYPE I DISCRETE QUANTUM GROUPS

THEOREM (JACEK KRAJCZOK + P.M.S.)

Let T be a second countable discrete quantum group of type 1. Then the
“conjecture” holds for .

o Alocally compact quantum group G is second countable if Cj(G) is a
separable C*-algebra (equivalently either of Co(G), L1(G) or L3(G) is
separable).

o G is of type I if Cg(@) is a type I C*-algebra.

REMARK

One cannot remove the assumption of G being second countable because taking
bicrossed product by discretized R acting by scaling automorphisms one can
construct non-Kac type compact quantum groups with all scaling
automorphisms inner.
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INNER SCALING AUTOMORPHISMS AND KAC TYPE SECOND CASE WITH POSITIVE ANSWER

ON THE PROOF

o The Hilbert space L2(T) is decomposed as a direct integral S® HS(7;) du()
Irr T

with x € Loo(f) acting as | Px: ® 157 du(m) (upon identification of

Irr T
B(HS(A7)) = (e%”)@)B(ﬁf )-
o We have h:(x) = § Tr(D;?x,)du(r) for a certain measurable field = — D, of

Irr
non—singular positive self-adjoint operators.

o The proof relies on careful accounting of how elements of the direct integral
decomposition of matrix elements of irreps of [ shift spectral subspaces of
the operators D;.

o The outcome is that for o € Irr T and t e 77, (T) the number I'(U*)2! is a root

of unity. This implies that if T is not of Kac type then T, Inn(f) is countable.
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Thank you for your attention
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