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COMPACT QUANTUM GROUPS DEFINITION

e A compact quantum group G is described by

o a von Neumann algebra °(G),

o a unital *-homomorphism A: [*(G) — [°(G)®L*(G)
(continuous in the o-weak topology) such that

0 (A®id)oc A =(Id®A)o A,

o there exists a faithful state h on L(G) such that

(h@id)A(x) = h(x)1 = (id® h)A(x),  x e l*(G).

(Haar measure)
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COMPACT QUANTUM GROUPS EXAMPLES

# Examples include:

o [*(G) = (@) for a compact group G, A(f)(x,y) = f(xy) for
Sel™®(G), x,ye G and

h(f) = f fdh,  fel®(G).
G

where h is the Haar measure on G.

o [°(G) = L(I"), i.e. the von Neumann algebra generated by
the range of the left regular representation v — )\, of a
discrete group I' on /5(I"), A(\,) = A\, ® A, for all y € I and

h(x) = {de|Xde), x € L(T),

where §, is the “delta function” at e T.
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COMPACT QUANTUM GROUPS ADDITIONAL STRUCTURE

N Let G be a compact quantum group.

o There exist
aset Irr G,
a family of finite dimensional Hilbert spaces {H*}.cnr G,
unitary elements U® € B(H*) ® L°(G),
a choice of an orthonormal basis {{7,...,¢; } in each H®
such that the corresponding matrix elements Uy of all U*
span a dense unital «-subalgebra of L1(G) and satisfy

¢ ¢ 0 ©

O1ci0]1P o
M,

5k,if5j,lpaJ

h(U.a,* I?,l) _ A ’

iyj h( l?lUSJ*) =

where po1 > -+ = pa,n, > 0and M, = > pa.i.
i
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COMPACT QUANTUM GROUPS ADDITIONAL STRUCTURE

f Let G be a compact quantum group.

o There exists a one-parameter group (TéGr )ter Of
automorphisms of [°(G) such that

TEGT(ULO:]) = pa LUJp;lljt

for all i,j,« and t. (scaling group)
o The modular group (al‘)tGR of h acts on Uy as follows:

h
Ot (Ulojj) - pa LUJpaJ

for all i,j, « and t.
o The two groups of automorphisms commute.
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FACTORS FROM COMPACT QUANTUM GROUPS TYPE I

THEOREM (JACEK KrRAJCZOK & P.M.S.)

Let H be a Hilbert space with dimH > 1. Then there does not
exist a compact quantum group G such that [*(G) =~ B(H).

o dimH < +w is easy because then L°(G) cannot be simple.

o dimH > Xy cannot happen because there are no faithful
states on B(H) for non-separable H.

o Thus the only non-trivial case is that of an infinite
dimensional separable Hilbert space H.

o One can tweak the proof to show that there is no compact
quantum group G such that *°(G) =~ N@ B(H) for any von
Neumann algebra N.
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FACTORS FROM COMPACT QUANTUM GROUPS TYPE I

L Step 1.
o Suppose G is a compact quantum group with [°(G) = B(H).
o The state h cannot be a trace because there are no traces
on B(H).
o It is known that in this case (h not a trace) there exists
a € Irr G with

(pa,la"'>pa,na) 7 (1771)

o Let us assume that the set {p,1,...,pPq,n,} is invariant
under taking inverses.

If this doesn’t hold we can construct another compact
quantum group H out of G with « € IrrH for which this
holds and we still have |*°(H) =~ B(H).
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FACTORS FROM COMPACT QUANTUM GROUPS TYPE I

L Step 2.
o Let 7: °(G) — B(H) be the assumed isomorphism.
o The state h must be of the form

h(x) = Tr(Ax), x € *(G)

for some positive trace-class operator A on H with
eigenvalues q; > g > --- > 0.

o For each n let H(A = gn) be the corresponding eigenspace,

so that
o0
(—B (A = qn).

Moreover, we have dimH(A = gn) < +oo for all n.
o We have

m(of(x)) = A'r(x)A7",  xel®(G), teR.
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FACTORS FROM COMPACT QUANTUM GROUPS TYPE I

L Step 3.
o There is a strictly positive self-adjoint operator B on H such
that . .
m(rf(x)) = B'r(x)B™,  xel®G), teR
(this is a consequence of Stone’s theorem).

o The fact that the groups (Ull)teR and (TEG )ter cOmmute
implies that A and B strongly commute.

o Hence for any n the operator B restricts to a positive
operator on the finite-dimensional Hilbert space H(A = qn).

o Let pun1 > -+ > pun,p, be the complete list of eigenvalues of
this restriction.

o We have
o Pn
= @@ (A =qn) "H(B = pnp).
n=1 p=
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FACTORS FROM COMPACT QUANTUM GROUPS TYPE I

L Step 4.
o Claim: 7(Ug ;) maps H(A = gn) into H(A = p, kPa,1Gn)-
A Indeed: take ¢ € H(A = qn). Then

Aln(Uie )€ = A (U1 )ATMAYE = 7(of (Ui1)) giié

= m(pl 1 U 1P 1) Ghé = (PaicPa,1Gn) m(Us1)E.

o Claim: 7(Ug,) maps H(B = pnp) into H(B = pmkp;’llun’p).
# Indeed: take n € H(B = jinp). Then
B'n(Us,1)n = B'n (U 1) B™"B"n = 7 (7 (U.1)) tm,p11
= (0L kUi 1021 )1 o = (PP tinp) (Ui 1)
o Let ¢ be a non-zero element of H(A = q1) " H(B = 1 p,).
We will show that n(Ug ;)¢ =0 forall ke {1,...,na}.
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FACTORS FROM COMPACT QUANTUM GROUPS TYPE I

L Step 4. (continued)
o By the previous claims we have

m(Ug1)¢ € H(A = paiPa,1q1) N H(B = pq kP, 1101,P,)-

A1 p, ) = Pa,1 then pg kpa,1G1 = 02 1q1 > q1 = |A], so
H(A = pa.kPa,191) = {0} and consequently 7(Uy )¢ = O.
4 If p, i < po,1 then first of all
Pa,kcPa,191 = (miln{pa,i})pa,lql = paJpa,lql =q

(invariance of {p, 1, .., Pa,n, } under taking inverses!). Thus

H(A = pa,kPa,1q1) = H{A = q1) or H(A = psiPa,191) = {0}

Clearly, if H(A = p, kPa,191) = {0} then 7(Ug,)¢ = 0.
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FACTORS FROM COMPACT QUANTUM GROUPS TYPE I

L Step 4. (continued)

o We have 7(Ug )¢ € H(A = poiPa1q1) 0 H(B = paicp, 11,7,
and H(A = py kPa,191) = H(A = q1) or H(A = p4 kPa,191) = {0}.
© What happens if H(A = p, kPa,191) = H(A = q1)?

-1

17 SO

# In this case p, j must be p
-1 ) .
Pa kP 1H1,P = Po1k1,py < p1,py = minSp(Bly o)
Consequently H(B = p, ip, 11.p,) = {0} and

m(Ue1)¢ € H(A = q1) n H(B = pa kP, 111,p,) = {O}.

In particular 7(Uy ;)¢ = O.

P.M. SorTAN (KMMF) QUANTUM GROUPS AND FACTORS May 2, 2022 13 /20



FACTORS FROM COMPACT QUANTUM GROUPS TYPE I

L Step 5.
o We have shown that there is a non-zero ¢ € H with

W(Uk,l)gv k= 1,...,Tla.

up, - Up

1,nn
o But U® = : ) is unitary matrix, so
Uga,l U”laa»na
N
0#¢= Y m(Ue1)*n(Ue1)¢ = 0.
k=1

o This contradiction shows that the existence of G such that
°(G) =~ B(H) is impossible.
4]
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FACTORS FROM COMPACT QUANTUM GROUPS TypE II

THEOREM (JACEK KRAJCZOK & MATEUSZ WASILEWSKI)

Let ge |—1,1[\{0} and v € R\{0O} and consider the action o of Q
with discrete topology on SU4(2) given by

a(x) = o P (x),  xel®(SUy(2)), re Q.
Let H, 4 be the corresponding bicrossed product:
H, g = Q > SUg(2).

Then
@ H, 4 is a compact quantum group,
@ H, 4 is coamenable and hence |°(H,, 4) is injective,
@ if vlog|q| ¢ mQ then L (H, 4) is the injective factor of type Il

@ the spectrum of the modular operator for the Haar measure
h, 4 of H, 4 is {0} U ¢*Z.
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FACTORS FROM COMPACT QUANTUM GROUPS TyPpE III

» Let ((vn, qn))neN be a sequence of parameters as described

above (vnlog |gn| ¢ 7Q for all n) and consider the compact
quantum group

0
G == >< Hyrhqn.

n=1

o In particular *(G) = é)) [ (H,,,, g )-
n=1
EXAMPLE
If the sequence ((vn,qn)), . is constant then L°(G) is the
injective factor of type Ill » with separable predual.
o T(°(G)) = oz [q1 2
° S(*(G)) = {0} v |q*”.
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FACTORS FROM COMPACT QUANTUM GROUPS TyPpE III

EXAMPLE
If there are two subsequences (gn, p)peN and (gn,, p)peN such that

{rip|peN}n{nyp|peN} =g

and

qnl P ps > T, anp p_)w" D)

for some ry,rp € -1, 1[\{0} such that o7 n e Z = {0} then
°(G) is the injective factor of type III; with separable predual.

o T(°(G)) = {0},

o S(I*(G)) = Rxo.
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FACTORS FROM COMPACT QUANTUM GROUPS TyPpE III

THEOREM (JACEK KrRAJCZOK & P.M.S.)

There exist a family {Gs}scjo,1] of compact quantum groups such
that the von Neumann algebras {L(Gs)} are pairwise

non-isomorphic factors of type Ill.

s€]0,1[

o T(L"(Gs)) > Q,
o defining

we have
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FACTORS FROM COMPACT QUANTUM GROUPS TyPpE III

d For each ) € |0, 1] there exists uncountably many pairwise
non-isomorphic compact quantum groups with [°(G) the
injective factor of type III,.

o These compact quantum groups are constructed as
es}
bicrossed products I' =« X H,, 4, with I" a subgroup of R

n=1
(taken with discrete topology) acting by the scaling
automorphisms.

o We distinguish between them using the following
invariants:

o T7(G) = {teR|7f =id},
o TLu(G) = {teR|7f € Inn(L°(G))},
o T (G) = {te R|7f e Inn(L*(G))}.

Inn
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FACTORS FROM COMPACT QUANTUM GROUPS TyPpE III

Thank you for your attention
and please

support Ukraine!
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