QUANTUM GROUPS AND FACTORS

QUANTUM GROUPS, HOPF ALGEBRAS AND MONOIDAL CATEGORIES

Piotr M. Sołtan (joint work with **Jacek Krajczok**)

Department of Mathematical Methods in Physics Faculty of Physics, University of Warsaw

May 2, 2022

P.M. SOLTAN (KMMF)

QUANTUM GROUPS AND FACTORS

May 2, 2022 1 / 20

1 Compact quantum groups

- Definition
- Examples
- Additional structure

2 Factors from compact quantum groups

- Type I
- Type II
- Type III

\bigstar A compact quantum group \mathbb{G} is described by

- a von Neumann algebra $L^{\infty}(\mathbb{G})$,
- a unital *-homomorphism $\Delta \colon L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G}) \overline{\otimes} L^{\infty}(\mathbb{G})$ (continuous in the σ -weak topology) such that

•
$$(\Delta \otimes id) \circ \Delta = (id \otimes \Delta) \circ \Delta$$
,

 ${\ }$ there exists a faithful state ${\boldsymbol{h}}$ on $L^\infty({\mathbb G})$ such that

$$(\boldsymbol{h}\otimes \mathrm{id})\Delta(x) = \boldsymbol{h}(x)\mathbb{1} = (\mathrm{id}\otimes \boldsymbol{h})\Delta(x), \qquad x\in\mathsf{L}^\infty(\mathbb{G}).$$

(Haar measure)

🕻 Examples include:

• $L^{\infty}(\mathbb{G}) = L^{\infty}(G)$ for a compact group *G*, $\Delta(f)(x, y) = f(xy)$ for $f \in L^{\infty}(G)$, $x, y \in G$ and

$$\boldsymbol{h}(f) = \int_{G} f \,\mathrm{d}h, \qquad f \in \mathsf{L}^{\infty}(G),$$

where h is the Haar measure on G.

• $L^{\infty}(\mathbb{G}) = L(\Gamma)$, i.e. the von Neumann algebra generated by the range of the left regular representation $\gamma \mapsto \lambda_{\gamma}$ of a discrete group Γ on $\ell_2(\Gamma)$, $\Delta(\lambda_{\gamma}) = \lambda_{\gamma} \otimes \lambda_{\gamma}$ for all $\gamma \in \Gamma$ and

$$\boldsymbol{h}(\boldsymbol{x}) = \langle \delta_{\boldsymbol{e}} | \boldsymbol{x} \delta_{\boldsymbol{e}} \rangle, \qquad \boldsymbol{x} \in L(\Gamma),$$

where δ_e is the "delta function" at $e \in \Gamma$.

Let \mathbb{G} be a compact quantum group.

• There exist

 ${\ensuremath{\, \circ \,}}$ a set ${\rm Irr}\, {\mathbb G},$

a family of finite dimensional Hilbert spaces {H^α}_{α∈Irr G},

- unitary elements $U^{\alpha} \in B(H^{\alpha}) \otimes L^{\infty}(\mathbb{G})$,
- a choice of an orthonormal basis $\{\xi_1^{\alpha}, \ldots, \xi_{n_{\alpha}}^{\alpha}\}$ in each H^{α}

such that the corresponding matrix elements $U_{i,j}^{\alpha}$ of all U^{α} span a dense unital *-subalgebra of $L^{\infty}(\mathbb{G})$ and satisfy

$$\boldsymbol{h}\big(U_{i,j}^{\alpha\,*}U_{k,l}^{\alpha}\big)=\frac{\delta_{k,i}\delta_{j,l}\rho_{\alpha,j}^{-1}}{M_{\alpha}},\qquad \boldsymbol{h}\big(U_{k,l}^{\alpha}U_{i,j}^{\alpha\,*}\big)=\frac{\delta_{k,i}\delta_{j,l}\rho_{\alpha,j}}{M_{\alpha}},$$

where $\rho_{\alpha,1} \ge \cdots \ge \rho_{\alpha,n_{\alpha}} > 0$ and $M_{\alpha} = \sum_{i} \rho_{\alpha,i}$.

P.M. SOLTAN (KMMF)

- \mathbf{I} Let \mathbb{G} be a compact quantum group.
 - There exists a one-parameter group $(\tau_t^{\mathbb{G}})_{t\in\mathbb{R}}$ of automorphisms of $L^{\infty}(\mathbb{G})$ such that

$$\tau^{\mathbb{G}}_{t}(U^{\alpha}_{i,j}) = \rho^{\mathrm{i}t}_{\alpha,i} U^{\alpha}_{i,j} \rho^{-\mathrm{i}t}_{\alpha,j}$$

for all i, j, α and t.

(scaling group)

• The modular group $(\sigma_t^{\mathbf{h}})_{t \in \mathbb{R}}$ of \mathbf{h} acts on $U_{i,j}^{\alpha}$ as follows:

$$\sigma_t^{\mathbf{h}}(U_{i,j}^{\alpha}) = \rho_{\alpha,i}^{\mathrm{i}t} U_{i,j}^{\alpha} \rho_{\alpha,j}^{\mathrm{i}t}$$

for all i, j, α and t.

• The two groups of automorphisms commute.

THEOREM (JACEK KRAJCZOK & P.M.S.)

Let H be a Hilbert space with dim H > 1. Then there does not exist a compact quantum group \mathbb{G} such that $L^{\infty}(\mathbb{G}) \cong B(H)$.

- $\dim H < +\infty$ is easy because then $L^{\infty}(\mathbb{G})$ cannot be simple.
- $\dim H > \aleph_0$ cannot happen because there are no faithful states on B(H) for non-separable H.
- Thus the only non-trivial case is that of an infinite dimensional separable Hilbert space H.
- One can tweak the proof to show that there is no compact quantum group \mathbb{G} such that $L^{\infty}(\mathbb{G}) \cong N \oplus B(H)$ for any von Neumann algebra N.

Step 1.

- Suppose \mathbb{G} is a compact quantum group with $L^{\infty}(\mathbb{G}) \cong B(H)$.
- The state \boldsymbol{h} cannot be a trace because there are no traces on B(H).
- It is known that in this case (h not a trace) there exists $\alpha \in Irr \mathbb{G}$ with

$$(\rho_{\alpha,1},\ldots,\rho_{\alpha,n_{\alpha}}) \neq (1,\ldots,1).$$

Let us assume that the set {ρ_{α,1},..., ρ_{α,n_α}} is invariant under taking inverses.

If this doesn't hold we can construct another compact quantum group \mathbb{H} out of \mathbb{G} with $\alpha \in \operatorname{Irr} \mathbb{H}$ for which this holds and we still have $L^{\infty}(\mathbb{H}) \cong B(H)$.

Step 2.

- Let $\pi: L^{\infty}(\mathbb{G}) \to B(\mathsf{H})$ be the assumed isomorphism.
- The state *h* must be of the form

$$h(x) = \operatorname{Tr}(Ax), \qquad x \in L^{\infty}(\mathbb{G})$$

for some positive trace-class operator A on H with eigenvalues $q_1 > q_2 > \cdots > 0$.

• For each *n* let $H(A = q_n)$ be the corresponding eigenspace, so that

$$\mathsf{H} = \bigoplus_{n=1}^{\infty} \mathsf{H}(A = q_n).$$

Moreover, we have $\dim H(A = q_n) < +\infty$ for all n.

• We have

$$\pi(\sigma_t^{\mathbf{h}}(\mathbf{x})) = A^{\mathrm{i}t}\pi(\mathbf{x})A^{-\mathrm{i}t}, \qquad \mathbf{x} \in \mathsf{L}^{\infty}(\mathbb{G}), \ t \in \mathbb{R}.$$

L Step 3.

• There is a strictly positive self-adjoint operator *B* on H such that

$$\pi\big(\tau^{\mathbb{G}}_t(x)\big) = B^{\mathrm{i}t}\pi(x)B^{-\mathrm{i}t}, \qquad x \in \mathsf{L}^{\infty}(\mathbb{G}), \ t \in \mathbb{R}$$

(this is a consequence of Stone's theorem).

- The fact that the groups $(\sigma_t^h)_{t\in\mathbb{R}}$ and $(\tau_t^{\mathbb{G}})_{t\in\mathbb{R}}$ commute implies that *A* and *B* strongly commute.
- Hence for any *n* the operator *B* restricts to a positive operator on the finite-dimensional Hilbert space $H(A = q_n)$.
- Let μ_{n,1} > · · · > μ_{n,P_n} be the complete list of eigenvalues of this restriction.
- We have

$$\mathsf{H} = \bigoplus_{n=1}^{\infty} \bigoplus_{p=1}^{P_n} \mathsf{H}(A = q_n) \cap \mathsf{H}(B = \mu_{n,p}).$$

Step 4.

• Claim: $\pi(U_{k,1}^{\alpha})$ maps $H(A = q_n)$ into $H(A = \rho_{\alpha,k}\rho_{\alpha,1}q_n)$. \checkmark Indeed: take $\xi \in H(A = q_n)$. Then

$$\begin{aligned} A^{it}\pi(U_{k,1})\xi &= A^{it}\pi(U_{k,1})A^{-it}A^{it}\xi = \pi(\sigma_t^{h}(U_{k,1}))q_n^{it}\xi \\ &= \pi(\rho_{\alpha,k}^{it}U_{k,1}\rho_{\alpha,1}^{it})q_n^{it}\xi = (\rho_{\alpha,k}\rho_{\alpha,1}q_n)^{it}\pi(U_{k,1})\xi. \end{aligned}$$

• Claim: $\pi(U_{k,1}^{\alpha})$ maps $H(B = \mu_{n,p})$ into $H(B = \rho_{\alpha,k}\rho_{\alpha,1}^{-1}\mu_{n,p})$. *I* Indeed: take $\eta \in H(B = \mu_{n,p})$. Then

$$\begin{split} B^{it}\pi(U_{k,1})\eta &= B^{it}\pi(U_{k,1})B^{-it}B^{it}\eta = \pi\big(\tau_t^{\mathbb{H}}(U_{k,1})\big)\mu_{n,p}^{it}\eta \\ &= \pi\big(\rho_{\alpha,k}^{it}U_{k,1}\rho_{\alpha,1}^{-it}\big)\mu_{n,p}^{it}\eta = \big(\rho_{\alpha,k}\rho_{\alpha,1}^{-1}\mu_{n,p}\big)^{it}\pi(U_{k,1})\eta. \end{split}$$

• Let ζ be a non-zero element of $\mathsf{H}(A = q_1) \cap \mathsf{H}(B = \mu_{1,P_1})$. We will show that $\pi(U_{k,1}^{\alpha})\zeta = 0$ for all $k \in \{1, \ldots, n_{\alpha}\}$.

Step 4. (continued)

• By the previous claims we have

$$\pi(U_{k,1}^{\alpha})\zeta\in\mathsf{H}(A=\rho_{\alpha,k}\rho_{\alpha,1}q_1)\cap\mathsf{H}(B=\rho_{\alpha,k}\rho_{\alpha,1}^{-1}\mu_{1,P_1}).$$

$$\begin{array}{l} \textbf{If } \rho_{\alpha,k} = \rho_{\alpha,1} \text{ then } \rho_{\alpha,k}\rho_{\alpha,1}q_1 = \rho_{\alpha,1}^2q_1 > q_1 = \|A\|, \text{ so} \\ \mathbb{H}(A = \rho_{\alpha,k}\rho_{\alpha,1}q_1) = \{0\} \text{ and consequently } \pi(U_{k,1})\zeta = 0. \\ \textbf{If } \rho_{\alpha,k} < \rho_{\alpha,1} \text{ then first of all} \end{array}$$

$$\rho_{\alpha,k}\rho_{\alpha,1}q_1 \geqslant \left(\min_i \{\rho_{\alpha,i}\}\right)\rho_{\alpha,1}q_1 = \rho_{\alpha,1}^{-1}\rho_{\alpha,1}q_1 = q_1$$

(invariance of $\{\rho_{\alpha,1}, \ldots, \rho_{\alpha,n_{\alpha}}\}$ under taking inverses!). Thus

$$\mathsf{H}(A = \rho_{\alpha,k}\rho_{\alpha,1}q_1) = \mathsf{H}(A = q_1) \quad \text{or} \quad \mathsf{H}(A = \rho_{\alpha,k}\rho_{\alpha,1}q_1) = \{0\}.$$

Clearly, if $H(A = \rho_{\alpha,k}\rho_{\alpha,1}q_1) = \{0\}$ then $\pi(U_{k,1}^{\alpha})\zeta = 0$.

Step 4. (continued)

- We have $\pi(U_{k,1}^{\alpha})\zeta \in \mathsf{H}(A = \rho_{\alpha,k}\rho_{\alpha,1}q_1) \cap \mathsf{H}(B = \rho_{\alpha,k}\rho_{\alpha,1}^{-1}\mu_{1,P_1})$ and $\mathsf{H}(A = \rho_{\alpha,k}\rho_{\alpha,1}q_1) = \mathsf{H}(A = q_1)$ or $\mathsf{H}(A = \rho_{\alpha,k}\rho_{\alpha,1}q_1) = \{0\}.$
- What happens if $H(A = \rho_{\alpha,k}\rho_{\alpha,1}q_1) = H(A = q_1)$?

 \mathcal{A} In this case $\rho_{\alpha,k}$ must be $\rho_{\alpha,1}^{-1}$, so

$$\rho_{\alpha,k}\rho_{\alpha,1}^{-1}\mu_{1,P_{1}} = \rho_{\alpha,1}^{-2}\mu_{1,P_{1}} < \mu_{1,P_{1}} = \min \operatorname{Sp}(B|_{\mathsf{H}(A=q_{1})}).$$

Consequently $H(B = \rho_{\alpha,k}\rho_{\alpha,1}^{-1}\mu_{1,P_1}) = \{0\}$ and

$$\pi(U_{k,1})\zeta\in\mathsf{H}(A=q_1)\cap\mathsf{H}\big(B=\rho_{\alpha,k}\rho_{\alpha,1}^{-1}\mu_{1,P_1}\big)=\{0\}.$$

In particular $\pi(U_{k,1})\zeta = 0$.

P.M. SOŁTAN (KMMF)

Step 5.

• We have shown that there is a non-zero $\zeta \in H$ with

$$\pi(U_{k,1})\zeta, \qquad k=1,\ldots,n_lpha.$$

• But
$$U^{\alpha} = \begin{bmatrix} U_{1,1}^{\alpha} & \cdots & U_{1,n_{\alpha}}^{\alpha} \\ \vdots & \ddots & \vdots \\ U_{n_{\alpha},1}^{\alpha} & \cdots & U_{n_{\alpha},n_{\alpha}}^{\alpha} \end{bmatrix}$$
 is unitary matrix, so
$$0 \neq \zeta = \sum_{k=1}^{n_{\alpha}} \pi(U_{k,1})^* \pi(U_{k,1}) \zeta = 0.$$

• This contradiction shows that the existence of $\mathbb G$ such that $L^\infty(\mathbb G)\cong B(H)$ is impossible.

THEOREM (JACEK KRAJCZOK & MATEUSZ WASILEWSKI) Let $q \in]-1, 1[\setminus\{0\}$ and $\nu \in \mathbb{R}\setminus\{0\}$ and consider the action α^{ν} of \mathbb{Q} with discrete topology on $SU_q(2)$ given by

$$\alpha_r^{\nu}(\mathbf{x}) = \tau_{\nu r}^{\mathrm{SU}_q(2)}(\mathbf{x}), \qquad \mathbf{x} \in \mathsf{L}^{\infty}\big(\mathrm{SU}_q(2)\big), \ \mathbf{r} \in \mathbb{Q}.$$

Let $\mathbb{H}_{\nu,q}$ be the corresponding bicrossed product:

$$\mathbb{H}_{\nu,q} = \mathbb{Q} \bowtie \mathrm{SU}_q(2).$$

Then

- **1** $\mathbb{H}_{\nu,q}$ is a compact quantum group,
- ② $\mathbb{H}_{\nu,q}$ is coamenable and hence $L^{\infty}(\mathbb{H}_{\nu,q})$ is injective,
- ③ if $\nu \log |q| \notin \pi \mathbb{Q}$ then L[∞]($\mathbb{H}_{\nu,q}$) is the injective factor of type II_∞,
- ④ the spectrum of the modular operator for the Haar measure $\boldsymbol{h}_{\nu,q}$ of $\mathbb{H}_{\nu,q}$ is $\{0\} \cup q^{2\mathbb{Z}}$.

Let $((\nu_n, q_n))_{n \in \mathbb{N}}$ be a sequence of parameters as described above $(\nu_n \log |q_n| \notin \pi \mathbb{Q}$ for all *n*) and consider the compact quantum group

 \sim

$$\mathbb{G}= igotimes_{n=1}^{\infty}\mathbb{H}_{
u_n,q_n}.$$

• In particular
$$L^{\infty}(\mathbb{G}) = \bigotimes_{n=1}^{\infty} L^{\infty}(\mathbb{H}_{\nu_n,q_n}).$$

EXAMPLE

If the sequence $((\nu_n, q_n))_{n \in \mathbb{N}}$ is constant then $L^{\infty}(\mathbb{G})$ is the injective factor of type III_{a^2} with separable predual.

•
$$T(\mathsf{L}^{\infty}(\mathbb{G})) = \frac{\pi}{\log|q|}\mathbb{Z},$$

• $S(\mathsf{L}^{\infty}(\mathbb{G})) = \{0\} \cup |q|^{2\mathbb{Z}}.$

EXAMPLE

If there are two subsequences $(q_{n_{1,p}})_{p\in\mathbb{N}}$ and $(q_{n_{2,p}})_{p\in\mathbb{N}}$ such that

$$\left\{ n_{1,p} \, \big| \, p \in \mathbb{N}
ight\} \cap \left\{ n_{2,p} \, \big| \, p \in \mathbb{N}
ight\} = arnothing$$

and

$$q_{n_{1,p}} \xrightarrow[p \to \infty]{} r_1, \quad q_{n_{2,p}} \xrightarrow[p \to \infty]{} r_2$$

for some $r_1, r_2 \in \left]-1, 1\right[\setminus\{0\}$ such that $\frac{\pi}{\log |r_1|}\mathbb{Z} \cap \frac{\pi}{\log |r_2|}\mathbb{Z} = \{0\}$ then $L^{\infty}(\mathbb{G})$ is the injective factor of type III₁ with separable predual.

•
$$T(L^{\infty}(\mathbb{G})) = \{0\},$$

• $S(L^{\infty}(\mathbb{G})) = \mathbb{R}_{\geq 0}.$

THEOREM (JACEK KRAJCZOK & P.M.S.)

There exist a family $\{\mathbb{G}_s\}_{s\in]0,1[}$ of compact quantum groups such that the von Neumann algebras $\{L^{\infty}(\mathbb{G}_s)\}_{s\in]0,1[}$ are pairwise non-isomorphic factors of type III₀.

•
$$T(\mathsf{L}^{\infty}(\mathbb{G}_{s})) \supset \mathbb{Q},$$

o defining

$$t_s = \sum_{p=1}^{\infty} \frac{\lfloor p^{1-s} \rfloor}{p!}, \qquad s \in \left]0, 1\right[$$

we have

$$\Big(t_{s'} \in T(L^{\infty}(\mathbb{G}_s)) \Big) \iff \Big(s' > s \Big).$$

- These compact quantum groups are constructed as bicrossed products Γ ⋈ × m_{n=1}[∞] H_{νn,qn} with Γ a subgroup of R (taken with discrete topology) acting by the scaling automorphisms.
- We distinguish between them using the following invariants:

•
$$T^{\tau}(\mathbb{G}) = \{t \in \mathbb{R} \mid \tau_t^{\mathbb{G}} = \mathrm{id}\},\$$

• $T_{\operatorname{Inn}}^{\tau}(\mathbb{G}) = \left\{ t \in \mathbb{R} \, \big| \, \tau_t^{\mathbb{G}} \in \operatorname{Inn}(\mathsf{L}^{\infty}(\mathbb{G})) \right\},$

•
$$T^{\tau}_{\overline{\mathrm{Inn}}}(\mathbb{G}) = \{ t \in \mathbb{R} \mid \tau^{\mathbb{G}}_t \in \overline{\mathrm{Inn}}(\mathsf{L}^{\infty}(\mathbb{G})) \}.$$

Thank you for your attention and please **support Ukraine!**