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COMPACT QUANTUM GROUPS DEFINITION

THE BASICS

DEFINITION

A compact quantum group G is described by

a von Neumann algebra L8pGq,

a unital ˚-homomorphism ∆: L8pGq Ñ L8pGq b L8pGq

(continuous in the σ-weak topology) such that

p∆ b idq ˝ ∆ “ pid b ∆q ˝ ∆,

there exists a faithful state h on L8pGq such that

@ x P L8pGq ph b idq∆pxq “ hpxq1 “ pid b hq∆pxq. (♥)

The condition (♥) determines h uniquely. We call this state

the Haar measure of G.
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THE STRUCTURE OF L8pGq REPRESENTATIONS

DEFINITION

Let G be a compact quantum group. A finite-dimensional

unitary representation of G is a unitary U P BpHq b L8pGq (with

H a finite-dimensional Hilbert space) such that

pid b ∆qpUq “ U12U13,

where

U12 “ U b 1 P BpHq b L8pGq b L8pGq,

U13 “ pid b flipqpU12q P BpHq b L8pGq b L8pGq.

We say that a representation U P BpHq b L8pGq is

irreducible if pT b 1qU “ UpT b 1q implies T “ λ1H.

Representations U P BpHq b L8pGq and V P BpKq b L8pGq are

equivalent if there is a unitary S P BpH,Kq such that

pS b 1qU “ V pS b 1q.
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THE STRUCTURE OF L8pGq REPRESENTATIONS

MATRIX ELEMENTS OF IRREPS

Let U P BpHq b L8pGq be a representation. Then any

ω P BpHq˚ defines pω b idqpUq P L8pGq which is called a

matrix element or a coefficient of U .

Typically we take ωp¨q “ xξ ¨ ηy for some vectors ξ, η P H.

Choosing an orthonormal basis tξ1, . . . , ξnu of H yields

Ui, j “ pωi, j b idqpUq where ωi, j “ xξi ¨ ξ jy.

From now on we denote by IrrpGq the set of equivalence

classes of irreps of G. For each α P IrrpGq we fix Uα P α.

Then any orthonormal basis ξα1 , . . . , ξ
α
nα

of the carrier Hilbert

space Hα of Uα defines the matrix elements Uα
i, j.

THEOREM

span
 

Uα
i, j

ˇ

ˇα P IrrpGq, i, j P t1, . . . ,nαu
(

is σ-weakly dense in L8pGq.
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THE STRUCTURE OF L8pGq ρ-OPERATORS

THE ρ-OPERATORS

For each α P IrrpGq let Vα “ p j b idq
`

Uα˚
˘

P BpHα˚q b L8pGq
( j : BpHαq Ñ BpHα˚q maps T to the operator xψ| ÞÑ xT ˚ψ|).

Next we let ρα “ const ¨ j
`

pid b hq
`

Vα˚Vα
˘˘

with the constant

chosen so that Trpραq “ Trpρ´1
α q.

Note that ρα is positive.

From now on for each α P IrrpGq we fix an orthonormal

basis of Hα in which ρα is diagonal:

ρα “

»

—

–

ρα,1

. . .

ρα,nα

fi

ffi

fl

and ρα,1 ě ¨ ¨ ¨ ě ρα,nα .

We have h
`

Uα
k,l

˚U
β
i, j

˘

“ δαβ
δkiρ

´1
α, jδl, j

Trpραq , so
 

Uα
i, j

(

are linearly

independent.
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THE STRUCTURE OF L8pGq MODULAR AND SCALING GROUPS

THE MODULAR GROUP AND THE SCALING GROUP

THEOREM

There exist two σ-weakly continuous one-parameter groups σh

and τG of automorphisms of L8pGq such that

τGt pUα
i, jq “ ρ

it
α,iU

α
i, jρ

´it
α, j

σh
t pUα

i, jq “ ρ
it
α,iU

α
i, jρ

it
α, j

for all α P IrrpGq, i, j P t1, . . . ,nαu and t P R.

Clearly the two groups commute.
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WHAT IF L8pGq – Bpℓ2q? FACTOR OF TYPE I

WHAT IF?

Suppose that there is a compact quantum group G such that

L8pGq – BpHq, where H is a Hilbert space such that dimH ą 1.

If H were finite-dimensional then BpHq would be simple, but

a finite dimensional L8pGq admits a character, so this is

impossible.

The case dimH ą ℵ0 is ruled out by the fact that there are

no faithful normal states on BpHq for non-separable H.

Thus we are left with H – ℓ2.

We will show that this leads to a contradiction.
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WHAT IF L8pGq – Bpℓ2q? FACTOR OF TYPE I

Step 1.

Suppose G is a compact quantum group with L8pGq – BpHq.

The state h cannot be a trace because there are no traces

on BpHq.

It is known that in this case (h not a trace) there exists

α P IrrpGq with

pρα,1, . . . ,ρα,nαq ‰ p1, . . . ,1q.

Let us assume that the set tρα,1, . . . ,ρα,nαu is invariant

under taking inverses.

If this doesn’t hold we can show that the compact quantum

group G ˆ G has β P IrrpG ˆ Gq such that ρβ is non-trivial

and
 

ρβ,1, . . . , ρβ,nβ

(

“
 

ρ
´1
β,1, . . . , ρ

´1
β,nβ

(

.

Still L8pG ˆ Gq “ L8pGq b L8pGq – BpHq b BpHq – BpHq.
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WHAT IF L8pGq – Bpℓ2q? FACTOR OF TYPE I

Step 2.

Let π : L8pGq Ñ BpHq be the assumed isomorphism.

The state h must be of the form

hpxq “ Tr
`

Aπpxq
˘

, x P L8pGq

for some positive trace-class operator A on H with

eigenvalues q1 ą q2 ą ¨ ¨ ¨ ą 0.

For each n let HpA “ qnq be the corresponding eigenspace,

so that

H “
8
à

n“1

HpA “ qnq.

Moreover, we have dimHpA “ qnq ă `8 for all n.

We have

π
`

σh
t pxq

˘

“ AitπpxqA´it , x P L8pGq, t P R.
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WHAT IF L8pGq – Bpℓ2q? FACTOR OF TYPE I

Step 3.

There is a strictly positive self-adjoint operator B on H such

that

π
`

τGt pxq
˘

“ BitπpxqB´it , x P L8pGq, t P R

(this is a consequence of Stone’s theorem).

The fact that the groups pσh
t qtPR and pτGt qtPR commute

implies that A and B strongly commute.

Hence for any n the operator B restricts to a positive

operator on the finite-dimensional Hilbert space HpA “ qnq.

Let µn,1 ą ¨ ¨ ¨ ą µn,Pn be the complete list of eigenvalues of

this restriction.

We have

H “
8
à

n“1

Pn
à

p“1

HpA “ qnq X HpB “ µn,pq.
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WHAT IF L8pGq – Bpℓ2q? FACTOR OF TYPE I

Step 4.

Claim: πpUα
k,1q maps HpA “ qnq into HpA “ ρα,kρα,1qnq.

Indeed: take ξ P HpA “ qnq. Then

AitπpUα
k,1qξ “ AitπpUα

k,1qA´itAitξ “ π
`

σh

t pUα
k,1q

˘

qit
n ξ

“ π
`

ρ
it
α,kUα

k,1ρ
it
α,1

˘

qit
n ξ “ pρα,kρα,1qnqitπpUα

k,1qξ.

Claim: πpUα
k,1q maps HpB “ µn,pq into HpB “ ρα,kρ

´1
α,1µn,pq.

Indeed: take η P HpB “ µn,pq. Then

BitπpUα
k,1qη “ BitπpUα

k,1qB´itBitη “ π
`

τHt pUα
k,1q

˘

µit
n,pη

“ π
`

ρ
it
α,kUα

k,1ρ
´it
α,1

˘

µit
n,pη “

`

ρα,kρ
´1
α,1µn,p

˘it
πpUα

k,1qη.

Let ζ be a non-zero element of HpA “ q1q X HpB “ µ1,P1
q.

We will show that πpUα
k,1qζ “ 0 for all k P t1, . . . ,nαu.
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WHAT IF L8pGq – Bpℓ2q? FACTOR OF TYPE I

Step 4. (continued)

By the previous claims we have

πpUα
k,1qζ P HpA “ ρα,kρα,1q1q X HpB “ ρα,kρ

´1
α,1µ1,P1

q.

If ρα,k “ ρα,1 then ρα,kρα,1q1 “ ρ
2
α,1q1 ą q1 “ }A}, so

HpA “ ρα,kρα,1q1q “ t0u and consequently πpUα
k,1qζ “ 0.

If ρα,k ă ρα,1 then first of all

ρα,kρα,1q1 ě
`

min
i

tρα,iu
˘

ρα,1q1 “ ρ
´1
α,1ρα,1q1 “ q1

(invariance of tρα,1, . . . ,ρα,nαu under taking inverses!). Thus

HpA “ ρα,kρα,1q1q “ HpA “ q1q or HpA “ ρα,kρα,1q1q “ t0u.

Clearly, if HpA “ ρα,kρα,1q1q “ t0u then πpUα
k,1qζ “ 0.
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WHAT IF L8pGq – Bpℓ2q? FACTOR OF TYPE I

Step 4. (continued further)

We have πpUα
k,1qζ P HpA “ ρα,kρα,1q1q X HpB “ ρα,kρ

´1
α,1µ1,P1

q
and HpA “ ρα,kρα,1q1q “ HpA “ q1q or HpA “ ρα,kρα,1q1q “ t0u.

What happens if HpA “ ρα,kρα,1q1q “ HpA “ q1q?

In this case ρα,k must be ρ
´1
α,1, so

ρα,kρ
´1
α,1µ1,P1

“ ρ
´2
α,1µ1,P1

ă µ1,P1
“ min Sp

`

B
ˇ

ˇ

HpA“q1q

˘

.

Consequently H
`

B “ ρα,kρ
´1
α,1µ1,P1

˘

“ t0u and

πpUα
k,1qζ P HpA “ q1q X H

`

B “ ρα,kρ
´1
α,1µ1,P1

˘

“ t0u.

In particular πpUα
k,1qζ “ 0.
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WHAT IF L8pGq – Bpℓ2q? FACTOR OF TYPE I

Step 5.

We have shown that there is a non-zero ζ P H with

πpUα
k,1qζ, k “ 1, . . . ,nα.

But Uα “

«

Uα
1,1 ¨¨¨ Uα

1,nα...
...

...
Uα

nα,1 ¨¨¨ Uα
nα,nα

ff

is unitary matrix, so

0 ‰ ζ “
nα
ÿ

k“1

πpUα
k,1q˚πpUα

k,1qζ “ 0.

This contradiction shows that the existence of G such that

L8pGq – BpHq is impossible.

l
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WHAT IF L8pGq – Bpℓ2q? SIMILAR RESULTS

REMARKS

1 The proof can be tweaked to obtain

THEOREM (J. KRAJCZOK & P.M.S.)

There does not exist a compact quantum group G such that

L8pGq – N ‘ BpHq with N an arbitrary von Neumann algebra or

the zero vector space and H of infinite dimension.
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WHAT IF L8pGq – Bpℓ2q? SIMILAR RESULTS

REMARKS

2 Similar techniques yield the following

THEOREM (A. CHIRVASITU, J. KRAJCZOK & P.M.S.)

Let G be a compact quantum group such that the C˚-algebra CpGq
fits into the exact sequence

0
N
À

i“1

KpHiq CpGq CpXq 0

with X a compact space. The G is finite (dimCpGq ă `8).

3 It follows that the Podleś spheres and the quantum disk do

not admit a structure of a compact quantum group.
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OTHER INJECTIVE FACTORS TYPE II

THEOREM (J. KRAJCZOK & M. WASILEWSKI)

Let q P s´1,1r zt0u and ν P Rzt0u and consider the action αν of Q

with discrete topology on SUqp2q given by

αν
r pxq “ τ

SUqp2q
νr pxq, x P L8

`

SUqp2q
˘

, r P Q.

Let Hν,q be the corresponding bicrossed product:

Hν,q “ Q ’ SUqp2q.

Then

1 Hν,q is a compact quantum group,

2 Hν,q is coamenable and hence L8pHν,qq is injective,

3 if ν log |q| R πQ then L8pHν,qq is the injective factor of type II8,

4 the spectrum of the modular operator for the Haar measure

hν,q of Hν,q is t0u Y q2Z.
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OTHER INJECTIVE FACTORS TYPE III

Let
`

pνn ,qnq
˘

nPN
be a sequence of parameters as described

above (νn log |qn | R πQ for all n) and consider the compact

quantum group

G “
8
ą

n“1

Hνn ,qn .

In particular L8pGq “
8
Â

n“1

L8pHνn ,qn q.

EXAMPLE

If the sequence
`

pνn ,qnq
˘

nPN
is constant then L8pGq is the

injective factor of type IIIq2 with separable predual.

T
`

L8pGq
˘

“ π
log |q|Z,

S
`

L8pGq
˘

“ t0u Y |q|2Z.
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OTHER INJECTIVE FACTORS TYPE III

EXAMPLE

If there are two subsequences pqn1,p
qpPN and pqn2,p

qpPN such that

 

n1,p

ˇ

ˇp P N
(

X
 

n2,p

ˇ

ˇp P N
(

“ H

and

qn1,p
ÝÝÝÑ
pÑ8

r1, qn2,p
ÝÝÝÑ
pÑ8

r2

for some r1, r2 P s´1,1r zt0u such that π
log |r1|Z X π

log |r2|Z “ t0u then

L8pGq is the injective factor of type III1 with separable predual.

T
`

L8pGq
˘

“ t0u,

S
`

L8pGq
˘

“ Rě0.
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OTHER INJECTIVE FACTORS TYPE III

THEOREM (J. KRAJCZOK & P.M.S.)

There exist a family tGsusPs0,1r of compact quantum groups such

that the von Neumann algebras
 

L8pGsq
(

sPs0,1r
are pairwise

non-isomorphic factors of type III0.

T
`

L8pGsq
˘

Ą Q,

defining

ts “
8
ÿ

p“1

tp1´su
p!

, s P s0,1r

we have
´

ts1 P T
`

L8pGsq
˘

¯

ðñ
´

s1 ą s
¯

.
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OTHER INJECTIVE FACTORS TYPE III

For each λ P s0,1s there exists uncountably many pairwise

non-isomorphic compact quantum groups with L8pGq the

injective factor of type IIIλ.

These compact quantum groups are constructed as

bicrossed products Γ ’
8
Ś

n“1

Hνn ,qn with Γ a subgroup of R

(taken with discrete topology) acting by the scaling

automorphisms.

We distinguish between them using the following
invariants:

T τpGq “
 

t P R
ˇ

ˇ τGt “ id
(

,

T τ
Inn

pGq “
 

t P R
ˇ

ˇ τGt P InnpL8pGqq
(

,

T τ

Inn
pGq “

 

t P R
ˇ

ˇ τGt P InnpL8pGqq
(

.
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OTHER INJECTIVE FACTORS TYPE III

Thank you for your attention
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