Why $\mathrm{B}\left(\ell^{2}\right)$ is not $L^{\infty}(\mathbb{G})$
 Quantum Groups: Current Trends
 and New Perspectives

Piotr M. Sołtan (joint work with Jacek Krajczok)

Department of Mathematical Methods in Physics
Faculty of Physics, University of Warsaw

December 6, 2022
(1) COMPACT GUANTUM GROUPS
(2) The structure of $L^{\infty}(\mathbb{G})$
(3) WHAT IF $L^{\infty}(\mathbb{G}) \cong \mathrm{B}\left(\ell^{2}\right)$?
(4) OTHER INJECTIVE FACTORS

The Basics

Definition

A compact quantum group \mathbb{G} is described by

- a von Neumann algebra $L^{\infty}(\mathbb{G})$,
- a unital *-homomorphism $\Delta: L^{\infty}(\mathbb{G}) \rightarrow L^{\infty}(\mathbb{G}) \bar{\otimes} L^{\infty}(\mathbb{G})$
(continuous in the σ-weak topology) such that
- $(\Delta \otimes \mathrm{id}) \circ \Delta=(\mathrm{id} \otimes \Delta) \circ \Delta$,
- there exists a faithful state \boldsymbol{h} on $L^{\infty}(\mathbb{G})$ such that

$$
\begin{equation*}
\forall x \in L^{\infty}(\mathbb{G})(\boldsymbol{h} \otimes \mathrm{id}) \Delta(x)=\boldsymbol{h}(x) \mathbb{1}=(\mathrm{id} \otimes \boldsymbol{h}) \Delta(x) \tag{}
\end{equation*}
$$

Ser The condition (\checkmark) determines \boldsymbol{h} uniquely. We call this state the Haar measure of \mathbb{G}.

Definition

Let \mathbb{G} be a compact quantum group. A finite-dimensional unitary representation of \mathbb{G} is a unitary $U \in \mathrm{~B}(\mathrm{H}) \otimes L^{\infty}(\mathbb{G})$ (with H a finite-dimensional Hilbert space) such that

$$
(\mathrm{id} \otimes \Delta)(U)=U_{12} U_{13}
$$

where

- $U_{12}=U \otimes \mathbb{1} \in \mathrm{~B}(\mathrm{H}) \otimes L^{\infty}(\mathbb{G}) \otimes L^{\infty}(\mathbb{G})$,
- $U_{13}=(i d \otimes \operatorname{llip})\left(U_{12}\right) \in \mathrm{B}(\mathrm{H}) \otimes L^{\infty}(\mathbb{G}) \otimes L^{\infty}(\mathbb{G})$.
(We say that a representation $U \in \mathrm{~B}(\mathrm{H}) \otimes L^{\infty}(\mathbb{G})$ is irreducible if $(T \otimes \mathbb{1}) U=U(T \otimes \mathbb{1})$ implies $T=\lambda \mathbb{1}_{H}$.
te Representations $U \in \mathrm{~B}(\mathrm{H}) \otimes L^{\infty}(\mathbb{G})$ and $V \in \mathrm{~B}(\mathrm{~K}) \otimes L^{\infty}(\mathbb{G})$ are equivalent if there is a unitary $S \in B(H, K)$ such that $(S \otimes \mathbb{1}) U=V(S \otimes \mathbb{1})$.

MATRIX ELEMENTS OF IRREPS

- Let $U \in \mathrm{~B}(\mathrm{H}) \otimes L^{\infty}(\mathbb{G})$ be a representation. Then any $\omega \in \mathrm{B}(\mathrm{H})^{*}$ defines $(\omega \otimes \mathrm{id})(U) \in L^{\infty}(\mathbb{G})$ which is called a matrix element or a coefficient of U.
- Typically we take $\omega(\cdot)=\langle\xi| \cdot|\eta\rangle$ for some vectors $\xi, \eta \in \mathrm{H}$.
- Choosing an orthonormal basis $\left\{\xi_{1}, \ldots, \xi_{n}\right\}$ of H yields $U_{i, j}=\left(\omega_{i, j} \otimes \mathbf{i d}\right)(U)$ where $\omega_{i, j}=\left\langle\xi_{i}\right| \cdot\left|\xi_{j}\right\rangle$.
d From now on we denote by $\operatorname{Irr}(\mathbb{G})$ the set of equivalence classes of irreps of \mathbb{G}. For each $\alpha \in \operatorname{Irr}(\mathbb{G})$ we fix $U^{\alpha} \in \alpha$. Then any orthonormal basis $\xi_{1}^{\alpha}, \ldots, \xi_{n_{\alpha}}^{\alpha}$ of the carrier Hilbert space H^{α} of U^{α} defines the matrix elements $U_{i, j}^{\alpha}$.

THEOREM

$\operatorname{span}\left\{U_{i, j}^{\alpha} \mid \alpha \in \operatorname{Irr}(\mathbb{G}), i, j \in\left\{1, \ldots, n_{\alpha}\right\}\right\}$ is σ-weakly dense in $L^{\infty}(\mathbb{G})$.

THE ρ-OPERATORS

- For each $\alpha \in \operatorname{Irr}(\mathbb{G})$ let $V^{\alpha}=(j \otimes \mathrm{id})\left(U^{\alpha *}\right) \in \mathrm{B}\left(\mathrm{H}^{\alpha *}\right) \otimes L^{\infty}(\mathbb{G})$ ($j: \mathrm{B}\left(\mathrm{H}^{\alpha}\right) \rightarrow \mathrm{B}\left(\mathrm{H}^{\alpha *}\right)$ maps T to the operator $\left.\langle\psi| \mapsto\left\langle T^{*} \psi\right|\right)$.
- Next we let $\rho_{\alpha}=$ const $\cdot j\left((\operatorname{id} \otimes \boldsymbol{h})\left(V^{\alpha *} V^{\alpha}\right)\right)$ with the constant chosen so that $\operatorname{Tr}\left(\rho_{\alpha}\right)=\operatorname{Tr}\left(\rho_{\alpha}^{-1}\right)$.
- Note that ρ_{α} is positive.
\& From now on for each $\alpha \in \operatorname{Irr}(\mathbb{G})$ we fix an orthonormal basis of H^{α} in which ρ_{α} is diagonal:

$$
\rho_{\alpha}=\left[\begin{array}{lll}
\rho_{\alpha, 1} & & \\
& \ddots & \\
& & \rho_{\alpha, n_{\alpha}}
\end{array}\right]
$$

and $\rho_{\alpha, 1} \geqslant \cdots \geqslant \rho_{\alpha, n_{\alpha}}$.

- We have $\boldsymbol{h}\left(U_{k, l}^{\alpha} * U_{i, j}^{\beta}\right)=\delta_{\alpha \beta} \frac{\delta_{k i} \rho_{\alpha, j}^{-1} \delta_{l, j}}{\operatorname{Tr}\left(\rho_{\alpha}\right)}$, so $\left\{U_{i, j}^{\alpha}\right\}$ are linearly independent.

THE MODULAR GROUP AND THE SCALING GROUP

THEOREM

There exist two σ-weakly continuous one-parameter groups $\sigma^{\boldsymbol{h}}$ and $\tau^{\mathbb{G}}$ of automorphisms of $L^{\infty}(\mathbb{G})$ such that

$$
\begin{gathered}
\tau_{t}^{\mathbb{G}}\left(U_{i, j}^{\alpha}\right)=\rho_{\alpha, i}^{\mathrm{i} t} U_{i, j}^{\alpha} \rho_{\alpha, j}^{-\mathrm{i} t} \\
\sigma_{t}^{\boldsymbol{h}}\left(U_{i, j}^{\alpha}\right)=\rho_{\alpha, i}^{\mathrm{i} t} U_{i, j}^{\alpha} \rho_{\alpha, j}^{\mathrm{i} t}
\end{gathered}
$$

for all $\alpha \in \operatorname{Irr}(\mathbb{G}), i, j \in\left\{1, \ldots, n_{\alpha}\right\}$ and $t \in \mathbb{R}$.
Clearly the two groups commute.

What IF?
Suppose that there is a compact quantum group \mathbb{G} such that $L^{\infty}(\mathbb{G}) \cong B(H)$, where H is a Hilbert space such that $\operatorname{dim} H>1$.

- If H were finite-dimensional then $B(H)$ would be simple, but a finite dimensional $L^{\infty}(\mathbb{G})$ admits a character, so this is impossible.
- The case $\operatorname{dim} H>\aleph_{0}$ is ruled out by the fact that there are no faithful normal states on $B(H)$ for non-separable H.
- Thus we are left with $\mathrm{H} \cong \ell^{2}$.
- We will show that this leads to a contradiction.

Step 1.

- Suppose \mathbb{G} is a compact quantum group with $L^{\infty}(\mathbb{G}) \cong B(H)$.
- The state \boldsymbol{h} cannot be a trace because there are no traces on $B(H)$.
- It is known that in this case (\boldsymbol{h} not a trace) there exists $\alpha \in \operatorname{Irr}(\mathbb{G})$ with

$$
\left(\rho_{\alpha, 1}, \ldots, \rho_{\alpha, n_{\alpha}}\right) \neq(1, \ldots, 1) .
$$

- Let us assume that the set $\left\{\rho_{\alpha, 1}, \ldots, \rho_{\alpha, n_{\alpha}}\right\}$ is invariant under taking inverses.

If this doesn't hold we can show that the compact quantum
k group $\mathbb{G} \times \mathbb{G}$ has $\beta \in \operatorname{Irr}(\mathbb{G} \times \mathbb{G})$ such that ρ_{β} is non-trivial and $\left\{\rho_{\beta, 1}, \ldots, \rho_{\beta, n_{\beta}}\right\}=\left\{\rho_{\beta, 1}^{-1}, \ldots, \rho_{\beta, n_{\beta}}^{-1}\right\}$. Still $L^{\infty}(\mathbb{G} \times \mathbb{G})=L^{\infty}(\mathbb{G}) \bar{\otimes} L^{\infty}(\mathbb{G}) \cong B(H) \bar{\otimes} B(H) \cong B(H)$.

K Step 2.

- Let $\pi: L^{\infty}(\mathbb{G}) \rightarrow B(H)$ be the assumed isomorphism.
- The state \boldsymbol{h} must be of the form

$$
\boldsymbol{h}(x)=\operatorname{Tr}(A \pi(x)), \quad x \in L^{\infty}(\mathbb{G})
$$

for some positive trace-class operator A on H with eigenvalues $q_{1}>q_{2}>\cdots>0$.

- For each n let $\mathrm{H}\left(A=q_{n}\right)$ be the corresponding eigenspace, so that

$$
\mathrm{H}=\bigoplus_{n=1}^{\infty} \mathrm{H}\left(A=q_{n}\right) .
$$

Moreover, we have $\operatorname{dim} \mathrm{H}\left(A=q_{n}\right)<+\infty$ for all n.

- We have

$$
\pi\left(\sigma_{t}^{\boldsymbol{h}}(x)\right)=A^{\mathrm{i} t} \pi(x) A^{-\mathrm{i} t}, \quad x \in L^{\infty}(\mathbb{G}), t \in \mathbb{R}
$$

Step 3.

- There is a strictly positive self-adjoint operator B on H such that

$$
\pi\left(\tau_{t}^{\mathbb{G}}(x)\right)=B^{\mathrm{it}} \pi(x) B^{-\mathrm{i} t}, \quad x \in L^{\infty}(\mathbb{G}), t \in \mathbb{R}
$$

(this is a consequence of Stone's theorem).

- The fact that the groups $\left(\sigma_{t}^{\boldsymbol{h}}\right)_{t \in \mathbb{R}}$ and $\left(\tau_{t}^{\mathbb{G}}\right)_{t \in \mathbb{R}}$ commute implies that A and B strongly commute.
- Hence for any n the operator B restricts to a positive operator on the finite-dimensional Hilbert space $\mathrm{H}\left(A=q_{n}\right)$.
- Let $\mu_{n, 1}>\cdots>\mu_{n, P_{n}}$ be the complete list of eigenvalues of this restriction.
- We have

$$
\mathrm{H}=\bigoplus_{n=1}^{\infty} \bigoplus_{p=1}^{P_{n}} \mathrm{H}\left(A=q_{n}\right) \cap \mathrm{H}\left(B=\mu_{n, p}\right) .
$$

L Step 4.

- Claim: $\pi\left(U_{k, 1}^{\alpha}\right)$ maps $\mathrm{H}\left(A=q_{n}\right)$ into $\mathrm{H}\left(A=\rho_{\alpha, k} \rho_{\alpha, 1} q_{n}\right)$.

Indeed: take $\xi \in \mathrm{H}\left(A=q_{n}\right)$. Then

$$
\begin{aligned}
A^{\mathrm{i} t} \pi\left(U_{k, 1}^{\alpha}\right) \xi & =A^{\mathrm{it} t} \pi\left(U_{k, 1}^{\alpha}\right) A^{-\mathrm{i} t} A^{\mathrm{it}} \xi=\pi\left(\sigma_{t}^{\boldsymbol{h}}\left(U_{k, 1}^{\alpha}\right)\right) q_{n}^{\mathrm{i} t} \xi \\
& =\pi\left(\rho_{\alpha, k}^{\mathrm{i} t} U_{k, 1}^{\alpha} \rho_{\alpha, 1}^{\mathrm{i} t}\right) q_{n}^{\mathrm{it}} \xi=\left(\rho_{\alpha, k} \rho_{\alpha, 1} q_{n}\right)^{\mathrm{i} t} \pi\left(U_{k, 1}^{\alpha}\right) \xi
\end{aligned}
$$

- Claim: $\pi\left(U_{k, 1}^{\alpha}\right)$ maps $\mathrm{H}\left(B=\mu_{n, p}\right)$ into $\mathrm{H}\left(B=\rho_{\alpha, k} \rho_{\alpha, 1}^{-1} \mu_{n, p}\right)$.

Indeed: take $\eta \in \mathrm{H}\left(B=\mu_{n, p}\right)$. Then

$$
\begin{aligned}
B^{\mathrm{i} t} \pi\left(U_{k, 1}^{\alpha}\right) \eta & =B^{\mathrm{i} t} \pi\left(U_{k, 1}^{\alpha}\right) B^{-\mathrm{i} t} B^{\mathrm{i} t} \eta=\pi\left(\tau_{t}^{\mathbb{H}}\left(U_{k, 1}^{\alpha}\right)\right) \mu_{n, p}^{\mathrm{it}} \eta \\
& =\pi\left(\rho_{\alpha, k}^{\mathrm{i} t} U_{k, 1}^{\alpha} \rho_{\alpha, 1}^{-\mathrm{i} t}\right) \mu_{n, p}^{\mathrm{i} t} \eta=\left(\rho_{\alpha, k} \rho_{\alpha, 1}^{-1} \mu_{n, p}\right)^{\mathrm{i} t} \pi\left(U_{k, 1}^{\alpha}\right) \eta .
\end{aligned}
$$

- Let ζ be a non-zero element of $\mathrm{H}\left(A=q_{1}\right) \cap \mathrm{H}\left(B=\mu_{1, P_{1}}\right)$. We will show that $\pi\left(U_{k, 1}^{\alpha}\right) \zeta=0$ for all $k \in\left\{1, \ldots, n_{\alpha}\right\}$.

LStep 4. (continued)

- By the previous claims we have

$$
\pi\left(U_{k, 1}^{\alpha}\right) \zeta \in \mathrm{H}\left(A=\rho_{\alpha, k} \rho_{\alpha, 1} q_{1}\right) \cap \mathrm{H}\left(B=\rho_{\alpha, k} \rho_{\alpha, 1}^{-1} \mu_{1, P_{1}}\right) .
$$

< If $\rho_{\alpha, k}=\rho_{\alpha, 1}$ then $\rho_{\alpha, k} \rho_{\alpha, 1} q_{1}=\rho_{\alpha, 1}^{2} q_{1}>q_{1}=\|A\|$, so $\mathrm{H}\left(A=\rho_{\alpha, k} \rho_{\alpha, 1} q_{1}\right)=\{0\}$ and consequently $\pi\left(U_{k, 1}^{\alpha}\right) \zeta=0$.
< If $\rho_{\alpha, k}<\rho_{\alpha, 1}$ then first of all

$$
\rho_{\alpha, k} \rho_{\alpha, 1} q_{1} \geqslant\left(\min _{i}\left\{\rho_{\alpha, i}\right\}\right) \rho_{\alpha, 1} q_{1}=\rho_{\alpha, 1}^{-1} \rho_{\alpha, 1} q_{1}=q_{1}
$$

(invariance of $\left\{\rho_{\alpha, 1}, \ldots, \rho_{\alpha, n_{\alpha}}\right\}$ under taking inverses!). Thus

$$
\mathrm{H}\left(A=\rho_{\alpha, k} \rho_{\alpha, 1} q_{1}\right)=\mathrm{H}\left(A=q_{1}\right) \quad \text { or } \quad \mathrm{H}\left(A=\rho_{\alpha, k} \rho_{\alpha, 1} q_{1}\right)=\{0\} .
$$

Clearly, if $\mathrm{H}\left(A=\rho_{\alpha, k} \rho_{\alpha, 1} q_{1}\right)=\{0\}$ then $\pi\left(U_{k, 1}^{\alpha}\right) \zeta=0$.

Q Step 4. (continued further)

- We have $\pi\left(U_{k, 1}^{\alpha}\right) \zeta \in \mathrm{H}\left(A=\rho_{\alpha, k} \rho_{\alpha, 1} q_{1}\right) \cap \mathrm{H}\left(B=\rho_{\alpha, k} \rho_{\alpha, 1}^{-1} \mu_{1, P_{1}}\right)$ and $\mathrm{H}\left(A=\rho_{\alpha, k} \rho_{\alpha, 1} q_{1}\right)=\mathrm{H}\left(A=q_{1}\right)$ or $\mathrm{H}\left(A=\rho_{\alpha, k} \rho_{\alpha, 1} q_{1}\right)=\{0\}$.
- What happens if $\mathrm{H}\left(A=\rho_{\alpha, k} \rho_{\alpha, 1} q_{1}\right)=\mathrm{H}\left(A=q_{1}\right)$?

In this case $\rho_{\alpha, k}$ must be $\rho_{\alpha, 1}^{-1}$, so

$$
\rho_{\alpha, k} \rho_{\alpha, 1}^{-1} \mu_{1, P_{1}}=\rho_{\alpha, 1}^{-2} \mu_{1, P_{1}}<\mu_{1, P_{1}}=\min \operatorname{Sp}\left(\left.B\right|_{H\left(A=q_{1}\right)}\right) .
$$

Consequently $\mathrm{H}\left(B=\rho_{\alpha, k} \rho_{\alpha, 1}^{-1} \mu_{1, P_{1}}\right)=\{0\}$ and

$$
\pi\left(U_{k, 1}^{\alpha}\right) \zeta \in \mathrm{H}\left(A=q_{1}\right) \cap \mathrm{H}\left(B=\rho_{\alpha, k} \rho_{\alpha, 1}^{-1} \mu_{1, P_{1}}\right)=\{0\} .
$$

In particular $\pi\left(U_{k, 1}^{\alpha}\right) \zeta=0$.

LStep 5.

- We have shown that there is a non-zero $\zeta \in \mathrm{H}$ with

$$
\pi\left(U_{k, 1}^{\alpha}\right) \zeta, \quad k=1, \ldots, n_{\alpha}
$$

- But $U^{\alpha}=\left[\begin{array}{ccc}U_{1,1}^{\alpha} & \cdots & U_{1, n_{\alpha}}^{\alpha} \\ \vdots & \ddots & \vdots \\ U_{n_{\alpha}, 1}^{\alpha} & \cdots & U_{n_{\alpha}, n_{\alpha}}^{\alpha}\end{array}\right]$ is unitary matrix, so

$$
0 \neq \zeta=\sum_{k=1}^{n_{\alpha}} \pi\left(U_{k, 1}^{\alpha}\right)^{*} \pi\left(U_{k, 1}^{\alpha}\right) \zeta=0
$$

- This contradiction shows that the existence of \mathbb{G} such that $L^{\infty}(\mathbb{G}) \cong B(H)$ is impossible.

REMARKS

(1) The proof can be tweaked to obtain

Theorem (J. Krajczok \& P.M.S.)

There does not exist a compact quantum group \mathbb{G} such that $L^{\infty}(\mathbb{G}) \cong \mathrm{N} \oplus \mathrm{B}(\mathrm{H})$ with N an arbitrary von Neumann algebra or the zero vector space and H of infinite dimension.

REMARKS

(2) Similar techniques yield the following

Theorem (A. Chirvasitu, J. Krajczok \& P.M.S.)
Let \mathbb{G} be a compact quantum group such that the C^{*}-algebra $\mathrm{C}(\mathbb{G})$ fits into the exact sequence

$$
0 \longrightarrow \bigoplus_{i=1}^{N} \mathcal{K}\left(\mathrm{H}_{i}\right) \longrightarrow \mathrm{C}(\mathbb{G}) \longrightarrow \mathrm{C}(X) \longrightarrow 0
$$

with X a compact space. The \mathbb{G} is finite $(\operatorname{dim} C(\mathbb{G})<+\infty)$.
(3) It follows that the Podles spheres and the quantum disk do not admit a structure of a compact quantum group.

Theorem (J. Krajczok \& M. Wasilewski)
Let $q \in]-1,1\left[\backslash\{0\}\right.$ and $\nu \in \mathbb{R} \backslash\{0\}$ and consider the action α^{ν} of \mathbb{Q} with discrete topology on $\mathrm{SU}_{q}(2)$ given by

$$
\alpha_{r}^{\nu}(x)=\tau_{\nu r}^{\mathrm{SU}_{q}(2)}(x), \quad x \in L^{\infty}\left(\mathrm{SU}_{q}(2)\right), r \in \mathbb{Q}
$$

Let $\mathbb{H}_{\nu, q}$ be the corresponding bicrossed product:

$$
\mathbb{H}_{\nu, q}=\mathbb{Q} \bowtie \mathrm{SU}_{q}(2) .
$$

Then
(1) $\mathbb{H}_{\nu, q}$ is a compact quantum group,
(2) $\mathbb{H}_{\nu, q}$ is coamenable and hence $L^{\infty}\left(\mathbb{H}_{\nu, q}\right)$ is injective,
(3) if $\nu \log |q| \notin \pi \mathbb{Q}$ then $L^{\infty}\left(\mathbb{H}_{\nu, q}\right)$ is the injective factor of type II_{∞},
(4) the spectrum of the modular operator for the Haar measure $\boldsymbol{h}_{\nu, q}$ of $\mathbb{H}_{\nu, q}$ is $\{0\} \cup q^{2 \mathbb{Z}}$.

Let $\left(\left(\nu_{n}, q_{n}\right)\right)_{n \in \mathbb{N}}$ be a sequence of parameters as described above ($\nu_{n} \log \left|q_{n}\right| \notin \pi \mathbb{Q}$ for all n) and consider the compact quantum group

$$
\mathbb{G}=\sum_{n=1}^{\infty} \mathbb{H}_{\nu_{n}, q_{n}}
$$

- In particular $L^{\infty}(\mathbb{G})=\bigotimes_{n=1}^{\infty} L^{\infty}\left(\mathbb{H}_{\nu_{n}, q_{n}}\right)$.

Example

If the sequence $\left(\left(\nu_{n}, q_{n}\right)\right)_{n \in \mathbb{N}}$ is constant then $L^{\infty}(\mathbb{G})$ is the injective factor of type $\mathrm{III}_{q^{2}}$ with separable predual.

- $T\left(L^{\infty}(\mathbb{G})\right)=\frac{\pi}{\log q \mid} \mathbb{Z}$,
- $S\left(L^{\infty}(\mathbb{G})\right)=\{0\} \cup|q|^{2 \mathbb{Z}}$.

EXAMPLE

If there are two subsequences $\left(q_{n_{1, p}}\right)_{p \in \mathbb{N}}$ and $\left(q_{n_{2, p}}\right)_{p \in \mathbb{N}}$ such that

$$
\left\{n_{1, p} \mid p \in \mathbb{N}\right\} \cap\left\{n_{2, p} \mid p \in \mathbb{N}\right\}=\varnothing
$$

and

$$
q_{n_{1, p}} \underset{p \rightarrow \infty}{ } r_{1}, \quad q_{n_{2, p}} \xrightarrow[p \rightarrow \infty]{ } r_{2}
$$

for some $\left.r_{1}, r_{2} \in\right]-1,1\left[\backslash\{0\}\right.$ such that $\frac{\pi}{\log \left|r_{1}\right|} \mathbb{Z} \cap \frac{\pi}{\log \left|r_{2}\right|} \mathbb{Z}=\{0\}$ then $L^{\infty}(\mathbb{G})$ is the injective factor of type III_{1} with separable predual.

- $T\left(L^{\infty}(\mathbb{G})\right)=\{0\}$,
- $S\left(L^{\infty}(\mathbb{G})\right)=\mathbb{R}_{\geqslant 0}$.

Theorem (J. Krajczok \& P.M.S.)
There exist a family $\left\{\mathbb{G}_{s}\right\}_{s \in] 0,1[}$ of compact quantum groups such that the von Neumann algebras $\left\{L^{\infty}\left(\mathbb{G}_{s}\right)\right\}_{s \in] 0,1[}$ are pairwise non-isomorphic factors of type III_{0}.

- $T\left(L^{\infty}\left(\mathbb{G}_{s}\right)\right) \supset \mathbb{Q}$,
- defining

$$
\left.t_{s}=\sum_{p=1}^{\infty} \frac{\left\lfloor p^{1-s}\right\rfloor}{p!}, \quad s \in\right] 0,1[
$$

we have

$$
\left(t_{s^{\prime}} \in T\left(L^{\infty}\left(\mathbb{G}_{s}\right)\right)\right) \Longleftrightarrow\left(s^{\prime}>s\right)
$$

d For each $\lambda \in] 0,1]$ there exists uncountably many pairwise non-isomorphic compact quantum groups with $L^{\infty}(\mathbb{G})$ the injective factor of type III_{λ}.

- These compact quantum groups are constructed as bicrossed products $\Gamma \bowtie \underset{n=1}{\times} \mathbb{H}_{\nu_{n}, q_{n}}$ with Γ a subgroup of \mathbb{R} (taken with discrete topology) acting by the scaling automorphisms.
- We distinguish between them using the following invariants:
- $T^{\tau}(\mathbb{G})=\left\{t \in \mathbb{R} \mid \tau_{t}^{\mathbb{G}}=\mathrm{id}\right\}$,
- $T_{\operatorname{In}}^{\tau}(\mathbb{G})=\left\{t \in \mathbb{R} \mid \tau_{t}^{\mathbb{G}} \in \operatorname{Inn}\left(L^{\infty}(\mathbb{G})\right)\right\}$,

Thank you for your attention

