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COMPACT QUANTUM GROUPS DEFINITION

THE BASICS

DEFINITION

A compact quantum group G is described by

o a von Neumann algebra L*(G),

0 a unital *-homomorphism A: L*(G) — L*(G) ® L*(G)
(continuous in the o-weak topology) such that

0 (A®id)o A = (Id®A) oA,

o there exists a faithful state h on L*(G) such that

¥xeL®G) (h®id)A(x) = h(x)1 = ([d® H)A(x). ()

" The condition (¢) determines h uniquely. We call this state
the Haar measure of G.
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THE STRUCTURE OF L®(G)  REPRESENTATIONS

DEFINITION

Let G be a compact quantum group. A finite-dimensional
unitary representation of G is a unitary U € B(H) ® L*(G) (with
H a finite-dimensional Hilbert space) such that

(id®A)(U) = U2Us,

where
o Ujp = U®1 e B(H)® L*(G) ® L*(G),
0 Uz = (id ®1lip)(U;2) € B(H) ® L*(G) ® L*(G).

@ We say that a representation U € B(H) ® L®(G) is
irreducible if (T® 1)U = U(T®1) implies T = Aly.

~ Representations U € B(H) ® L*(G) and V € B(K) ® L*(G) are
equivalent if there is a unitary S € B(H,K) such that
(S®1)U=V(S®1).
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THE STRUCTURE OF L®(G)  REPRESENTATIONS

MATRIX ELEMENTS OF IRREPS

o Let U € B(H) ® L*(G) be a representation. Then any
w € B(H)* defines (w ®id)(U) € L*(G) which is called a
matrix element or a coefficient of U.

o Typically we take w(-) = (£ -| n) for some vectors &, 7 € H.

o Choosing an orthonormal basis {¢;,...,&,} of H yields
Uiyj = (wi,j ®1d)(U) where Wi, j = <fl| | §J>

d From now on we denote by Irr(G) the set of equivalence
classes of irreps of G. For each a € Irr(G) we fix U® € a.
Then any orthonormal basis £7,...,&,  of the carrier Hilbert
space H* of U defines the matrix elements Up;.

THEOREM
span{Up; | a € rr(G), i,j € {1,...,n,}} is o-weakly dense in LOO(G).J
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THE STRUCTURE OF L® (G) P-OPERATORS

THE p-OPERATORS

o For each a € Irr(G) let V* = (j®id)(U**) € B(H**) ® L*(G)
(j: B(HY) — B(H**) maps T to the operator (| — {T*1|).

o Next we let p, = const - j((id ® h)(V**V*)) with the constant
chosen so that Tr(p,) = Tr(p; ).

o Note that p, is positive.

L From now on for each a e Irr(G) we fix an orthonormal
basis of H* in which p,, is diagonal:

Pa,1
Pa =
Pa,na
and Pa,1 Z e = Pa,ng -

6kip;_}]’61, J
Tr(pa)

o We have h(Ufél*Uf.) = 6o
independent.

, so {Up;} are linearly
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THE STRUCTURE OF L®(G)  MODULAR AND SCALING GROUPS

THE MODULAR GROUP AND THE SCALING GROUP

THEOREM

There exist two o-weakly continuous one-parameter groups o™

and 7€ of automorphisms of L*(G) such that
TF(US) = pa lU,Jp;,lJt
UP(US) = paan pa,J

Jorallaelrr(G), i,je{1,...,n,} and t e R.

@ Clearly the two groups commute.
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WHAT IF L% (G) =~ B(£%)?  FACTOR OF TYPE I

WHAT IF?

Suppose that there is a compact quantum group G such that
L*(G) = B(H), where H is a Hilbert space such that dimH > 1.

o If H were finite-dimensional then B(H) would be simple, but
a finite dimensional L*(G) admits a character, so this is
impossible.

o The case dimH > X is ruled out by the fact that there are
no faithful normal states on B(H) for non-separable H.

o Thus we are left with H =~ /2.

o We will show that this leads to a contradiction.
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WHAT IF L% (G) =~ B(£%)?  FACTOR OF TYPE I

L Step 1.
o Suppose G is a compact quantum group with L*(G) = B(H).
o The state h cannot be a trace because there are no traces
on B(H).
o It is known that in this case (h not a trace) there exists
a € Irr(G) with

(pa,la"'ypa,na) # (1, s 1)

o Let us assume that the set {p,1,...,Pq,n,} is invariant
under taking inverses.
If this doesn’t hold we can show that the compact quantum
group G x G has g € Irr(G x G) such that pg is non-trivial

and {pg.1,...,Pp,n,} = {PE}D---,PE}%}
Still L*(G x G) = L*(G)® L*(G) ~ B(H)® B(H) = B(H).
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WHAT IF L% (G) =~ B(£%)?  FACTOR OF TYPE I

L Step 2.
o Let 7: L?(G) — B(H) be the assumed isomorphism.
o The state h must be of the form

h(x) = Tr(An(x)), x e L*(G)

for some positive trace-class operator A on H with
eigenvalues q; > g > --- > 0.

o For each n let H(A = gn) be the corresponding eigenspace,

so that
o0
(—B (A = qn).

Moreover, we have dimH(A = gn) < +oo for all n.
o We have

m(of(x)) = A'r(x)A™",  xeL”(G), teR.
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WHAT IF L% (G) =~ B(£%)?  FACTOR OF TYPE I

L Step 3.
o There is a strictly positive self-adjoint operator B on H such
that . .
m(rf(x)) = B'n(x)B™,  xeL”®(G), teR
(this is a consequence of Stone’s theorem).

o The fact that the groups (Ull)teR and (TEG )ter cOmmute
implies that A and B strongly commute.

o Hence for any n the operator B restricts to a positive
operator on the finite-dimensional Hilbert space H(A = qn).

o Let pun1 > -+ > pun,p, be the complete list of eigenvalues of
this restriction.

o We have
o Pn
= @@ (A =qn) "H(B = pnp).
n=1 p=
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WHAT IF L% (G) =~ B(£%)?  FACTOR OF TYPE I

L Step 4.
o Claim: 7(Uyg ;) maps H(A = gn) into H(A = p, kPa,1Gn).
A Indeed: take £ € H(A = qn). Then

Al'r(UR )€ = Aln(Ug ) )ATAYE = (o (Ug))) gt

= (0 kU108 1) G = (PaicPa,1Gn) m(UR ) E.

o Claim: (U ,) maps H(B = pnp) into H(B = pmkp;llun’p).
4 Indeed: take n € H(B = pinp). Then
B'n(Ugy)n = B'n(Ug )BT By = m (1 (Ug 1)) ttn 11
= ( wUiip,, 1)Nn o= (pmkp;,llﬂmp)ltﬁ(U&)77-
o Let ¢ be a non-zero element of H(A = q1) " H(B = p1,p,).
We will show that n(U;)( =0 forall ke {1,...,n.}.
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WHAT IF L% (G) =~ B(£%)?  FACTOR OF TYPE I

L Step 4. (continued)
o By the previous claims we have

m(Ug1)¢ € H(A = paikPa,1q1) N H(B = 04 kP, 1101,5,)-

A1 p, jc = Pa,1 then pg kpa,1G1 = 02 1q1 > q1 = |A], so
H(A = po.iPa,1q1) = {0} and consequently «(Ug ;)¢ = O.

A If p, i < po,1 then first of all
pa,kpa,lql = (miin{pa,i})pa,lql = p;ll Pa,191 = q1
(invariance of {p, 1,. .., Pa,n,} under taking inverses!). Thus

H(A = po,iPa,1q1) = H(A=q1) or H(A = pqrpa,191) = {0}

Clearly, if H(A = p, kPa,191) = {0} then 7(UZ,)¢ = 0.
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WHAT IF L% (G) =~ B(£%)?  FACTOR OF TYPE I

L Step 4. (continued further)
o We have 7(Ug )¢ € H(A = pokPa1q1) N H(B = paicp, ) 1i1.p,)
and H(A = p, kPa,1q1) = H(A = q1) or H(A = p, kpa,1q1) = {0}.
© What happens if H(A = p, 1P, 191) = H(A = q1)?

-1

o1+ SO

« In this case p, j must be p
1 2 .
Pa,kPq 1H1,P; = Py 1M1,p, < fi1,p, = Min SP(B|H(A:q1))-
Consequently H(B = p, xp, u1.p,) = {0} and

m(Ug1)¢ e HA = q1) n H(B = papy  1i1,p,) = {O}.

In particular 7(Ug )¢ = 0.
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WHAT IF L% (G) =~ B(£%)?  FACTOR OF TYPE I

L Step 5.
o We have shown that there is a non-zero ¢ € H with

T(UEDC  k=1,...,n..

Ula,l Uﬁna
o But U* = oot is unitary matrix, so
Uga,l U”laa»na
Mo
0#¢= ), m(Ug) n(Ug1)¢ = 0.
k=1

o This contradiction shows that the existence of G such that
L*(G) = B(H) is impossible.
40
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WHAT IF L% (G) =~ B(£%)?  SIMILAR RESULTS

REMARKS

@ The proof can be tweaked to obtain

THEOREM (J. KrRAJCZOK & P.M.S.)

There does not exist a compact quantum group G such that
L*(G) ~ N@® B(H) with N an arbitrary von Neumann algebra or
the zero vector space and H of infinite dimension.
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WHAT IF L% (G) =~ B(£%)?  SIMILAR RESULTS

REMARKS

@ Similar techniques yield the following

THEOREM (A. CHIRVASITU, J. KRAJCZOK & P.M.S.)

Let G be a compact quantum group such that the C*-algebra C(G)
fits into the exact sequence

0 @ K(Hy) C(G) C(X) 0
i=1

L

with X a compact space. The G is finite (dim C(G) < +0).

@ It follows that the Podles spheres and the quantum disk do
not admit a structure of a compact quantum group.
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OTHER INJECTIVE FACTORS TypE II

THEOREM (J. KRAJCZOK & M. WASILEWSKI)
Let ge |—1,1[\{0} and v € R\{0O} and consider the action o of Q
with discrete topology on SU4(2) given by

aZ(x) = 1o P (x),  xeL®(SU4Q2)), reQ.

Let H, 4 be the corresponding bicrossed product:
H, q = Q > SUg(2).

Then
@ H, 4 is a compact quantum group,
@ H, 4 is coamenable and hence L*(H,, 4) is injective,
@ if vlog|q| ¢ 7Q then L*(H, 4) is the injective factor of type I,

@ the spectrum of the modular operator for the Haar measure
h, 4 of H, 4 is {0} U ¢*Z.
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OTHER INJECTIVE FACTORS TyPpE III

» Let ((vn, an)) ey P€ @ sequence of parameters as described

above (v log|qn| ¢ 7Q for all n) and consider the compact
quantum group

e ¢]
o In particular L*(G) = & L*(H,, q.)-

n=1

EXAMPLE

If the sequence ((vn,qn)),y iS constant then L*(G) is the
injective factor of type Il » with separable predual.

© T(L*(G)) = gz 2:
o S(L*(G)) = {0} u |g|*Z.
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OTHER INJECTIVE FACTORS TyPpE III

EXAMPLE
If there are two subsequences (gn, p)peN and (gn,, p)peN such that

{rip|peN}n{nyp|peN} =g

and

qnl P ps > T, anp p_)w" D)

for some ry,rp € -1, 1[\{0} such that o7 n e Z = {0} then
L*(G) is the injective factor of type III; with separable predual.
o T(L*(G)) = {0},
0 S(L*(G)) = Rxo.
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OTHER INJECTIVE FACTORS TyPpE III

THEOREM (J. KrRAaJCZOK & P.M.S.)

There exist a family {Gs}scjo,1] of compact quantum groups such
that the von Neumann algebras {L*(Gs)} are pairwise

non-isomorphic factors of type Ill.

se|0,1]

o T(L*(Gs)) 2 Q.
o defining

we have
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OTHER INJECTIVE FACTORS TyPpE III

d For each ) € |0, 1] there exists uncountably many pairwise
non-isomorphic compact quantum groups with L*(G) the
injective factor of type III,.

o These compact quantum groups are constructed as
es}
bicrossed products I' =« X H,, 4, with I" a subgroup of R

n=1
(taken with discrete topology) acting by the scaling
automorphisms.

o We distinguish between them using the following
invariants:

o T7(G) = {teR|7f =id},
o T7.(G) = {te R|7f € Inn(L*(G))},
o TT(G) = {te R|7¥ e Inn(L*(G))}.

Inn
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OTHER INJECTIVE FACTORS TyPpE III

Thank you for your attention
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