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COMPACT QUANTUM GROUPS

Definition

G =
(
C(G),∆

)

• C(G) — unital C∗-algebra

• ∆: C(G) → C(G) ⊗ C(G)

C(G)

∆

∆
C(G) ⊗ C(G)

∆⊗id

C(G) ⊗ C(G)
id⊗∆

C(G) ⊗ C(G) ⊗ C(G)

• ∆
(
C(G)

)(
1⊗C(G)

)
= C(G)⊗C(G)

•
(
C(G)⊗1

)
∆

(
C(G)

)
= C(G)⊗C(G)

Examples

• G — compact group,

• C(G) := C(G)
• ∆(f )(x , y) = f (xy)

• Γ – discrete group

• C(G) := C∗(Γ)
• ∆(γ) = γ ⊗ γ

or

• C(G) := C∗

r (Γ)
• ∆(γ) = γ ⊗ γ
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REPRESENTATIONS & HOPF ALGEBRA

Let G be a compact quantum group. A representation of

G is a unitary matrix

u =




u1,1 · · · u1,n

...
. . .

...

un,1 · · · un,n


 ∈ Mn

(
C(G)

)

such that ∆(ui,j) =
n∑

k=1

ui,k ⊗ uk,j.

• The elements {ui,j} are the matrix elements of u.

• u is irreducible if it does not commute with any

nontrivial (scalar) projection.

• The span Pol(G) of matrix elements of all irreducible

representations of G is a Hopf algebra dense in C(G).
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FROM COMPACT TO DISCRETE

• Irr(G) — set of equivalence classes of irreps of G.

• Chose unitary representative uα for each α ∈ Irr(G).

• Then uα ∈ Mnα

(
Pol(G)

)
⊂ Mnα

(
C(G)

)
.

• Define

c0(Ĝ) =
⊕

α∈Irr(G)

Mnα
(C)

and

w =
⊕

α∈Irr(G)

uα ∈ M
(
c0(Ĝ) ⊗ C(G)

)
.

• There exists a unique comultiplication ∆̂ on c0(Ĝ)
such that

(∆̂ ⊗ id)w = w23w13.

• Ĝ =
(
c0(Ĝ), ∆̂

)
is a l.c.q.g. called the dual of G.

• Ĝ is a discrete quantum group.
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OTHER COMPLETIONS OF Pol(G)

• maximal (universal) C∗-norm

 the completion: C(Gmax)

• minimal (reduced) C∗-norm

 the completion: C(Gmin)

• ‖a‖∼ = max
{
‖a‖,

∣∣ǫ(a)
∣∣}

 the completion: C(G̃)

Example: Pol(G) = C[Γ]

 C(Gmax) = C∗
full(Γ)

 C(Gmin) = C∗
r (Γ)

 C(G̃) = ??

DEFINITION

A C∗-norm on Pol(G) is a quantum group norm if

∆: Pol(G) −→ Pol(G) ⊗ Pol(G)

extends to completions.

FACT

All of the above C∗-norms are quantum group norms.
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EXOTIC COMPLETIONS

• We are interested in quantum group norms
quantum group norms on Pol(G) such that if C(G)
is the completion we have

• C(Gmin) 6= C(G),
• C(G) 6= C(Gmax),

• C(G) 6= C(G̃) 6= C(Gmax)

(in the sense that the canonical epimorphisms are

not isomorphisms).

• Another interesting possibility is

• C(G) 6= C(G̃) = C(Gmax).

• We call such norms exotic quantum group norms.

• Their existence of exotic norms is interesting for the

theory of quantum group actions.
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COREPRESENTATIONS OF Ĝ

DEFINITION

A corepresentation of Ĝ is a unitary V of the form

V = (id ⊗ π)w ∈ M
(
c0(Ĝ) ⊗ K (H )

)
,

where π is a representation of C(Gmax) on the Hilbert

space H .

• Recall: w =
⊕

α∈Irr(G)

uα ∈ M
(
c0(Ĝ) ⊗ C(Gmax)

)
.

• We have (∆̂ ⊗ id)V = V23V13.

• There is a notion of tensor product: V ⊤ U = V12U13.

• Contragredient corepresentation: V c = V⊤⊗bR

(R̂ is the unitary antipode of Ĝ and ⊤ is the transposition).
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DIGRESSION ON L2(G)

• G has Haar measure — certain state h on C(G),

• L2(G) is the GNS space obtained from h,

• L2(G) has basis

{
uα

i,j α ∈ Irr(G), i, j = 1, . . . , nα

}
,

• there are interesting Peter-Weyl-Woronowicz

orthogonality relations,

• we write L2(G)α for the subspace spanned by

{
uα

i,j i, j = 1, . . . , nα

}
,

• c0(Ĝ) =
⊕

α∈Irr(G)

Mnα
(C) acts naturally on

L2(G) =
⊕

α∈Irr(G)

L2(G)α.
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PROPERTY (T)

DEFINITION (P. FIMA, 2008)

• A corepresentation V ∈ M
(
c0(Ĝ) ⊗ K (H )

)
of Ĝ has

almost invariant vectors if for any finite subset

E ⊂ Irr(G) and any δ > 0 there exists ξ ∈ H such that

∥∥Vα(η ⊗ ξ) − η ⊗ ξ
∥∥ < δ‖η‖‖ξ‖

for all α ∈ E and all η ∈ L2(G)α.

• Ĝ has property (T) if every corepresentation V with

almost invariant vectors has a non-zero invariant

vector i.e. a non-zero ξ ∈ H such that

V (η ⊗ ξ) = η ⊗ ξ

for all η ∈ L2(G).
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OTHER CHARACTERIZATIONS

THEOREM (DAVID KYED & P.M.S.)

The following are equivalent:

• Ĝ has property (T),
• the counit ǫ is an isolated point of Spec

(
C(Gmax)

)
,

• all finite dimensional representations are isolated

points of Spec
(
C(Gmax)

)
,

• the C∗-algebra C(Gmax) has property (T) of Bekka,

• there exists a unique minimal projection p in the center

of C(Gmax) with ǫ(p) = 1,

• there exists a minimal projection p ∈ C(Gmax) with

ǫ(p) = 1,

• Ĝ has property (T) as defined by Petrescu & Joita

(1992),

• Ĝ has property (T) as defined by Bédos, Conti &

Tuset (2005).
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FIRST EXOTIC EXAMPLES

THEOREM

Take a non-coamenable G.* Then

• C(Gmin) 6= C(G̃min),

• if C(G̃min) = C(Gmax) then Ĝ has property (T).

This provides many examples such that

Gmin 6= G 6= Gmax

(take G = G̃min with G without property (T)).

*i.e. C(Gmin) 6= C(Gmax)
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DIGRESSION ON COREPRESENTATIONS

THEOREM (DAVID KYED & P.M.S.)

Let V and U be corepresentations of Ĝ.

• If there is a finite dimensional W such that W ≤ V and

W ≤ U c then the trivial representation is contained in

V ⊤ U.

• If Ĝ is unimodular* and V ⊤ U contains the trivial

representation then there exists a finite dimensional

W such that W ≤ V and W ≤ U c.

FACT

Any discrete quantum group with property (T) is

unimodular.

*the Haar measure on G is a trace
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SPECIAL REPRESENTATION

• Let Π be the representation of Gmax which is the

direct sum of all infinite-dimensional irreducible

representations.

THEOREM

If Ĝ has property (T) then the C∗-norm on Pol(G) defined

by Π is a quantum group norm.

• Denote the resulting quantum group by GΠ.
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MORE EXOTIC EXAMPLES

• Take Ĝ an infinite property (T) discrete quantum

group.

• GΠ does not admit a continuous counit, so

GΠ 6= G̃Π.

• It could happen that Gmin = GΠ, but in most cases

Gmin 6= GΠ.

• there are examples when G̃Π = Gmax, but in most

cases

G̃Π 6= Gmax.
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SUMMARY

• G — coamenable

Gmin = G = G̃ = Gmax.

• G — non-coamenable, Ĝ not Kazhdan

Gmin = G 6= G̃ 6= Gmax.

• Ĝ — Kazhdan, minimally almost periodic

Gmin 6= G 6= G̃ = Gmax.

• Ĝ — Kazhdan, not minimally almost periodic

Gmin 6= G 6= G̃ 6= Gmax.


	Compact quantum groups
	Discrete quantum groups
	Exotic completions
	Property (T)
	Constructions

