On the Heisenberg double

S.L. Woronowicz Piotr M. Soltan

Department of Mathematical Methods in Physics Faculty of Physics, Warsaw University

December 12, 2007

Outline of talk

- Quantum groups from multiplicative unitaries
- 2 Heisenberg relations
- 3 The Heisenberg double
- 4 The case of quantum "az + b" group

Multiplicative unitaries

A unitary $W \in \mathsf{B}(\mathcal{H} \otimes \mathcal{H})$ is multiplicative if

on $\mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H}$.

Modular multiplicative unitaries

A unitary $W \in \mathsf{B}(\mathcal{H} \otimes \mathcal{H})$ is a modular multiplicative unitary if

- W is multiplicative $(W_{23}W_{12} = W_{12}W_{13}W_{23})$
- ullet there exist positive, selfadjoint Q and \widehat{Q} on ${\mathcal H}$ such that

$$W(\widehat{Q}\otimes Q)W^*=\widehat{Q}\otimes Q$$

we have

$$(x \otimes y \mid W(z \otimes u)) = (\overline{z} \otimes Qy \mid \widetilde{W}(\overline{x} \otimes Q^{-1}u))$$

for a certain unitary $\widetilde{W} \in \mathsf{B} \big(\overline{\mathcal{H}} \otimes \mathcal{H} \big)$

From I.c.q.g. to multiplicative unitaries

- Take a locally compact quantum group $(A, \Delta, \varphi, \psi)$
- The right regular representation is the extension of

$$A \otimes A \ni (a \otimes b) \longmapsto \Delta(a)(\mathbb{1} \otimes b) \in A \otimes A$$

to a unitary operator W on $\mathcal{H}_{\psi}\otimes\mathcal{H}_{\psi}\supset A\otimes A$

- ullet This is a modular multiplicative unitary (with $\widehat{Q}=Q$)
- $W \in \mathsf{B}(\mathcal{H}_{\psi} \otimes \mathcal{H}_{\psi})$ defines (A, Δ)

From multiplicative unitaries to quantum groups

- Take modular m.u. $W \in \mathsf{B}(\mathcal{H} \otimes \mathcal{H})$
- Let $A = \{(\omega \otimes \mathrm{id})(W) | \omega \in \mathsf{B}(\mathcal{H})_*\}^{\mathsf{norm\ closure}} \subset \mathsf{B}(\mathcal{H})$
- A is a C^* -algebra
- For $a \in A$ we have $W(a \otimes 1)W^* \in M(A \otimes A)$ and

$$A \ni a \longmapsto W(a \otimes 1)W^*$$

defines a comultiplication $\Delta \in Mor(A, A \otimes A)$.

Quantum group from W

- We have $(\Delta \otimes id) \circ \Delta = (id \otimes \Delta) \circ \Delta$
- We have

$$\operatorname{span} \left\{ \Delta(a)(\mathbb{1} \otimes b) \,\middle|\, a, b \in A \right\} \subset_{\operatorname{dense}} A \otimes A$$
 $\operatorname{span} \left\{ (a \otimes \mathbb{1})\Delta(b) \,\middle|\, a, b \in A \right\} \subset_{\operatorname{dense}} A \otimes A$

There is a closed antimultiplicative map

$$\kappa: (\omega \otimes \mathrm{id})(W) \longmapsto (\omega \otimes \mathrm{id})(W^*)$$

• Moreover $\kappa = R \circ \tau_{\frac{i}{2}}$ where R is an antiautomorphism of A and $(\tau_t)_{t \in \mathbb{R}}$ is a one parameter group of automorphisms of A: $\tau_t(a) = Q^{2it}aQ^{-2it}$

Further structure: reduced dual I

• Let $\widehat{W} = \Sigma W^* \Sigma$, i.e.

- \bullet \widehat{W} is a modular multiplicative unitary.
- ullet Thus we get another quatum group $(\widehat{A},\widehat{\Delta})$

Further structure: reduced dual II

We have

- $\widehat{A} = \{(\mathrm{id} \otimes \omega)(W) | \omega \in \mathsf{B}(\mathcal{H})_*\}^{\mathsf{norm\ closure}} \subset \mathsf{B}(\mathcal{H})$
- $W \in M(\widehat{A} \otimes A)$
- Reduced dual of $(\widehat{A}, \widehat{\Delta})$ is (A, Δ)
- We have $\widehat{\kappa}$, \widehat{R} , $(\widehat{\tau}_t)_{t\in\mathbb{R}}$: $\widehat{\tau}(\widehat{a}) = \widehat{Q}^{2it}\widehat{a}\widehat{Q}^{-2it}$

The problem

Fact

There can be different modular multiplicative unitary operators $W \in B(\mathcal{H} \otimes \mathcal{H})$ giving rise to the same (A, Δ) .

Theorem

- **1** The maps κ , R and the group $(\tau_t)_{t\in\mathbb{R}}$ are independent of the choice of W and \mathcal{H} .
- ② The reduced dual $(\widehat{A}, \widehat{\Delta})$ (with all its structure) is independent of the choice of W and \mathcal{H} .
- **3** The position of W in $M(\widehat{A} \otimes A)$ is independent of the choice of W and \mathcal{H} (thus we get $\mathbb{V} \in M(\widehat{A} \otimes A)$).
- The ultraweak topology on A from embedding into $B(\mathcal{H})$ is independent of the choice of W and \mathcal{H} .

The blessing

Theorem

If $W \in \mathsf{B}(\mathcal{H} \otimes \mathcal{H})$ is a m.m.u. giving rise to (A, Δ) then the weight

$$\psi_W: A_+ \ni a \longmapsto \operatorname{Tr}(\widehat{Q}a\widehat{Q}) \in [0, \infty]$$

is right invariant. It is the Haar measure of (A, Δ) if it is locally finite.

Thus

we can look for the Haar measure of (A, Δ) by examining ψ_W for all possible W's.

Heisenberg representations

- We fix (A, Δ) and thus $(\widehat{A}, \widehat{\Delta})$ with $\mathbb{V} \in \mathsf{M}(\widehat{A} \otimes A)$.
- A pair of representations $(\widehat{\pi}, \pi)$ of \widehat{A} and A on a Hilbert space H is called a Heisenberg pair if

$$\mathbb{V}_{\widehat{\pi}3}\mathbb{V}_{1\pi}\mathbb{V}_{\widehat{\pi}3}^* = \mathbb{V}_{1\pi}\mathbb{V}_{13}$$

in
$$M(\widehat{A} \otimes \mathcal{K}(H) \otimes A)$$

- (where $\mathbb{V}_{\widehat{\pi}3} = (\mathrm{id} \otimes \widehat{\pi} \otimes \mathrm{id}) \mathbb{V}_{23}$, $\mathbb{V}_{1\pi} = (\mathrm{id} \otimes \pi \otimes \mathrm{id}) \mathbb{V}_{12}$)
- We get such a pair from every m.u. giving rise to (A, Δ)

C*-algebra of a Heisenberg pair

ullet With every Heisenberg pair $(\widehat{\pi},\pi)$ we associate the subspace

$$D_{\widehat{\pi},\pi} = \overline{\widehat{\pi}(\widehat{A})\pi(A)} \subset \mathsf{B}(H).$$

- \bullet This is a C*-algebra:
 - $V_{1\pi}^* V_{\widehat{\pi}3} = V_{13} V_{\widehat{\pi}3} V_{1\pi}^*$
 - $A = \{(\omega \otimes \mathrm{id})(\mathbb{V}) | \omega \in \widehat{A}_*\}^{\mathsf{norm\ closure}}$
 - $\widehat{A} = \{(\mathrm{id} \otimes \omega)(\mathbb{V}^*) | \omega \in A_*\}^{\mathsf{norm\ closure}}$
- $\pi \in \mathsf{Mor}(A, D_{\widehat{\pi}, \pi})$, $\widehat{\pi} \in \mathsf{Mor}(\widehat{A}, D_{\widehat{\pi}, \pi})$
- $D_{\widehat{\pi},\pi}$ can be also seen as closure of image of $\widehat{A} \otimes_{\mathrm{alg}} A$ under the map

$$\sum a_i \otimes b_i \longmapsto \sum \widehat{\pi}(a_i)\pi(b_i)$$

The universal algebra for Heisenberg relations

• For $x \in \widehat{A} \otimes_{\mathrm{alg}} A$ let

$$||x|| = \sup_{(\widehat{\pi},\pi)} ||(\widehat{\pi} \otimes \pi)(x)||.$$

- There is a Heisenberg pair $(\widehat{\rho}, \rho)$ realizing the supremum
- We define the Heisenberg double D of (A, Δ)

$$D := D_{\widehat{\rho},\rho}$$

• We have $\rho \in \operatorname{Mor}(A, D)$, $\widehat{\rho} \in \operatorname{Mor}(\widehat{A}, D)$ and we can treat A and \widehat{A} as subalgebras of $\operatorname{M}(D)$, $\overline{\widehat{A}A} = D$

Properties of D I

Theorem

For any C*-algebra C and $\pi \in \text{Mor}(A, C)$, $\widehat{\pi} \in \text{Mor}(\widehat{A}, C)$ such that

$$\mathbb{V}_{\widehat{\pi}3}\mathbb{V}_{1\pi}\mathbb{V}_{\widehat{\pi}3}^* = \mathbb{V}_{1\pi}\mathbb{V}_{13}$$

then there exists a unique $\Psi \in Mor(D, C)$ such that

Properties of D II

Theorem

1 There is a unique $\widehat{\Phi} \in \mathsf{Mor}(D, \widehat{A} \otimes D)$ such that

•
$$\widehat{\Phi}(a) = \mathbb{1} \otimes a$$
 for $a \in A \subset M(D)$

•
$$\widehat{\Phi}(\widehat{a}) = \widehat{\Delta}(\widehat{a})$$
 for $\widehat{a} \in \widehat{A} \subset M(D)$

2 There is a unique $\Phi \in Mor(D, A \otimes D)$ such that

•
$$\Phi(a) = \Delta(a)$$
 for $a \in A$

•
$$\Phi(\widehat{a}) = \mathbb{1} \otimes \widehat{a}$$
 for $\widehat{a} \in \widehat{A}$

3 $\widehat{\Phi}$ and Φ are continuous left actions

•
$$(id \otimes \widehat{\Phi}) \circ \widehat{\Phi} = (\widehat{\Delta} \otimes id) \circ \widehat{\Phi}, \quad (id \otimes \Phi) \circ \Phi = (\Delta \otimes id) \circ \Phi$$

•
$$\widehat{\Phi}(D)(\widehat{A} \otimes \mathbb{1}) = \widehat{A} \otimes D$$
, $\overline{\Phi}(D)(A \otimes \mathbb{1}) = A \otimes D$

Properties of D III

Sketch of proof.

To define $\widehat{\Phi}$ we use universal property of D for

$$\pi(a) = 1 \otimes a$$

$$\widehat{\pi}(\widehat{a}) = \widehat{\Delta}(\widehat{a})$$

Also
$$D = \overline{\widehat{A}A} = \overline{A\widehat{A}}$$
, so

$$\widehat{\Phi}(D)(\widehat{A} \otimes \mathbb{1}) = \widehat{\Phi}(A)\widehat{\Phi}(\widehat{A})(\widehat{A} \otimes \mathbb{1}) = (\mathbb{1} \otimes A)\widehat{\Delta}(\widehat{A})(\widehat{A} \otimes \mathbb{1})$$
$$= (\mathbb{1} \otimes A)(\widehat{A} \otimes \widehat{A}) = (\widehat{A} \otimes A\widehat{A}) = \widehat{A} \otimes D$$

up to closure.

Quantum "az + b" group I

- (A, Δ) generated by $a, a^{-1}, b \eta A$, $ab = q^2ba$, $ab^* = b^*a$ and
- spectral conditions on a and b:

Quantum "az + b" group II

- $\Delta(a) = a \otimes a$
- ullet There is a m.m.u. $W_{
 m s}\in {\sf B}({\sf K}\otimes{\sf K})$ giving rise to $({\sf A},\Delta)$ with

$$A'' = \widehat{A}''$$

$$W_{s} = F(ab^{-1} \otimes b)\chi(b^{-1} \otimes 1, 1 \otimes a)$$

- We know general form of all representations of (A, Δ) :
 - $V \in M(K(H) \otimes A)$, $(id \otimes \Delta)(V) = V_{12}V_{13}$
 - $\bullet \ \mathcal{V} = F(\widehat{b} \otimes b) \chi(\widehat{a} \otimes \mathbb{1}, \mathbb{1} \otimes a)$

(F and χ are certain special functions)

Multiplicative unitaries for (A, Δ)

$\mathsf{Theorem}$

Let $U \in B(H \otimes H)$ be a m.u. giving rise to the quantum "az + b" group (A, Δ) . Then

$$U = W_s V$$

where $V = F(\widehat{b} \otimes b) \chi(\widehat{a} \otimes 1, 1 \otimes a)$, where $(\widehat{a}, \widehat{b})$ commute with (a, b).

U can be also written as

$$U = F((a + \widehat{b})b^{-1} \otimes b)\chi(\widehat{a}b^{-1} \otimes \mathbb{1}, \mathbb{1} \otimes a)$$

This says that $(id \otimes \pi)\widehat{\Phi}$ is faithful $(\pi$ given by U).

