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Multiplicative unitaries

A unitary W ∈ B(H ⊗H) is multiplicative if

W ∗

W

W

=
W

W

on H⊗H⊗H.
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Modular multiplicative unitaries

A unitary W ∈ B(H ⊗H) is a modular multiplicative unitary if

W is multiplicative (W23W12 = W12W13W23)

there exist positive, selfadjoint Q and Q̂ on H such that

W
(
Q̂ ⊗ Q

)
W ∗ = Q̂ ⊗ Q

we have

(
x ⊗ y | W (z ⊗ u)

)
=

(
z ⊗ Qy | W̃ (x ⊗ Q−1u)

)

for a certain unitary W̃ ∈ B
(
H⊗H

)
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From l.c.q.g. to multiplicative unitaries

Take a locally compact quantum group (A,∆, ϕ, ψ)

The right regular representation is the extension of

A ⊗ A ∋ (a ⊗ b) 7−→ ∆(a)(1⊗ b) ∈ A ⊗ A

to a unitary operator W on Hψ ⊗Hψ ⊃ A ⊗ A

This is a modular multiplicative unitary (with Q̂ = Q)

W ∈ B(Hψ ⊗Hψ) defines (A,∆)
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From multiplicative unitaries to quantum groups

Take modular m.u. W ∈ B(H⊗H)

Let A =
{

(ω ⊗ id)(W ) ω ∈ B(H)∗
}norm closure

⊂ B(H)

A is a C∗-algebra

For a ∈ A we have W (a ⊗ 1)W ∗ ∈ M(A ⊗ A) and

A ∋ a 7−→ W (a ⊗ 1)W ∗

defines a comultiplication ∆ ∈ Mor(A,A ⊗ A).
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Quantum group from W

We have (∆ ⊗ id)◦∆ = (id ⊗ ∆)◦∆

We have

span
{

∆(a)(1⊗ b) a, b ∈ A
}
⊂dense A ⊗ A

span
{

(a ⊗ 1)∆(b) a, b ∈ A
}
⊂dense A ⊗ A

There is a closed antimultiplicative map

κ : (ω ⊗ id)(W ) 7−→ (ω ⊗ id)(W ∗)

Moreover κ = R◦τ i
2

where R is an antiautomorphism of A

and (τt)t∈R is a one parameter group of automorphisms of A:

τt(a) = Q2itaQ−2it
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Further structure: reduced dual I

Let Ŵ = ΣW ∗Σ, i.e.

Ŵ = W ∗

Ŵ is a modular multiplicative unitary.

Thus we get another quatum group
(
Â, ∆̂

)

S.L. Woronowicz, Piotr M. So ltan On the Heisenberg double



Quantum groups from multiplicative unitaries
Heisenberg relations

The Heisenberg double
The case of quantum “az + b” group

Further structure: reduced dual II

We have

Â =
{

(id ⊗ ω)(W ) ω ∈ B(H)∗
}norm closure

⊂ B(H)

W ∈ M
(
Â ⊗ A)

Reduced dual of
(
Â, ∆̂

)
is (A,∆)

We have κ̂, R̂ , (τ̂t)t∈R: τ̂(â) = Q̂2it âQ̂−2it
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The problem

Fact

There can be different modular multiplicative unitary operators
W ∈ B(H ⊗H) giving rise to the same (A,∆).

Theorem

1 The maps κ, R and the group (τt)t∈R are independent of the
choice of W and H.

2 The reduced dual
(
Â, ∆̂

)
(with all its structure) is

independent of the choice of W and H.

3 The position of W in M
(
Â ⊗ A

)
is independent of the choice

of W and H (thus we get V ∈ M
(
Â ⊗ A

)
).

4 The ultraweak topology on A from embedding into B(H) is
independent of the choice of W and H.
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The blessing

Theorem

If W ∈ B(H⊗H) is a m.m.u. giving rise to (A,∆) then the weight

ψW : A+ ∋ a 7−→ Tr
(
Q̂aQ̂

)
∈ [0,∞]

is right invariant. It is the Haar measure of (A,∆) if it is locally
finite.

Thus

we can look for the Haar measure of (A,∆) by examining ψW for
all possible W ’s.
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Heisenberg representations

We fix (A,∆) and thus
(
Â, ∆̂

)
with V ∈ M

(
Â ⊗ A

)
.

A pair of representations (π̂, π) of Â and A on a Hilbert space
H is called a Heisenberg pair ifVbπ3V1πV∗

bπ3 = V1πV13

in M
(
Â ⊗K(H) ⊗ A

)

(where Vbπ3 = (id ⊗ π̂ ⊗ id)V23, V1π = (id ⊗ π ⊗ id)V12)

We get such a pair from every m.u. giving rise to (A,∆)
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C∗-algebra of a Heisenberg pair

With every Heisenberg pair (π̂, π) we associate the subspace

Dbπ,π = π̂
(
Â

)
π(A) ⊂ B(H).

This is a C∗-algebra:V∗

1π
Vbπ3 = V13Vbπ3V∗

1π

A =
{

(ω ⊗ id)(V) ω ∈ Â∗

}norm closure

Â =
{

(id ⊗ ω)(V∗) ω ∈ A∗

}norm closure

π ∈ Mor(A,Dbπ,π), π̂ ∈ Mor
(
Â,Dbπ,π

)

Dbπ,π can be also seen as closure of image of Â ⊗alg A under
the map ∑

ai ⊗ bi 7−→
∑

π̂(ai)π(bi )
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The universal algebra for Heisenberg relations

For x ∈ Â ⊗alg A let

‖x‖ = sup
(bπ,π)

∥∥(π̂ ⊗ π)(x)
∥∥.

There is a Heisenberg pair (ρ̂, ρ) realizing the supremum

We define the Heisenberg double D of (A,∆)

D := Dbρ,ρ

We have ρ ∈ Mor(A,D), ρ̂ ∈ Mor
(
Â,D

)
and we can treat A

and Â as subalgebras of M(D), ÂA = D
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Properties of D I

Theorem

For any C∗-algebra C and π ∈ Mor(A,C ), π̂ ∈ Mor
(
Â,C ) such

that Vbπ3V1πV∗

bπ3 = V1πV13

then there exists a unique Ψ ∈ Mor(D,C ) such that

A
ρ π

D
Ψ

C

Â

bρ bπ
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Properties of D II

Theorem

1 There is a unique Φ̂ ∈ Mor
(
D, Â ⊗ D

)
such that

Φ̂(a) = 1⊗ a for a ∈ A ⊂ M(D)

Φ̂(â) = ∆̂(â) for â ∈ Â ⊂ M(D)

2 There is a unique Φ ∈ Mor(D,A ⊗ D) such that

Φ(a) = ∆(a) for a ∈ A

Φ(â) = 1⊗ â for â ∈ Â

3 Φ̂ and Φ are continuous left actions(
id ⊗ Φ̂

)
◦Φ̂ =

(
∆̂ ⊗ id

)
◦Φ̂, (id ⊗ Φ)◦Φ = (∆ ⊗ id)◦Φ

Φ̂(D)
(
Â ⊗ 1) = Â ⊗ D, Φ(D)

(
A ⊗ 1) = A ⊗ D
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Properties of D III

Sketch of proof.

To define Φ̂ we use universal property of D for

π(a) = 1⊗ a

π̂(â) = ∆̂(â)

Also D = ÂA = AÂ, so

Φ̂(D)
(
Â ⊗ 1) = Φ̂(A)Φ̂

(
Â
)(

Â ⊗ 1) = (1⊗ A)∆̂
(
Â

)(
Â ⊗ 1)

= (1⊗ A)
(
Â ⊗ Â

)
=

(
Â ⊗ AÂ

)
= Â ⊗ D

up to closure.
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Quantum “az + b” group I

(A,∆) generated by a, a−1, b η A, ab = q2ba, ab∗ = b∗a and

spectral conditions on a and b:

1 2 3 4−1−2−3−4−5

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbq
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Quantum “az + b” group II

∆(a) = a ⊗ a

∆(b) = a ⊗ b +̇ b ⊗ 1
There is a m.m.u. Ws ∈ B(K ⊗ K ) giving rise to (A,∆) with

A′′ = Â′′

Ws = F
(
ab−1 ⊗ b

)
χ
(
b−1 ⊗ 1,1⊗ a

)

We know general form of all representations of (A,∆):

V ∈ M
(
K(H) ⊗ A

)
, (id ⊗ ∆)(V) = V12V13

V = F
(
b̂ ⊗ b

)
χ
(
â ⊗ 1, 1⊗ a

)

(F and χ are certain special functions)
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Multiplicative unitaries for (A, ∆)

Theorem

Let U ∈ B(H ⊗ H) be a m.u. giving rise to the quantum “az + b”
group (A,∆). Then

U = WsV ,

where V = F
(
b̂ ⊗ b

)
χ
(
â ⊗ 1,1⊗ a

)
, where

(
â, b̂

)
commute with

(a, b).
U can be also written as

U = F
(
(a +̇ b̂)b−1 ⊗ b

)
χ
(
âb−1 ⊗ 1,1⊗ a

)

This says that (id ⊗ π)Φ̂ is faithful (π given by U).
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