On the characterization of quantum SO(3) groups

Piotr M. Sołtan

Department of Mathematical Methods in Physics Faculty of Physics, University of Warsaw

Operator algebraic aspects of quantum groups

K.U. Leuven, November 10, 2008

Outline of talk

① Quantum SO(3) groups

2 Universal quantum semigroup preserving Powers state

3 Universality of quantum SO(3) groups

4 Quantum semigroup actions on M_2

● *q* ∈]0,1]

•
$$C(S_qU(2)) - C^*$$
-algebra of functions on $S_qU(2)$

• α, γ — standard generators of $C(S_qU(2))$

Definition

 $C(S_qO(3))$ is the subalgebra of $C(S_qU(2))$ generated by matrix elements of the spin-1 representation:

$$\begin{bmatrix} \alpha^{*2} & -(q^2+1)\alpha^*\gamma & -q\gamma^2 \\ \gamma^*\alpha^* & \mathbb{1} - (q^2+1)\gamma^*\gamma & \alpha\gamma \\ -q\gamma^{*2} & -(q^2+1)\gamma^*\alpha & \alpha^2 \end{bmatrix}$$

 $\Delta_{\mathrm{S}_q\mathrm{O}(3)} = \Delta_{\mathrm{S}_q\mathrm{U}(2)} \big|_{\mathsf{C}(\mathrm{S}_q\mathrm{O}(3))}.$

- q ∈]0,1]
 C(S_qU(2)) C*-algebra of functions on S_qU(2)
- α, γ standard generators of $C(S_qU(2))$

Definition

 $C(S_qO(3))$ is the subalgebra of $C(S_qU(2))$ generated by matrix elements of the spin-1 representation:

$$\begin{bmatrix} \alpha^{*2} & -(q^2+1)\alpha^*\gamma & -q\gamma^2 \\ \gamma^*\alpha^* & \mathbb{1} - (q^2+1)\gamma^*\gamma & \alpha\gamma \\ -q\gamma^{*2} & -(q^2+1)\gamma^*\alpha & \alpha^2 \end{bmatrix}$$

 $\Delta_{\mathrm{S}_q\mathrm{O}(3)} = \Delta_{\mathrm{S}_q\mathrm{U}(2)}\big|_{\mathsf{C}(\mathrm{S}_q\mathrm{O}(3))}.$

- $q \in]0,1]$
- $C(S_qU(2)) C^*$ -algebra of functions on $S_qU(2)$
- α, γ standard generators of C(S_qU(2))

Definition

 $C(S_qO(3))$ is the subalgebra of $C(S_qU(2))$ generated by matrix elements of the spin-1 representation:

$$\begin{bmatrix} \alpha^{*2} & -(q^2+1)\alpha^*\gamma & -q\gamma^2 \\ \gamma^*\alpha^* & \mathbb{1} - (q^2+1)\gamma^*\gamma & \alpha\gamma \\ -q\gamma^{*2} & -(q^2+1)\gamma^*\alpha & \alpha^2 \end{bmatrix}$$

 $\Delta_{\mathrm{S}_q\mathrm{O}(3)} = \Delta_{\mathrm{S}_q\mathrm{U}(2)}\big|_{\mathsf{C}(\mathrm{S}_q\mathrm{O}(3))}.$

- 4 同 6 - 4 目 6 - 4 目

- $q \in]0,1]$
- $C(S_qU(2)) C^*$ -algebra of functions on $S_qU(2)$
- α, γ standard generators of C(S_qU(2))

Definition

 $C(S_qO(3))$ is the subalgebra of $C(S_qU(2))$ generated by matrix elements of the spin-1 representation:

$$\begin{bmatrix} \alpha^{*2} & -(q^2+1)\alpha^*\gamma & -q\gamma^2 \\ \gamma^*\alpha^* & \mathbb{1} - (q^2+1)\gamma^*\gamma & \alpha\gamma \\ -q\gamma^{*2} & -(q^2+1)\gamma^*\alpha & \alpha^2 \end{bmatrix}$$

 $\Delta_{\mathrm{S}_q\mathrm{O}(3)} = \Delta_{\mathrm{S}_q\mathrm{U}(2)}\big|_{\mathsf{C}(\mathrm{S}_q\mathrm{O}(3))}.$

Universal quantum semigroup preserving Powers state Universality of quantum SO(3) groups Quantum semigroup actions on M₂

Theorem (Podles)

 $C\bigl(\mathrm{S}_q\mathrm{O}(3)\bigr)$ is the universal $\mathrm{C}^*\text{-algebra generated}$ by A, C, G, K, L such that

$L^*L = (\mathbb{1}-K)(\mathbb{1}-q^{-2}K),$	$AK = q^2 KA,$
$LL^* = (\mathbb{1} - q^2 K)(\mathbb{1} - q^4 K),$	$CK = q^2 KC,$
$G^*G = GG^*,$	$LG = q^4 GL,$
$K^2 = G^*G,$	$LA = q^2 AL,$
$A^*A = K - K^2,$	$AG = q^2 GA,$
$AA^* = q^2 K - q^4 K^2,$	AC = CA,
$C^*C=K-K^2,$	$LG^* = q^4 G^* L,$
$CC^* = q^2 K - q^4 K^2,$	$A^2 = q^{-1}LG,$
$LK = q^4 KL,$	$A^*L=q^{-1}(\mathbb{1}{-}\mathcal{K})\mathcal{C},$
GK = KG,	$K^* = K.$

Universal quantum semigroup preserving Powers state Universality of quantum SO(3) groups Quantum semigroup actions on M_2

Theorem (Podles)

 $C\bigl(\mathrm{S}_q\mathrm{O}(3)\bigr)$ is the universal $\mathrm{C}^*\mbox{-algebra generated}$ by A, C, G, K, L such that

$L^*L = (\mathbb{1}-K)(\mathbb{1}-q^{-2}K),$	$AK = q^2 KA,$
$LL^* = (\mathbb{1} - q^2 K)(\mathbb{1} - q^4 K),$	$CK = q^2 KC$,
$G^*G = GG^*,$	$LG = q^4 GL,$
$K^2 = G^*G,$	$LA = q^2 AL,$
$A^*A = K - K^2,$	$AG = q^2 GA$,
$AA^* = q^2 K - q^4 K^2,$	AC = CA,
$C^*C=K-K^2,$	$LG^* = q^4 G^* L,$
$CC^* = q^2 K - q^4 K^2,$	$A^2 = q^{-1}LG,$
$LK = q^4 KL,$	$A^*L = q^{-1}(\mathbb{1}-K)C,$
GK = KG,	$K^* = K.$

Universal quantum semigroup preserving Powers state Universality of quantum SO(3) groups Quantum semigroup actions on M_2

Theorem (Podles)

 $C\bigl(\mathrm{S}_q\mathrm{O}(3)\bigr)$ is the universal $\mathrm{C}^*\mbox{-}algebra$ generated by A, C, G, K, L such that

$L^*L = (1-K)(1-q^{-2}K),$	$AK = q^2 KA,$
$LL^* = (\mathbb{1} - q^2 K)(\mathbb{1} - q^4 K),$	$CK = q^2 KC$,
$G^*G = GG^*,$	$LG = q^4 GL,$
$K^2 = G^*G,$	$LA = q^2 AL,$
$A^*A = K - K^2,$	$AG = q^2 GA$,
$AA^* = q^2 K - q^4 K^2,$	AC = CA,
$C^*C=K-K^2,$	$LG^* = q^4 G^* L,$
$CC^* = q^2 K - q^4 K^2,$	$A^2 = q^{-1}LG,$
$LK = q^4 KL,$	$A^*L = q^{-1}(\mathbb{1} - K)C,$
GK = KG,	$K^* = K.$

Universal quantum semigroup preserving Powers state Universality of quantum SO(3) groups Quantum semigroup actions on M₂

Theorem (Podles)

 $C\bigl(\mathrm{S}_q\mathrm{O}(3)\bigr)$ is the universal $\mathrm{C}^*\mbox{-}algebra$ generated by A, C, G, K, L such that

$L^*L = (\mathbb{1}-K)(\mathbb{1}-q^{-2}K),$	$AK = q^2 KA,$
$LL^* = (\mathbb{1} - q^2 K)(\mathbb{1} - q^4 K),$	$CK = q^2 KC$,
$G^*G = GG^*,$	$LG = q^4 GL$,
$K^2 = G^*G,$	$LA = q^2 AL,$
$A^*A = K - K^2,$	$AG = q^2 GA$,
$AA^* = q^2 K - q^4 K^2,$	AC = CA,
$C^*C=K-K^2,$	$LG^* = q^4 G^* L,$
$CC^* = q^2 K - q^4 K^2,$	$A^2 = q^{-1}LG,$
$LK = q^4 KL,$	$A^*L = q^{-1}(\mathbb{1} - K)C,$
GK = KG,	$K^* = K.$

Universal quantum semigroup preserving Powers state Universality of quantum SO(3) groups Quantum semigroup actions on M_2

Theorem (Podles)

 $C\bigl(\mathrm{S}_q\mathrm{O}(3)\bigr)$ is the universal $\mathrm{C}^*\mbox{-}algebra$ generated by A, C, G, K, L such that

$L^*L = (\mathbb{1}-K)(\mathbb{1}-q^{-2}K),$	$AK = q^2 KA,$
$LL^* = (\mathbb{1} - q^2 K)(\mathbb{1} - q^4 K),$	
$G^*G = GG^*,$	$LG = q^4 GL,$
$K^2 = G^*G,$	$LA = q^2 AL,$
$A^*A = K - K^2,$	$AG = q^2 GA$,
$AA^* = q^2 K - q^4 K^2,$	AC = CA,
$C^*C=K-K^2,$	$LG^* = q^4 G^* L,$
$CC^* = q^2 K - q^4 K^2,$	$A^2 = q^{-1}LG,$
$LK = q^4 KL,$	$A^*L = q^{-1}(\mathbb{1}-K)C,$
GK = KG,	$K^* = K.$

Universal quantum semigroup preserving Powers state Universality of quantum SO(3) groups Quantum semigroup actions on M_2

Lemma

Let \mathcal{H} be a Hilbert space and $A, C, K \in B(\mathcal{H})$ with $0 \le K \le 1$. Fix $q \in [0, 1[$. Assume

$$A^*A = C^*C = K - K^2,$$

$$AA^* = CC^* = q^2K - q^4K^2,$$

$$AK = q^2KA,$$

$$AC = CA.$$

Then

$$CK = q^2 KC$$

- The lemma is not true for q = 1.
- [A, C] = 0 is not necessary for most q, but there are exceptional values.

Lemma

Let \mathcal{H} be a Hilbert space and $A, C, K \in B(\mathcal{H})$ with $0 \le K \le 1$. Fix $q \in [0, 1[$. Assume

$$A^*A = C^*C = K - K^2,$$

$$AA^* = CC^* = q^2K - q^4K^2,$$

$$AK = q^2KA,$$

$$AC = CA.$$

Then

$$CK = q^2 KC$$

- The lemma is not true for q = 1.
- [A, C] = 0 is not necessary for most q, but there are exceptional values.

Lemma

Let \mathcal{H} be a Hilbert space and $A, C, K \in B(\mathcal{H})$ with $0 \le K \le 1$. Fix $q \in [0, 1[$. Assume

$$A^*A = C^*C = K - K^2,$$

$$AA^* = CC^* = q^2K - q^4K^2,$$

$$AK = q^2KA,$$

$$AC = CA.$$

Then

$$CK = q^2 KC$$

- The lemma is not true for q = 1.
- [A, C] = 0 is not necessary for most q, but there are exceptional values.

Lemma

Let \mathcal{H} be a Hilbert space and $A, C, K \in B(\mathcal{H})$ with $0 \le K \le 1$. Fix $q \in [0, 1[$. Assume

$$A^*A = C^*C = K - K^2,$$

$$AA^* = CC^* = q^2K - q^4K^2,$$

$$AK = q^2KA,$$

$$AC = CA.$$

Then

$$CK = q^2 KC$$

• The lemma is not true for q = 1.

• [A, C] = 0 is not necessary for most q, but there are exceptional values.

A (1) > A (2) > A

Lemma

Let \mathcal{H} be a Hilbert space and $A, C, K \in B(\mathcal{H})$ with $0 \le K \le 1$. Fix $q \in [0, 1[$. Assume

$$A^*A = C^*C = K - K^2,$$

$$AA^* = CC^* = q^2K - q^4K^2,$$

$$AK = q^2KA,$$

$$AC = CA.$$

Then

$$CK = q^2 KC$$

- The lemma is not true for q = 1.
- [A, C] = 0 is not necessary for most q, but there are exceptional values.

Let **A** be the universal C^* -algebra generated by β, γ, δ such that

$$\begin{aligned} q^{4}\delta^{*}\delta + \gamma^{*}\gamma + q^{4}\delta\delta^{*} + \beta\beta^{*} = \mathbb{1}, & \beta\gamma = -q^{4}\delta^{2}, \\ \beta^{*}\beta + \delta^{*}\delta + \gamma\gamma^{*} + \delta\delta^{*} = \mathbb{1}, & \gamma\beta = -\delta^{2}, \\ q^{4}\delta^{*}\delta + \gamma^{*}\gamma + q^{2}\beta^{*}\beta + q^{2}\delta^{*}\delta = q^{2}\mathbb{1}, & \beta\delta = q^{2}\delta\beta, \\ q^{4}\delta\delta^{*} + \beta\beta^{*} + q^{2}\gamma\gamma^{*} + q^{2}\delta\delta^{*} = \mathbb{1}, & \delta\gamma = q^{2}\gamma\delta, \\ \gamma^{*}\delta - q^{2}\delta^{*}\beta + \beta\delta^{*} - q^{2}\delta\gamma^{*} = 0. \end{aligned}$$

A has comultiplication $\Delta_{\mathbf{A}} \in Mor(\mathbf{A}, \mathbf{A} \otimes \mathbf{A})$:

$$\begin{split} &\Delta_{\mathsf{A}}(\beta) = q^{4} \delta \gamma^{*} \otimes \delta - q^{2} \beta \delta^{*} \otimes \delta + \beta \otimes \beta + \gamma^{*} \otimes \gamma - q^{2} \delta^{*} \beta \otimes \delta + \gamma^{*} \delta \otimes \delta, \\ &\Delta_{\mathsf{A}}(\gamma) = q^{4} \gamma \delta^{*} \otimes \delta - q^{2} \delta \beta^{*} \otimes \delta + \gamma \otimes \beta + \beta^{*} \otimes \gamma - q^{2} \beta^{*} \delta \otimes \delta + \delta^{*} \gamma \otimes \delta, \\ &\Delta_{\mathsf{A}}(\delta) = -q^{2} \gamma^{*} \gamma \otimes \delta - q^{2} \delta \delta^{*} \otimes \delta + \delta \otimes \beta + \delta^{*} \otimes \gamma + \beta^{*} \beta \otimes \delta + \delta^{*} \delta \otimes \delta. \end{split}$$

Let ${\bf A}$ be the universal ${\rm C}^*\mbox{-algebra}$ generated by β,γ,δ such that

$$\begin{aligned} q^{4}\delta^{*}\delta + \gamma^{*}\gamma + q^{4}\delta\delta^{*} + \beta\beta^{*} = \mathbb{1}, & \beta\gamma = -q^{4}\delta^{2}, \\ \beta^{*}\beta + \delta^{*}\delta + \gamma\gamma^{*} + \delta\delta^{*} = \mathbb{1}, & \gamma\beta = -\delta^{2}, \\ q^{4}\delta^{*}\delta + \gamma^{*}\gamma + q^{2}\beta^{*}\beta + q^{2}\delta^{*}\delta = q^{2}\mathbb{1}, & \beta\delta = q^{2}\delta\beta, \\ q^{4}\delta\delta^{*} + \beta\beta^{*} + q^{2}\gamma\gamma^{*} + q^{2}\delta\delta^{*} = \mathbb{1}, & \delta\gamma = q^{2}\gamma\delta, \\ \gamma^{*}\delta - q^{2}\delta^{*}\beta + \beta\delta^{*} - q^{2}\delta\gamma^{*} = 0. \end{aligned}$$

A has comultiplication $\Delta_{\mathbf{A}} \in Mor(\mathbf{A}, \mathbf{A} \otimes \mathbf{A})$:

$$\begin{split} \Delta_{\mathbf{A}}(\beta) &= q^4 \delta \gamma^* \otimes \delta - q^2 \beta \delta^* \otimes \delta + \beta \otimes \beta + \gamma^* \otimes \gamma - q^2 \delta^* \beta \otimes \delta + \gamma^* \delta \otimes \delta, \\ \Delta_{\mathbf{A}}(\gamma) &= q^4 \gamma \delta^* \otimes \delta - q^2 \delta \beta^* \otimes \delta + \gamma \otimes \beta + \beta^* \otimes \gamma - q^2 \beta^* \delta \otimes \delta + \delta^* \gamma \otimes \delta, \\ \Delta_{\mathbf{A}}(\delta) &= -q^2 \gamma^* \gamma \otimes \delta - q^2 \delta \delta^* \otimes \delta + \delta \otimes \beta + \delta^* \otimes \gamma + \beta^* \beta \otimes \delta + \delta^* \delta \otimes \delta. \end{split}$$

- < 同 > < 三 > < 三 >

$$\mathbf{\Phi}: M_2 \ni \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \longmapsto \begin{bmatrix} -q^2 \delta & \beta \\ \gamma & \delta \end{bmatrix} \in M_2(\mathbf{A}) = M_2 \otimes \mathbf{A}$$

• This action preserves the Powers state:

 $(\omega_q \otimes \mathrm{id}) \Phi(m) = \omega_q(m) \mathbb{1}$

for all $m \in M_2$, where

$$\omega_q \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = \frac{1}{1+q^2} (a+q^2d)$$

•
$$(\mathbf{A}, \Delta_{\mathbf{A}})$$
 acts on M_2 :
• $\mathbf{\Phi} : M_2 \ni \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \longmapsto \begin{bmatrix} -q^2 \delta & \beta \\ \gamma & \delta \end{bmatrix} \in M_2(\mathbf{A}) = M_2 \otimes \mathbf{A}$

• This action preserves the Powers state:

 $(\omega_q \otimes \mathrm{id}) \Phi(m) = \omega_q(m) \mathbb{1}$

for all $m \in M_2$, where

$$\omega_q \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = \frac{1}{1+q^2} (a+q^2d)$$

•
$$(\mathbf{A}, \Delta_{\mathbf{A}})$$
 acts on M_2 :

$$\mathbf{\Phi}: M_2
ightarrow \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \longmapsto \begin{bmatrix} -q^2 \delta & \beta \\ \gamma & \delta \end{bmatrix} \in M_2(\mathbf{A}) = M_2 \otimes \mathbf{A}$$

This action preserves the Powers state:

 $(\omega_q \otimes \mathrm{id}) \mathbf{\Phi}(m) = \omega_q(m) \mathbb{1}$

for all $m \in M_2$, where

$$\omega_q \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = \frac{1}{1+q^2} (a+q^2d)$$

(日) (同) (三) (三)

•
$$(\mathbf{A}, \Delta_{\mathbf{A}})$$
 acts on M_2 :

$$\mathbf{\Phi}: M_2
ightarrow \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \longmapsto \begin{bmatrix} -q^2 \delta & \beta \\ \gamma & \delta \end{bmatrix} \in M_2(\mathbf{A}) = M_2 \otimes \mathbf{A}$$

• This action preserves the Powers state:

$$(\omega_q \otimes \mathrm{id}) \Phi(m) = \omega_q(m) \mathbb{1}$$

for all $m \in M_2$, where

$$\omega_q \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = \frac{1}{1+q^2} (a+q^2d)$$

•
$$(\mathbf{A}, \Delta_{\mathbf{A}})$$
 acts on M_2 :

$$\mathbf{\Phi}: M_2
ightarrow \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \longmapsto \begin{bmatrix} -q^2 \delta & \beta \\ \gamma & \delta \end{bmatrix} \in M_2(\mathbf{A}) = M_2 \otimes \mathbf{A}$$

• This action preserves the Powers state:

$$(\omega_q \otimes \mathrm{id}) \Phi(m) = \omega_q(m) \mathbb{1}$$

for all $m \in M_2$, where

$$\omega_q \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = \frac{1}{1+q^2} (a+q^2d)$$

• • • • • • • • • • • • •

3

Proposition

For any C*-algebra D and any $\Psi \in Mor(M_2, M_2 \otimes D)$ such that $(\omega_q \otimes \mathrm{id})\Psi(m) = \omega_q(m)\mathbb{1}$

for all $m \in M_2$, there exists a unique $\Lambda \in Mor(\mathbf{A}, D)$ such that

- 4 同 6 4 日 6 4 日 6

Proposition

For any C^* -algebra D and any $\Psi \in Mor(M_2, M_2 \otimes D)$ such that

 $(\omega_q \otimes \mathrm{id}) \Psi(m) = \omega_q(m) \mathbb{1}$

for all $m \in M_2$, there exists a unique $\Lambda \in Mor(\mathbf{A}, D)$ such that

(日) (同) (三) (三)

• $S_qO(3)$ acts on M_2 :

$$\Psi_q: M_2 \ni \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \longmapsto \begin{bmatrix} -qA & L \\ -qG & q^{-1}A \end{bmatrix} \in M_2 \otimes C(S_qO(3))$$

- This action preserves the Powers state
- Thus there is $\Lambda_q \in Mor(\mathbf{A}, C(S_qO(3)))$ with

$$(\mathrm{id}\otimes\Lambda_q)\circ\mathbf{\Phi}=\Psi_q$$

・ 同 ト ・ 三 ト ・ 三

•
$$S_qO(3)$$
 acts on M_2 :

$$\Psi_q: M_2 \ni \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \longmapsto \begin{bmatrix} -qA & L \\ -qG & q^{-1}A \end{bmatrix} \in M_2 \otimes \mathsf{C}(\mathsf{S}_q\mathsf{O}(3))$$

- This action preserves the Powers state
- Thus there is $\Lambda_q \in Mor(\mathbf{A}, C(S_qO(3)))$ with

$$(\mathrm{id}\otimes\Lambda_q)\circ\mathbf{\Phi}=\Psi_q$$

• $S_qO(3)$ acts on M_2 :

$$\Psi_q: M_2 \ni \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \longmapsto \begin{bmatrix} -qA & L \\ -qG & q^{-1}A \end{bmatrix} \in M_2 \otimes \mathsf{C}(\mathsf{S}_q\mathsf{O}(3))$$

- This action preserves the Powers state
- Thus there is $\Lambda_q \in Mor(\mathbf{A}, C(S_qO(3)))$ with

 $(\mathrm{id}\otimes\Lambda_q)\circ\mathbf{\Phi}=\Psi_q$

- 4 回 ト - 4 回 ト

• $S_qO(3)$ acts on M_2 :

$$\Psi_q: M_2 \ni \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \longmapsto \begin{bmatrix} -qA & L \\ -qG & q^{-1}A \end{bmatrix} \in M_2 \otimes \mathsf{C}(\mathsf{S}_q\mathsf{O}(3))$$

- This action preserves the Powers state
- Thus there is $\Lambda_q \in Mor(\mathbf{A}, C(S_qO(3)))$ with

$$(\mathrm{id}\otimes \Lambda_q)\circ \mathbf{\Phi} = \Psi_q$$

Let

$\Psi_{\mathcal{G}}(M_2)(1 \otimes B) = M_2 \otimes B$

- $\mathcal{G} = (B, \Delta_B)$ be a compact quantum group
- $\Psi_{\mathcal{G}} \in \mathsf{Mor}(M_2, M_2 \otimes B)$ be a continuous action of \mathcal{G}
- Assume that $\Psi_{\mathcal{G}}$ preserves ω_q
- We know: there is a unique $\Lambda \in Mor(\mathbf{A}, B)$ with

$$(\mathrm{id}\otimes\Lambda)\circ\Phi=\Psi_\mathcal{G}$$

Theorem

There exists a unique $\Gamma \in Mor(C(S_qO(3)), B)$ such that

 $\Lambda = \Gamma \circ \Lambda_q$

Let

$\Psi_{\mathcal{G}}(M_2)(1 \otimes B) = M_2 \otimes B$

• $\mathcal{G} = (B, \Delta_B)$ be a compact quantum group

- $\Psi_{\mathcal{G}} \in \mathsf{Mor}(M_2, M_2 \otimes B)$ be a continuous action of \mathcal{G}
- Assume that $\Psi_{\mathcal{G}}$ preserves ω_q
- We know: there is a unique $\Lambda \in Mor(\mathbf{A}, B)$ with

$$(\mathrm{id}\otimes \Lambda)\circ \mathbf{\Phi} = \Psi_{\mathcal{G}}$$

Theorem

There exists a unique $\Gamma \in Mor(C(S_qO(3)), B)$ such that

 $\Lambda = \Gamma \circ \Lambda_q$

$\Psi_{\mathcal{G}}(M_2)(1 \otimes B) = M_2 \otimes B$

・ 同 ト ・ 三 ト ・ 三

• $\mathcal{G} = (B, \Delta_B)$ be a compact quantum group

- $\Psi_\mathcal{G} \in \mathsf{Mor}(\mathit{M}_2, \mathit{M}_2 \otimes \mathit{B})$ be a continuous action of \mathcal{G}
- Assume that $\Psi_{\mathcal{G}}$ preserves ω_q
- We know: there is a unique $\Lambda \in Mor(\mathbf{A}, B)$ with

 $(\mathrm{id}\otimes\Lambda)\circ\Phi=\Psi_\mathcal{G}$

Theorem

Let

There exists a unique $\Gamma \in Mor(C(S_qO(3)), B)$ such that

 $\Lambda = \Gamma \circ \Lambda_q$

• $\mathcal{G} = (B, \Delta_B)$ be a compact quantum group

- $\Psi_\mathcal{G} \in \mathsf{Mor}(\mathit{M}_2, \mathit{M}_2 \otimes \mathit{B})$ be a continuous action of \mathcal{G}
- Assume that $\Psi_{\mathcal{G}}$ preserves ω_q
- We know: there is a unique $\Lambda \in Mor(\mathbf{A}, B)$ with

$$(\mathrm{id}\otimes\Lambda)\circ\Phi=\Psi_\mathcal{G}$$

Theorem

There exists a unique $\Gamma \in Mor(C(S_qO(3)), B)$ such that

 $\Lambda = \Gamma \circ \Lambda_q$

- $\mathcal{G} = (B, \Delta_B)$ be a compact quantum group
- $\Psi_\mathcal{G} \in \mathsf{Mor}(M_2, M_2 \otimes B)$ be a continuous action of \mathcal{G}
- Assume that $\Psi_{\mathcal{G}}$ preserves ω_q
- We know: there is a unique $\Lambda \in Mor(\mathbf{A}, B)$ with

 $(\mathrm{id}\otimes\Lambda){\circ}\Phi=\Psi_\mathcal{G}$

Theorem

There exists a unique $\Gamma \in Mor(C(S_qO(3)), B)$ such that

 $\Lambda = \Gamma \circ \Lambda_q$

・ 同 ト ・ 三 ト ・ 三

- $\mathcal{G} = (B, \Delta_B)$ be a compact quantum group
- $\Psi_{\mathcal{G}} \in \mathsf{Mor}(M_2, M_2 \otimes B)$ be a continuous action of \mathcal{G}
- Assume that Ψ_G preserves ω_q
- We know: there is a unique $\Lambda \in Mor(\mathbf{A}, B)$ with

 $(\mathrm{id}\otimes\Lambda)\circ\Phi=\Psi_\mathcal{G}$

Theorem

There exists a unique $\Gamma \in Mor(C(S_qO(3)), B)$ such that

 $\Lambda = \Gamma \circ \Lambda_q$

・ 同 ト ・ 三 ト ・ 三

- $\mathcal{G} = (B, \Delta_B)$ be a compact quantum group
- $\Psi_{\mathcal{G}} \in \mathsf{Mor}(M_2, M_2 \otimes B)$ be a continuous action of \mathcal{G}
- Assume that Ψ_G preserves ω_q
- We know: there is a unique $\Lambda \in Mor(\mathbf{A}, B)$ with

$$(\mathrm{id}\otimes\Lambda)\circ \mathbf{\Phi}=\Psi_\mathcal{G}$$

Theorem

There exists a unique $\Gamma \in Mor(C(S_qO(3)), B)$ such that

 $\Lambda = \Gamma \circ \Lambda_q$

- $\mathcal{G} = (B, \Delta_B)$ be a compact quantum group
- $\Psi_{\mathcal{G}} \in \mathsf{Mor}(M_2, M_2 \otimes B)$ be a continuous action of \mathcal{G}
- Assume that Ψ_G preserves ω_q
- We know: there is a unique $\Lambda \in Mor(\mathbf{A}, B)$ with

$$(\mathrm{id}\otimes\Lambda)\circ \mathbf{\Phi}=\Psi_\mathcal{G}$$

Theorem

There exists a unique $\Gamma \in \mathsf{Mor}\big(\mathsf{C}(\mathrm{S}_q\mathrm{O}(3)),B\big)$ such that

 $\Lambda = \Gamma \circ \Lambda_q$

▲□ ► ▲ □ ► ▲ □

• Γ intertwines the actions of \mathcal{G} and $S_qO(3)$:

$$(\mathrm{id}\otimes\Gamma)\circ\Psi_q=\Psi_\mathcal{G}$$

(and this condition determines Γ uniquely)

- Γ is a compact quantum group morphism
- Cases of q = 0 and q = 1 also are completely understood

• Γ intertwines the actions of \mathcal{G} and $\mathrm{S}_q\mathrm{O}(3)$

 $(\mathrm{id}\otimes \Gamma)\circ \Psi_q = \Psi_\mathcal{G}$

(and this condition determines Γ uniquely)

- Γ is a compact quantum group morphism
- Cases of q = 0 and q = 1 also are completely understood

• Γ intertwines the actions of \mathcal{G} and $S_qO(3)$:

$$(\mathrm{id}\otimes\Gamma)\circ\Psi_q=\Psi_\mathcal{G}$$

(and this condition determines Γ uniquely)

- Γ is a compact quantum group morphism
- Cases of q = 0 and q = 1 also are completely understood

→ < ∃ → </p>

• Γ intertwines the actions of \mathcal{G} and $S_qO(3)$:

$$(\mathrm{id}\otimes\Gamma)\circ\Psi_q=\Psi_\mathcal{G}$$

(and this condition determines Γ uniquely)

- Γ is a compact quantum group morphism
- Cases of q = 0 and q = 1 also are completely understood

• Γ intertwines the actions of \mathcal{G} and $S_qO(3)$:

$$(\mathrm{id}\otimes\Gamma)\circ\Psi_q=\Psi_\mathcal{G}$$

(and this condition determines Γ uniquely)

- Γ is a compact quantum group morphism
- Cases of q = 0 and q = 1 also are completely understood

• Γ intertwines the actions of \mathcal{G} and $S_qO(3)$:

$$(\mathrm{id}\otimes\Gamma)\circ\Psi_q=\Psi_\mathcal{G}$$

(and this condition determines Γ uniquely)

- Γ is a compact quantum group morphism
- Cases of q = 0 and q = 1 also are completely understood

Theorem

Let $S = (D, \Delta_D)$ be a quantum semigroup acting continuously on M_2 with $\Psi_S \in Mor(M_2, M_2 \otimes D)$ and preserving a faithful state ω . Then there exists a $q \in]0, 1]$, $u \in M_2$ — unitary and $\Gamma \in Mor(C(S_qO(3)), D)$ such that for each $m \in M_2$

 $\Psi_{\mathcal{S}}(m) = (\mathrm{id} \otimes \Gamma) \big((u \otimes \mathbb{1}) \Psi_q(u^* m u)(u^* \otimes \mathbb{1}) \big).$

Moreover u and Γ are unique for each q and q depends on ω .

- Any such action factors through the bS (a compact q. group)
- Any faithful state on M_2 is conjugate to a unique Powers state
- Ergodic actions have unique invariant states
- Any continuous compact q.g. action has a faithful inv. state

Theorem

Let $S = (D, \Delta_D)$ be a quantum semigroup acting continuously on M_2 with $\Psi_S \in Mor(M_2, M_2 \otimes D)$ and preserving a faithful state ω . Then there exists a $q \in]0, 1]$, $u \in M_2$ — unitary and $\Gamma \in Mor(C(S_qO(3)), D)$ such that for each $m \in M_2$

$$\Psi_{\mathcal{S}}(m) = (\mathrm{id} \otimes \Gamma) \big((u \otimes \mathbb{1}) \Psi_q(u^* m u)(u^* \otimes \mathbb{1}) \big).$$

Moreover u and Γ are unique for each q and q depends on ω .

- Any such action factors through the bS (a compact q. group)
- Any faithful state on M_2 is conjugate to a unique Powers state
- Ergodic actions have unique invariant states
- Any continuous compact q.g. action has a faithful inv. state

(日) (同) (三) (

Theorem

Let $S = (D, \Delta_D)$ be a quantum semigroup acting continuously on M_2 with $\Psi_S \in Mor(M_2, M_2 \otimes D)$ and preserving a faithful state ω . Then there exists a $q \in]0, 1]$, $u \in M_2$ — unitary and $\Gamma \in Mor(C(S_qO(3)), D)$ such that for each $m \in M_2$

$$\Psi_{\mathcal{S}}(m) = (\mathrm{id} \otimes \Gamma) \big((u \otimes \mathbb{1}) \Psi_q(u^* m u)(u^* \otimes \mathbb{1}) \big).$$

Moreover u and Γ are unique for each q and q depends on ω .

- Any such action factors through the \mathfrak{bS} (a compact q. group)
- Any faithful state on M_2 is conjugate to a unique Powers state
- Ergodic actions have unique invariant states
- Any continuous compact q.g. action has a faithful inv. state

• • • • • • • • • • • • •

Theorem

Let $S = (D, \Delta_D)$ be a quantum semigroup acting continuously on M_2 with $\Psi_S \in Mor(M_2, M_2 \otimes D)$ and preserving a faithful state ω . Then there exists a $q \in]0, 1]$, $u \in M_2$ — unitary and $\Gamma \in Mor(C(S_qO(3)), D)$ such that for each $m \in M_2$

$$\Psi_{\mathcal{S}}(m) = (\mathrm{id} \otimes \Gamma) \big((u \otimes \mathbb{1}) \Psi_q(u^* m u)(u^* \otimes \mathbb{1}) \big).$$

Moreover u and Γ are unique for each q and q depends on ω .

- Any such action factors through the \mathfrak{bS} (a compact q. group)
- Any faithful state on M_2 is conjugate to a unique Powers state
- Ergodic actions have unique invariant states
- Any continuous compact q.g. action has a faithful inv. state

• • • • • • • • • • • • •

Theorem

Let $S = (D, \Delta_D)$ be a quantum semigroup acting continuously on M_2 with $\Psi_S \in Mor(M_2, M_2 \otimes D)$ and preserving a faithful state ω . Then there exists a $q \in]0, 1]$, $u \in M_2$ — unitary and $\Gamma \in Mor(C(S_qO(3)), D)$ such that for each $m \in M_2$

$$\Psi_{\mathcal{S}}(m) = (\mathrm{id} \otimes \Gamma) \big((u \otimes \mathbb{1}) \Psi_q(u^* m u)(u^* \otimes \mathbb{1}) \big).$$

Moreover u and Γ are unique for each q and q depends on ω .

- Any such action factors through the \mathfrak{bS} (a compact q. group)
- Any faithful state on M_2 is conjugate to a unique Powers state
- Ergodic actions have unique invariant states
- Any continuous compact q.g. action has a faithful inv. state

< ロ > < 同 > < 三 > < 三

Theorem

Let $S = (D, \Delta_D)$ be a quantum semigroup acting continuously on M_2 with $\Psi_S \in Mor(M_2, M_2 \otimes D)$ and preserving a faithful state ω . Then there exists a $q \in]0, 1]$, $u \in M_2$ — unitary and $\Gamma \in Mor(C(S_qO(3)), D)$ such that for each $m \in M_2$

$$\Psi_{\mathcal{S}}(m) = (\mathrm{id} \otimes \Gamma) \big((u \otimes \mathbb{1}) \Psi_q(u^* m u)(u^* \otimes \mathbb{1}) \big).$$

Moreover u and Γ are unique for each q and q depends on ω .

- Any such action factors through the \mathfrak{bS} (a compact q. group)
- Any faithful state on M_2 is conjugate to a unique Powers state
- Ergodic actions have unique invariant states
- Any continuous compact q.g. action has a faithful inv. state

< ロ > < 同 > < 三 > < 三

Theorem

Let $S = (D, \Delta_D)$ be a quantum semigroup acting continuously on M_2 with $\Psi_S \in Mor(M_2, M_2 \otimes D)$ and preserving a faithful state ω . Then there exists a $q \in]0, 1]$, $u \in M_2$ — unitary and $\Gamma \in Mor(C(S_qO(3)), D)$ such that for each $m \in M_2$

$$\Psi_{\mathcal{S}}(m) = (\mathrm{id} \otimes \Gamma) \big((u \otimes \mathbb{1}) \Psi_q(u^* m u)(u^* \otimes \mathbb{1}) \big).$$

Moreover u and Γ are unique for each q and q depends on ω .

- Any such action factors through the \mathfrak{bS} (a compact q. group)
- Any faithful state on M_2 is conjugate to a unique Powers state
- Ergodic actions have unique invariant states
- Any continuous compact q.g. action has a faithful inv. state