Compact Quantum Metric Spaces & Compact Quantum Groups

Piotr Mikołaj Sołtan

November 23rd 2004

Contents

1	Compact Quantum Metric Spaces	2
f 2	Examples 2.1 From group actions	6 ⁶ ⁷
3	Quantum group invariance	8
	3.1 Small metric spaces	8
	3.2 Invariant Dirac operators	9
	3.3 Invariant metrics on compact groups	10
	3.4 Invariant metrics on compact quantum groups	11

1 Compact Quantum Metric Spaces

(X, d) – compact metric space, $f \in C(X)$,

$$L(f) = \sup_{x \neq y} \frac{|f(x) - f(y)|}{d(x, y)} \in [0, +\infty].$$

Then

- L(f) is the Lipschitz constant of f,
- L is a seminorm on C(X),
- The data (C(X), L) suffices to recover (X, d):

$$d(x,y) = \sup_{L(f) \le 1} |f(x) - f(y)|,$$

(X, d) – as before, $f \in C(X)$.

$$L(f) = \sup_{x \neq y} \frac{|f(x) - f(y)|}{d(x, y)} \in [0, +\infty]$$

- ullet enough to take restriction of L to $\mathcal{C}^{\mathbb{R}}(X)$ or to the space A of \mathbb{R} -valued Lipschitz functions on X,
- the formula

$$\rho_L(\mu, \nu) = \sup_{L(f) < 1} \left| \int_X f \, d\mu - \int_X f \, d\nu \right|,$$

gives a metric on Prob(X) = state space of A,

• ρ_L gives $\operatorname{Prob}(X)$ its weak* topology.

Comment: A is an order unit space, i.e. it is a partially ordered real vector space with an order unit I such that

$$(i) \ \forall \ a \in A \quad \exists \ r \in \mathbb{R} \quad a \le rI,$$

$$(ii) \ (\forall r > 0 \quad a \le rI) \Rightarrow (a \le 0).$$

An order unit space has canonical norm $\|\cdot\|$ and has a state space:

$$S(A) = \{ \omega \in A_+^* : \|\omega\| = 1 \}.$$

<u>Definition</u>: A compact quantum metric space is a pair (A, L) such that

- 1. A is an order unit space (with unit I),
- 2. L is a seminorm on A with values in $[0, +\infty]$,

3.
$$(L(a) = 0) \Leftrightarrow (a \in \mathbb{R}I)$$
,

4. the metric

$$\rho_L(\mu, \nu) = \sup_{L(a) \le 1} |\mu(a) - \nu(a)|$$

gives S(A) its weak* topology.

A seminorm L on an order unit space A is called a **Lip-norm** iff (A, L) is a compact quantum metric space.

2 Examples

2.1 From group actions

B – unital C*-algebra, G – compact group,

 α – ergodic action of G on B,

 ℓ – continuous length function on G,

$$L(a) = \sup_{x \neq e} \frac{\|\alpha_x(a) - a\|}{\ell(x)}.$$

Then L is a Lip-norm on $A = B_{\text{S.a.}}$.

- noncommutative tori,
- matrix algebras.

2.2 Dirac operators

A – order unit space, $A \subset B(H)_{s.a.}$

 $D^* = D$ – operator on H,

$$L(a) = ||[a, D]||.$$

- Is L a Lip-norm?
- Every Lip-norm comes from such a construction.

$$A = C_r^*(\Gamma) \subset \mathrm{B}(L^2(\Gamma)),$$

 ℓ – length function on Γ ,

 $D = \text{multiplication by } \ell.$

If $\Gamma = \mathbb{Z}^d$ or Γ – hyperbolic then $(A_{\mathrm{s.a.}}, L)$ is a CQMS.

3 Quantum group invariance

3.1 Small metric spaces

Theodor Banica: Finite space X with a metric d and an action

$$v: \operatorname{Fun}(X) \longrightarrow H \otimes \operatorname{Fun}(X)$$

of a quantum group (H, Δ) which preserves the metric in the sense that if $X = \{x_1, \dots, x_N\}$ and

$$v(\delta_{x_k}) = \sum_{l=1}^{N} v_{k,l} \otimes \delta_{x_l},$$

$$d_{k,l} = d(x_k, x_j)I_H$$

then (v_{ij}) commutes with (d_{ij}) .

3.2 Invariant Dirac operators

Chakraborty & Pal: $(A, \Delta) = S_q U(2)$,

H – the GNS space of the Haar measure

Problem: find all $D^* = D$ on H such that (A, H, D) is a spectral triple and D commutes with \widehat{A} .

SOLVED!

Problem: Is

$$L(a) = ||[a, D]||$$

a Lip-norm?

3.3 Invariant metrics on compact groups

G – compact group,

d – metric which gives G its original topology,

We have (for $f \in C(G)$)

$$L(f) = \sup_{x \neq y} \frac{|f(x) - f(y)|}{d(x, y)}.$$

One can also compute

$$L'(f) = \sup_{x \neq y} \frac{\|f(\cdot x) - f(\cdot y)\|}{d(x, y)}$$

Then $L \leq L'$ and

$$\begin{pmatrix} d \text{ is left} \\ \text{invariant} \end{pmatrix} \iff (L' = L)$$

3.4 Invariant metrics on compact quantum groups

<u>Definition:</u> (A, Δ) – compact quantum group,

L – Lip-norm on $A_{\rm S.a.}$

L has to be lower semicontinuous,

L is left invariant if

$$L(a) = \sup_{\mu \neq \nu} \frac{\|\mu * a - \nu * a\|}{\rho_L(\mu, \nu)}.$$

 (A, Δ) – compact quantum group,

L – lower semicontinuous Lip-norm on $A_{\rm S.a.}$,

$$L'(a) = \sup_{\mu \neq \nu} \frac{\|a * \mu - a * \nu\|}{\rho_L(\mu, \nu)}.$$

Then L' is a Lip-norm on $A_{s.a.}$.

Conjecture: The sequence of CQMSs:

$$(A_{\text{S.a.}}, L), (A_{\text{S.a.}}, L'), (A_{\text{S.a.}}, L''), \ldots$$

converges to a CQMS

$$(A_{\mathrm{s.a.}}, L^{(\infty)})$$

with $L^{(\infty)}$ left invariant.

Chakraborty: There is a Lip-norm on $A_{s.a.}$ for A – the C* algebra of functions on $S_qU(2)$.

References

- [1] T. Banica. Quantum automorphism groups of small metric spaces, OA/0304025.
- [2] P.S. CHAKRABORTY, From C*-algebra extensions to CQMS, $SU_q(2)$, Podleś Sphere and other examples, OA/0210155.
- [3] P.S. CHAKRABORTY & A. PAL, Equivariant spectral triples on the quantum SU(2) group, KT/0201004.
- [4] M.A. RIEFFEL, Compact quantum metric spaces, OA/0308207.