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FACTORS TYPE CLASSIFICATION

o We will only consider von Neumann algebras acting on
separable Hilbert spaces (countably decomposable/with
separable predual).

o A von Neumann algebra M is a factor if its center is trivial.

o A factor M is of type I if M contains a minimal non-zero
projection.

o A factor M is of type II if M contains a non-zero finite
projection (not equivalent to its proper subprojection), but
does not contain a non-zero minimal projection.

o A factor M is of type III if M does not contain a non-zero
finite projection.
FaCT

A factor of type 1 is isomorphic to B(H) for some H. Thus we can
classify factors of typel into types I, (n € N U {o0}) with
n =dimH.
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FACTORS TYPE CLASSIFICATION

FacT

A factor is of type 111 iff it does not admit a non-zero semifinite
tracial weight.

TERMINOLOGY
Let M be a factor and assume that M is not of type III.
o If M does not admit a tracial state and is of type I then it is
of type 1.
o If M does not admit a tracial state and is of type II then it is

of type Il.

o If M admits a tracial state and is infinite dimensional then
it is of type II;.

o A finite-dimensional factor is of type I, and it admits a
tracial state.
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FACTORS INJECTIVITY

o A von Neumann algebra M is hyperfinite if it contains a
sequence of finite-dimensional subalgebras A; c Ay < ---
o0
such that (J A, is dense in M.
n=1
o The property of being hyperfinite is equivalent (by a difficult
theorem of Connes) to the property of being injective,
i.e. being an injective object in an appropriate category.
This is also equivalent to w*-CPAP.

THEOREM

Up to isomorphism there exists only one injective factor of type
IOO’ III, and IIOO'

o The situation with type III factors is more complicated.
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FACTORS INFINITE TENSOR PRODUCTS

THEOREM

For n € N let M, be a factor equipped with a faithful tracial
weight T, represented on the G.N.S. Hilbert space H,,, of a
faithful non-tracial state wy,. Then

o for each n we have wn = 7(-hy) for some strictly positive
operator h;, affiliated with M;,.

Q0 Q0
Moreover, letting M = (X) (M, wn) be the closure of alg-X) Mp

n=1 n=1

o0
acting on the Hilbert space ) (H,,,)n), we additionally have:

n=1
o M is a factor,

Q0
o Misoftypelll ifand only if 3te R Y, (1 — jwn(h)|) = +oo,

n=1
o if each My, is injective then so is M.
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FACTORS CONNES INVARIANTS

CONNES INVARIANT T(M)

Let M be a factor. We define T(M) = {t e R| o7 € Inn(M)}. Then
o T(M) is an invariant of M,
o M is of type III iff T(M) # R.

CONNES INVARIANT S(M)
Let M be a factor. We define S(M) = (| Sp V... Then
%)

o S(M) is an invariant of M,
o if M is of type III then S(M) must be one of the following:

> S(M) = {0} U {A\"|n e Z} for some A €]0, 1, type III,
o S(M) = {0, 1}, type Il
9 S(M) = R;o. type HIl

o For A > O there is only one injective factor of type III,.
o For se S(M) and t € T(M) we have s = 1.
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COMPACT QUANTUM GROUPS GENERAL NOTATION

G - a compact quantum group,

C(G) - the associated (unital) C*-algebra,

h - the Haar measure,

L2(G) - the G.N.S. Hilbert space for h,

7h — the G.N.S. representation of C(G) on L*(G),
1*(G) = 7 (C(G))".

¢ ¢ ¢ ¢ ¢ ¢
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COMPACT QUANTUM GROUPS GENERAL NOTATION

EXAMPLE

If G = T for a discrete i.c.c. group I' then [°(G) is a factor of type
II;. We know this because we can directly see that the center of
[°(G) = vN(I") is trivial and there is the tracial state

VN(T') 3 x — {Je|Xxbey € C

(0 — vector of the standard basis of /2(I') = L?(G)).

THEOREM (JACEK KRAJCZOK & P.M.S.)

There does not exist a compact quantum group G such that L°(G)
is a _factor of type 1 of dimension strictly grater than one.
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COMPACT QUANTUM GROUPS THE SCALING GROUP AND THE MODULAR GROUP

o There are two important (commuting) one-parameter
groups of automorphisms of |°(G):
o the modular group of h denoted by (o?) g,
o the scaling group of G denoted by (77)ck.

o In terms of the Woronowicz functionals { f;},cc they are
of(a) = fiex axfi
Tég(a) =fitrax*f i ’

9@ Once we fix for any a € Irr G a unitary representation U® € «
and an orthonormal basis of H, diagonalizing the
corresponding p-operator:

teR, ae Pol(G).

a = diag(pa,ly cee pa,dima)a
the modular and scaling groups are given by
J?(Ula) = pa LUJpaJ

TEG(Uia) = pa LUl]p;:]t

teR,ije{l,...,dima}.
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COMPACT QUANTUM GROUPS INFINITE PRODUCTS

o Let {H,}nen be a sequence of compact quantum groups.

o Let Q, be the G.N.S. cyclic vector for the Haar measure h,
of H,.

o Then the von Neumann algebra
0
M = X) (L°(Hp), hn)
n=1

carries a comultiplication defining a compact quantum
group such that the inclusions °(H,) — M intertwine
comultiplications.

a0
@ We denote this compact quantum group by X Hp.
n=1

[0 0] [0 0]
o The Haar measure of X Hp is &) hp.
n=1 n=1
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COMPACT QUANTUM GROUPS INFINITE PRODUCTS

[0 0]
Let H= X H,.

n=1
For any a; € IrrHy, and ag € Irr Hy, and U € a; we define
a1 X ag as the class of

(U™) 15(U?) 44 € B(Ha,) ® B(Ha,) ® L (Hp, ) @ L (Hp,)
< B(Ha, ® Ha,) ® L (H).

Similarly we define o X - - - X ay for «; € Irr H,,, with pairwise
different ny, ..., ny.

Such “exterior tensor products” exhaust all classes of irreps
of H.
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COMPACT QUANTUM GROUPS BICROSSED PRODUCTS

o Fix a compact quantum group H.

o Let I" be a discrete group acting on L°(H) by
automorphisms of H.

o The von Neumann algebra I' x |°(H) carries a unique
comultiplication such that

[“(H) <> [ » L°(H) and vN(T) — T x [(H)

intertwine comultiplications.

o With this comultiplication I' x L°(H) describes a compact
quantum group which we denote I" > H.

o Irreps of I' x H are all of the form

(1®u,)((d®a)U?),
where
o a: P(H) - (*(T) ®@L°(H) c I’ x L°(H) is the action,
o {u,}er are the unitaries implementing the action,
o AeIrrH and U* € B(Hy) ® L°(H) is a representative of \.
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COMPACT QUANTUM GROUPS BICROSSED PRODUCTS

EXAMPLE

Let H = SUq4(2) and I" = @ Fix v € R\{0}, g€ |]—1,1[\{0} and let
v eT act on [°(H) by 721 . We will denote the resultmg compact
quantum group Q SUq( ) by H, 4.

THEOREM (KRAJCZOK-WASILEWSKI)
We have
o H, 4 is a co-amenable compact quantum group.
o Ifvlog|q| ¢ 7Q then |*(H, q) is a factor.
o Since there is a tracial weight on | (SU4(2)) invariant under
the scaling group, the algebra |**(H, 4) is not of type III.
Furthermore, assuming v log |q| ¢ 7Q, we have

Q Tfﬂ”’q is trivial iff t € Z, so H,, 4 is not of Kac type,

log \QI
o consequently | (H, q) is a factor of type Il.
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EXAMPLES OF TYPE III TYPE III )

THEOREM

For any X € )0, 1] there exists a compact quantum group G such
that 1°(G) is the injective factor of type I1I,.

o We take g = v\ and v such that vlog q ¢ 7Q.

0
o PutG= X H,4.
n=1

o Then L*(G) is an injective factor.

© T(L*(G)) = 15gZ. 50 L°(G) is of type III.
0 S(I°(G)) = {A1---An|NeN, X\; € Sp(Vn, ), i€ {1,...,N}}.
9 Sp(Vh, ) = {0} U ¢*%, so L°(G) is of type Il
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EXAMPLES OF TYPE III TYPE Il

THEOREM

There exists a family {Gs} 0,1 of compact quantum groups such
that {LOO(GS)}SE] 0.1[ @re pairwise non-isomorphic injective factors
of type .

o Let (gn)nen be the sequence

(exp(—ﬂ'll), co,exp(—ml!), exp(—n2!), ... exp(—n2!),... ),

~~

~~

l; times I, times

where I = |exp(2nk!)k?s71|.
o For each n choose v, € R\{0} such that v, log gn ¢ Q.
0
[+) Gs = >< Hyrhqn.

n=1

o [°(Gs) is an injective factor.
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EXAMPLES OF TYPE III TYPE Il

THEOREM

There exists a family {Gs} 0,1 of compact quantum groups such
that {LOO(GS)}SE] 0.1[ @re pairwise non-isomorphic injective factors
of type .

o For each s we have Q < T(L°(Gy)).
o Put

O 1-s
ts = Z lpp! L
p=1

o The map s — t; is strictly decreasing.
o Then ty € T(L*(Gs)) iff s’ > s.
o This shows that

o 1°(Gs) is not isomorphic to 1 (Gy) if s # ¢/,
o L*(G) is of type Illp.
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EXAMPLES OF TYPE III TyPE III}

THEOREM

There exists a compact quantum group G such that |°(G) is the

injective factor of type 111, .

o Let q1,G2 € ]-1,1[\{0} be such that 7—Q n ;;7~Q = {0}.

o Choose v, so that vilog|q;| ¢ 7Q (i = 1,2).
o Put

{HVMCII n is odd
Hn = .
H n is even

V2,42
0
o G= X Hj.

n=1

o We have T(L°(G)) = {0}, S(L(G)) = Rxo.
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THE INVARIANT T7, (G)

DEFINITION
Let G be a (locally) compact quantum group. Define

Tr (G) = {t e R‘T;G c Inn(LOO(G))}.

o 17

n(G) is an invariant of G.

o T{ (G) is a subgroup of R.
o Tfr—ln(G X H) = Tfl—ln(G) A Tfl—ln(H)

EXAMPLES
> T7,,(SU4(2)) = 2L
o Tf(Hyq) = vQ + 10g7;r|q\Z-
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THE INVARIANT T7,, (G)  TYPE Il

THEOREM

For each ) € )0, 1] there exists an uncountable family {Kj\}jej of

pairwise non-isomorphic compact quantum groups such that

L*(K}') is the injective factor of type IIL,.

o Take g = VA, v such that vlog q ¢ 7Q, and let T'; = Y oag L

where {1} U {aj}jey is a basis of R over Q.

0
o Let G= X H,q4andletI;act on G by the scaling

n=1
automorphisms.

o Put K} =T G.

° Lw(Kj‘) is the injective factor of type III,.
o Tfr—ln(Kj\) = FJ + 1quZ-

o Forj#j we have I'j + (2.7 # I'y + 7.
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THE INVARIANT 77, (G)  TYPE III;

THEOREM

There exists uncountably many pairwise non-isomorphic compact
quantum groups K with |*°(K) the injective factor of type 111, .

o Start with the example of G with |°(G) the injective factor of
type III; we discussed earlier:
o Let q1,q2 € ]-1, 1[\{0} be such that oza QN oargm @ = {0}
o Choose v;, so that v;log|q;| ¢ 7Q (i = 1,2).

o Put
H, 4 nisodd
Hn = . .
H,,q niseven

o0
o G= X H,.

n=1
o Let I be a countable subgroup of R and let I" act on G by
the scaling automorphisms.
o PutK=TI>G.
o Then L*(K) is an injective factor and S(L*(K)) = Rxo.
o Furthermore 77 (K) =T.

Inn
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Thank you for your attention.
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