## Examples of compact guantum groups $\mathbb{G}$ with $L^{\infty}(\mathbb{G})$ a factor Noncommutative harmonic analysis and guantum groups

## Piotr M. Sołtan (joint work with **Jacek Krajczok**)

Department of Mathematical Methods in Physics Faculty of Physics, University of Warsaw

September 12, 2022

P.M. SOŁTAN (KMMF)

QUANTUM GROUPS AND FACTORS



- Type classification
- Injectivity
- Infinite tensor products
- Connes invariants
- 2 Compact quantum groups
  - General notation
  - The scaling group and the modular group
  - Infinite products
  - Bicrossed products
- 3 Examples of type III
  - Type  $III_{\lambda}$
  - Type III<sub>0</sub>
  - Type III<sub>1</sub>
- 4 The invariant  $T^{ au}_{\mathrm{Inn}}(\mathbb{G})$ 
  - Type  $III_{\lambda}$
  - Type III<sub>1</sub>

- We will only consider von Neumann algebras acting on separable Hilbert spaces (countably decomposable/with separable predual).
- A von Neumann algebra M is a **factor** if its center is trivial.
- A factor M is of type I if M contains a minimal non-zero projection.
- A factor M is of type II if M contains a non-zero finite projection (not equivalent to its proper subprojection), but does not contain a non-zero minimal projection.
- A factor M is of type III if M does not contain a non-zero finite projection.

#### Fact

A factor of type I is isomorphic to B(H) for some H. Thus we can classify factors of type I into types  $I_n$  ( $n \in \mathbb{N} \cup \{\infty\}$ ) with  $n = \dim H$ .

#### FACT

A factor is of type III iff it does not admit a non-zero semifinite tracial weight.

#### TERMINOLOGY

Let M be a factor and assume that M is not of type III.

- If M does not admit a tracial state and is of type I then it is of type  $I_{\infty}$ .
- $\bullet~$  If M does not admit a tracial state and is of type II then it is of type  $II_{\infty}.$
- $\bullet~$  If M admits a tracial state and is infinite dimensional then it is of type  $II_1.$
- A finite-dimensional factor is of type I<sub>n</sub> and it admits a tracial state.

- A von Neumann algebra M is **hyperfinite** if it contains a sequence of finite-dimensional subalgebras  $\mathcal{A}_1 \subset \mathcal{A}_2 \subset \cdots$  such that  $\bigcup_{n=1}^{\infty} \mathcal{A}_n$  is dense in M.
- The property of being hyperfinite is equivalent (by a difficult theorem of Connes) to the property of being **injective**, i.e. being an injective object in an appropriate category. This is also equivalent to w\*-CPAP.

Up to isomorphism there exists only one injective factor of type  $I_\infty,\,II_1,\,and\,II_\infty.$ 

• The situation with type III factors is more complicated.

For  $n \in \mathbb{N}$  let  $M_n$  be a factor equipped with a faithful tracial weight  $\tau_n$  represented on the G.N.S. Hilbert space  $H_{\omega_n}$  of a faithful non-tracial state  $\omega_n$ . Then

• for each n we have  $\omega_n = \tau(\cdot h_n)$  for some strictly positive operator  $h_n$  affiliated with  $M_n$ .

Moreover, letting  $M = \bigotimes_{n=1}^{\infty} (M_n, \omega_n)$  be the closure of  $\operatorname{alg-\bigotimes_{n=1}^{\infty}} M_n$ acting on the Hilbert space  $\bigotimes_{n=1}^{\infty} (H_{\omega_n}, \Omega_n)$ , we additionally have:

- M is a factor,
- M is of type III if and only if  $\exists t \in \mathbb{R} \; \sum_{n=1}^{\infty} (1 |\omega_n(h_n^{it})|) = +\infty$ ,
- if each  $M_n$  is injective then so is M.

Connes invariant T(M)

Let M be a factor. We define  $T(M) = \{t \in \mathbb{R} \mid \sigma_t^{\varphi} \in \text{Inn}(M)\}$ . Then

- T(M) is an invariant of M,
- M is of type III iff  $T(M) \neq \mathbb{R}$ .

```
Connes invariant S(M)
```

```
Let M be a factor. We define S(M) = \bigcap \operatorname{Sp} \nabla_{\varphi}. Then
```

- S(M) is an invariant of M,
- ${\scriptstyle \circ }$  if M is of type III then S(M) must be one of the following:

$$\begin{array}{ll} \bullet & S(\mathsf{M}) = \{0\} \cup \{\lambda^n \ \big| \ n \in \mathbb{Z}\} \mbox{ for some } \lambda \in \ ]0,1[, \\ \bullet & S(\mathsf{M}) = \{0,1\}, \\ \bullet & S(\mathsf{M}) = \mathbb{R}_{\geq 0}. \end{array} \begin{array}{ll} \mbox{ type III}_{\lambda} \\ \mbox{ type III}_{1} \end{array}$$

- For  $\lambda > 0$  there is only one injective factor of type  $III_{\lambda}$ .
- For  $s \in S(M)$  and  $t \in T(M)$  we have  $s^{it} = 1$ .

- G a compact quantum group,
- $C(\mathbb{G})$  the associated (unital) C\*-algebra,
- **h** the Haar measure,
- L<sup>2</sup>(G) the G.N.S. Hilbert space for **h**,
- $\pi_{\mathbf{h}}$  the G.N.S. representation of  $C(\mathbb{G})$  on  $L^2(\mathbb{G})$ ,
- $\mathsf{L}^{\infty}(\mathbb{G}) = \pi_{\mathbf{h}}(\mathbf{C}(\mathbb{G}))''.$

#### EXAMPLE

If  $\mathbb{G} = \widehat{\Gamma}$  for a discrete i.c.c. group  $\Gamma$  then  $L^{\infty}(\mathbb{G})$  is a factor of type II<sub>1</sub>. We know this because we can directly see that the center of  $L^{\infty}(\mathbb{G}) = vN(\Gamma)$  is trivial and there is the tracial state

 $\mathrm{vN}(\Gamma) \ni \mathbf{x} \longmapsto \langle \delta_e | \mathbf{x} \delta_e \rangle \in \mathbb{C}$ 

 $(\delta_e$  — vector of the standard basis of  $\ell^2(\Gamma) = L^2(\mathbb{G})$ ).

THEOREM (JACEK KRAJCZOK & P.M.S.)

There does not exist a compact quantum group  $\mathbb{G}$  such that  $L^{\infty}(\mathbb{G})$  is a factor of type I of dimension strictly grater than one.

- There are two important (commuting) one-parameter groups of automorphisms of  $L^{\infty}(\mathbb{G})$ :
  - the **modular group** of **h** denoted by  $(\sigma_t^h)_{t \in \mathbb{R}}$ ,
  - the scaling group of  $\mathbb{G}$  denoted by  $(\tau_t^{\mathbb{G}})_{t \in \mathbb{R}}$ .

 ${\ }$  In terms of the Woronowicz functionals  $\{f_z\}_{z\in \mathbb{C}}$  they are

$$\sigma_t^{\mathbf{h}}(a) = f_{\mathrm{i}t} * a * f_{\mathrm{i}t}$$
  
 $\tau_t^{\mathbb{G}}(a) = f_{\mathrm{i}t} * a * f_{-\mathrm{i}t}$ ,  $t \in \mathbb{R}, a \in \mathrm{Pol}(\mathbb{G}).$ 

 Once we fix for any α ∈ Irr G a unitary representation U<sup>α</sup> ∈ α and an orthonormal basis of H<sub>α</sub> diagonalizing the corresponding ρ-operator:

$$\rho_{\alpha} = \operatorname{diag}(\rho_{\alpha,1}, \ldots, \rho_{\alpha, \dim \alpha}),$$

the modular and scaling groups are given by

$$\sigma_t^{\mathbf{h}}(U_{i,j}^{\alpha}) = \rho_{\alpha,i}^{it} U_{i,j}^{\alpha} \rho_{\alpha,j}^{it} , \qquad t \in \mathbb{R}, \ i,j \in \{1,\ldots,\dim\alpha\}.$$
$$\tau_t^{\mathbb{G}}(U_{i,j}^{\alpha}) = \rho_{\alpha,i}^{it} U_{i,j}^{\alpha} \rho_{\alpha,j}^{-it} , \qquad t \in \mathbb{R}, \ i,j \in \{1,\ldots,\dim\alpha\}.$$

- Let  $\{\mathbb{H}_n\}_{n\in\mathbb{N}}$  be a sequence of compact quantum groups.
- Let  $\Omega_n$  be the G.N.S. cyclic vector for the Haar measure  $\boldsymbol{h}_n$  of  $\mathbb{H}_n$ .
- Then the von Neumann algebra

$$\mathsf{M} = \bigotimes_{n=1}^{\infty} (\mathsf{L}^{\infty}(\mathbb{H}_n), \boldsymbol{h}_n)$$

carries a comultiplication defining a compact quantum group such that the inclusions  $L^{\infty}(\mathbb{H}_n) \hookrightarrow M$  intertwine comultiplications.

• We denote this compact quantum group by  $\underset{n=1}{\overset{\infty}{\times}} \mathbb{H}_n$ .

• The Haar measure of 
$$\underset{n=1}{\overset{\infty}{\times}} \mathbb{H}_n$$
 is  $\underset{n=1}{\overset{\infty}{\otimes}} \boldsymbol{h}_n$ .

• Let 
$$\mathbb{H} = \underset{n=1}{\overset{\infty}{\times}} \mathbb{H}_n$$
.

• For any  $\alpha_1 \in \operatorname{Irr} \mathbb{H}_{n_1}$  and  $\alpha_2 \in \operatorname{Irr} \mathbb{H}_{n_2}$  and  $U^{\alpha_i} \in \alpha_i$  we define  $\alpha_1 \boxtimes \alpha_2$  as the class of

$$\begin{aligned} (U^{\alpha_1})_{13} (U^{\alpha_2})_{24} &\in \mathcal{B}(H_{\alpha_1}) \otimes \mathcal{B}(H_{\alpha_2}) \otimes \mathcal{L}^{\infty}(\mathbb{H}_{n_1}) \otimes \mathcal{L}^{\infty}(\mathbb{H}_{n_2}) \\ &\subset \mathcal{B}(H_{\alpha_1} \otimes H_{\alpha_2}) \otimes \mathcal{L}^{\infty}(\mathbb{H}). \end{aligned}$$

- Similarly we define  $\alpha_1 \boxtimes \cdots \boxtimes \alpha_N$  for  $\alpha_i \in \operatorname{Irr} \mathbb{H}_{n_i}$  with pairwise different  $n_1, \ldots, n_N$ .
- Such "exterior tensor products" exhaust all classes of irreps of  $\mathbb H.$

- Fix a compact quantum group  $\mathbb{H}$ .
- Let  $\Gamma$  be a discrete group acting on  $L^{\infty}(\mathbb{H})$  by automorphisms of  $\mathbb{H}$ .
- The von Neumann algebra  $\Gamma \ltimes L^\infty(\mathbb{H})$  carries a unique comultiplication such that

 $\mathsf{L}^{\!\!\infty}(\mathbb{H}) \hookrightarrow \Gamma \ltimes \mathsf{L}^{\!\!\infty}(\mathbb{H}) \quad \text{and} \quad v \mathrm{N}(\Gamma) \hookrightarrow \Gamma \ltimes \mathsf{L}^{\!\!\infty}(\mathbb{H})$ 

intertwine comultiplications.

- With this comultiplication  $\Gamma \ltimes L^{\infty}(\mathbb{H})$  describes a compact quantum group which we denote  $\Gamma \bowtie \mathbb{H}$ .
- Irreps of  $\Gamma \bowtie \mathbb{H}$  are all of the form

$$(\mathbb{1}\otimes u_{\gamma})((\mathrm{id}\otimes \alpha)U^{\lambda}),$$

## where

- $\alpha \colon L^{\infty}(\mathbb{H}) \to \ell^{\infty}(\Gamma) \otimes L^{\infty}(\mathbb{H}) \subset \Gamma \ltimes L^{\infty}(\mathbb{H})$  is the action,
- $\{u_{\gamma}\}_{\gamma\in\Gamma}$  are the unitaries implementing the action,
- $\lambda \in \operatorname{Irr} \mathbb{H}$  and  $U^{\lambda} \in \operatorname{B}(H_{\lambda}) \otimes L^{\infty}(\mathbb{H})$  is a representative of  $\lambda$ .

#### EXAMPLE

Let  $\mathbb{H} = SU_q(2)$  and  $\Gamma = \mathbb{Q}$ . Fix  $\nu \in \mathbb{R} \setminus \{0\}$ ,  $q \in ]-1, 1[ \setminus \{0\}$  and let  $\gamma \in \Gamma$  act on  $L^{\infty}(\mathbb{H})$  by  $\tau_{\nu\gamma}^{\mathbb{H}}$ . We will denote the resulting compact quantum group  $\mathbb{Q} \bowtie SU_q(2)$  by  $\mathbb{H}_{\nu,q}$ .

THEOREM (KRAJCZOK-WASILEWSKI)

We have

- $\mathbb{H}_{\nu,q}$  is a co-amenable compact quantum group.
- If  $\nu \log |q| \notin \pi \mathbb{Q}$  then  $L^{\infty}(\mathbb{H}_{\nu,q})$  is a factor.
- Since there is a tracial weight on  $L^{\infty}(SU_q(2))$  invariant under the scaling group, the algebra  $L^{\infty}(\mathbb{H}_{\nu,q})$  is not of type III.

Furthermore, assuming  $\nu \log |q| \notin \pi \mathbb{Q}$ , we have

- $\tau_t^{\mathbb{H}_{\nu,q}}$  is trivial iff  $t \in \frac{\pi}{\log |q|}\mathbb{Z}$ , so  $\mathbb{H}_{\nu,q}$  is not of Kac type,
- consequently  $L^{\infty}(\mathbb{H}_{\nu,q})$  is a factor of type  $II_{\infty}$ .

For any  $\lambda \in ]0,1[$  there exists a compact quantum group  $\mathbb{G}$  such that  $L^{\infty}(\mathbb{G})$  is the injective factor of type  $III_{\lambda}$ .

There exists a family  $\{\mathbb{G}_s\}_{s\in]0,1[}$  of compact quantum groups such that  $\{L^{\infty}(\mathbb{G}_s)\}_{s\in]0,1[}$  are pairwise non-isomorphic injective factors of type III<sub>0</sub>.

• Let  $(q_n)_{n \in \mathbb{N}}$  be the sequence

$$(\underbrace{\exp(-\pi 1!),\ldots,\exp(-\pi 1!)}_{l_1 \text{ times}},\underbrace{\exp(-\pi 2!),\ldots,\exp(-\pi 2!)}_{l_2 \text{ times}},\ldots),$$

where  $l_k = \lfloor \exp(2\pi k!)k^{2s-1} \rfloor$ .

• For each *n* choose  $\nu_n \in \mathbb{R} \setminus \{0\}$  such that  $\nu_n \log q_n \notin \pi \mathbb{Q}$ .

• 
$$\mathbb{G}_{s} = \underset{n=1}{\overset{\infty}{\times}} \mathbb{H}_{\nu_{n},q_{n}}.$$

•  $L^{\infty}(\mathbb{G}_s)$  is an injective factor.

There exists a family  $\{\mathbb{G}_s\}_{s\in]0,1[}$  of compact quantum groups such that  $\{L^{\infty}(\mathbb{G}_s)\}_{s\in]0,1[}$  are pairwise non-isomorphic injective factors of type III<sub>0</sub>.

• For each *s* we have  $\mathbb{Q} \subset T(L^{\infty}(\mathbb{G}_s))$ .

• Put

$$t_s = \sum_{p=1}^{\infty} \frac{\lfloor p^{1-s} \rfloor}{p!}.$$

- The map  $s \mapsto t_s$  is strictly decreasing.
- Then  $t_{s'} \in T(L^{\infty}(\mathbb{G}_s))$  iff s' > s.
- This shows that
  - $L^{\infty}(\mathbb{G}_s)$  is not isomorphic to  $L^{\infty}(\mathbb{G}_{s'})$  if  $s \neq s'$ ,
  - $L^{\infty}(\mathbb{G})$  is of type  $III_0$ .

There exists a compact quantum group  $\mathbb{G}$  such that  $L^{\infty}(\mathbb{G})$  is the injective factor of type III<sub>1</sub>.

- Let  $q_1, q_2 \in \left]-1, 1\left[\setminus\{0\} \text{ be such that } \frac{\pi}{\log|q_1|}\mathbb{Q} \cap \frac{\pi}{\log|q_2|}\mathbb{Q} = \{0\}.$
- Choose  $\nu_i$ , so that  $\nu_i \log |q_i| \notin \pi \mathbb{Q}$  (i = 1, 2).

• Put

$$\mathbb{H}_n = egin{cases} \mathbb{H}_{
u_1,q_1} & n ext{ is odd} \ \mathbb{H}_{
u_2,q_2} & n ext{ is even} \end{cases}$$

•  $\mathbb{G} = \underset{n=1}{\overset{\infty}{\times}} \mathbb{H}_n.$ 

• We have  $T(L^{\infty}(\mathbb{G})) = \{0\}, S(L^{\infty}(\mathbb{G})) = \mathbb{R}_{\geq 0}.$ 

#### DEFINITION

Let  $\ensuremath{\mathbb{G}}$  be a (locally) compact quantum group. Define

$$T_{\mathrm{Inn}}^{\tau}(\mathbb{G}) = \Big\{ t \in \mathbb{R} \, \Big| \, \tau_t^{\mathbb{G}} \in \mathrm{Inn}\big(\mathsf{L}^{\infty}(\mathbb{G})\big) \Big\}.$$

- $T^{\tau}_{\operatorname{Inn}}(\mathbb{G})$  is an invariant of  $\mathbb{G}$ .
- $T_{\operatorname{Inn}}^{\tau}(\mathbb{G})$  is a subgroup of  $\mathbb{R}$ .
- $T_{\operatorname{Inn}}^{\tau}(\mathbb{G} \times \mathbb{H}) = T_{\operatorname{Inn}}^{\tau}(\mathbb{G}) \cap T_{\operatorname{Inn}}^{\tau}(\mathbb{H}).$

#### EXAMPLES

• 
$$T_{\text{Inn}}^{\tau}(\mathrm{SU}_q(\mathbf{2})) = \frac{\pi}{\log|q|}\mathbb{Z},$$
  
•  $T_{\text{Inn}}^{\tau}(\mathbb{H}_{\nu,q}) = \nu\mathbb{Q} + \frac{\pi}{\log|q|}\mathbb{Z}.$ 

For each  $\lambda \in ]0,1[$  there exists an uncountable family  $\{\mathbb{K}_{j}^{\lambda}\}_{j\in\mathbb{J}}$  of pairwise non-isomorphic compact quantum groups such that  $L^{\infty}(\mathbb{K}_{j}^{\lambda})$  is the injective factor of type  $III_{\lambda}$ .

- Take  $q = \sqrt{\lambda}$ ,  $\nu$  such that  $\nu \log q \notin \pi \mathbb{Q}$ , and let  $\Gamma_j = \alpha_j \frac{\pi}{\log q} \mathbb{Z}$ , where  $\{1\} \cup \{\alpha_j\}_{j \in \mathbb{J}}$  is a basis of  $\mathbb{R}$  over  $\mathbb{Q}$ .
- Let  $\mathbb{G} = \bigotimes_{n=1}^{\infty} \mathbb{H}_{\nu,q}$  and let  $\Gamma_j$  act on  $\mathbb{G}$  by the scaling automorphisms.
- Put  $\mathbb{K}_j^{\lambda} = \Gamma_j \bowtie \mathbb{G}$ .
- L<sup>∞</sup>(K<sup>λ</sup><sub>i</sub>) is the injective factor of type III<sub>λ</sub>.

• 
$$T_{\operatorname{Inn}}^{\tau}(\mathbb{K}_{j}^{\lambda}) = \Gamma_{j} + \frac{\pi}{\log q}\mathbb{Z}.$$

• For  $j \neq j'$  we have  $\Gamma_j + \frac{\pi}{\log q} \mathbb{Z} \neq \Gamma_{j'} + \frac{\pi}{\log q} \mathbb{Z}$ .

There exists uncountably many pairwise non-isomorphic compact quantum groups  $\mathbb{K}$  with  $L^{\infty}(\mathbb{K})$  the injective factor of type III<sub>1</sub>.

- Start with the example of  $\mathbb{G}$  with  $L^\infty(\mathbb{G})$  the injective factor of type  $III_1$  we discussed earlier:
  - Let  $q_1, q_2 \in \left]-1, 1\right[\setminus\{0\}$  be such that  $\frac{\pi}{\log|q_1|}\mathbb{Q} \cap \frac{\pi}{\log|q_2|}\mathbb{Q} = \{0\}.$
  - Choose  $\nu_i$ , so that  $\nu_i \log |q_i| \notin \pi \mathbb{Q}$  (i = 1, 2).

• Put

$$\mathbb{H}_n = egin{cases} \mathbb{H}_{
u_1,q_1} & n ext{ is odd} \ \mathbb{H}_{
u_2,q_2} & n ext{ is even} \end{cases}$$

• 
$$\mathbb{G} = \underset{n=1}{\overset{\infty}{\times}} \mathbb{H}_n.$$

- Let  $\Gamma$  be a countable subgroup of  $\mathbb{R}$  and let  $\Gamma$  act on  $\mathbb{G}$  by the scaling automorphisms.
- Put  $\mathbb{K} = \Gamma \bowtie \mathbb{G}$ .
- Then  $L^{\infty}(\mathbb{K})$  is an injective factor and  $S(L^{\infty}(\mathbb{K})) = \mathbb{R}_{\geq 0}$ .
- Furthermore  $T_{\text{Inn}}^{\tau}(\mathbb{K}) = \Gamma$ .

# Thank you for your attention.

P.M. SOŁTAN (KMMF)

QUANTUM GROUPS AND FACTORS

September 12, 2022 22/22