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FACTORS TYPE CLASSIFICATION

We will only consider von Neumann algebras acting on

separable Hilbert spaces (countably decomposable/with

separable predual).

A von Neumann algebra M is a factor if its center is trivial.

A factor M is of type I if M contains a minimal non-zero

projection.

A factor M is of type II if M contains a non-zero finite

projection (not equivalent to its proper subprojection), but

does not contain a non-zero minimal projection.

A factor M is of type III if M does not contain a non-zero

finite projection.

FACT

A factor of type I is isomorphic to BpHq for some H. Thus we can

classify factors of type I into types In (n P N Y t8u) with

n “ dimH.
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FACTORS TYPE CLASSIFICATION

FACT

A factor is of type III iff it does not admit a non-zero semifinite

tracial weight.

TERMINOLOGY

Let M be a factor and assume that M is not of type III.

If M does not admit a tracial state and is of type I then it is

of type I8.

If M does not admit a tracial state and is of type II then it is

of type II8.

If M admits a tracial state and is infinite dimensional then

it is of type II1.

A finite-dimensional factor is of type In and it admits a

tracial state.
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FACTORS INJECTIVITY

A von Neumann algebra M is hyperfinite if it contains a

sequence of finite-dimensional subalgebras A1 Ă A2 Ă ¨ ¨ ¨
such that

8Ť
n“1

An is dense in M.

The property of being hyperfinite is equivalent (by a difficult

theorem of Connes) to the property of being injective,

i.e. being an injective object in an appropriate category.

This is also equivalent to w˚-CPAP.

THEOREM

Up to isomorphism there exists only one injective factor of type

I8, II1, and II8.

The situation with type III factors is more complicated.
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FACTORS INFINITE TENSOR PRODUCTS

THEOREM

For n P N let Mn be a factor equipped with a faithful tracial

weight τ n represented on the G.N.S. Hilbert space Hωn of a

faithful non-tracial state ωn. Then

for each n we have ωn “ τ p¨hnq for some strictly positive

operator hn affiliated with Mn.

Moreover, letting M “
8Â

n“1

pMn , ωnq be the closure of alg-
8Â

n“1

Mn

acting on the Hilbert space
8Â

n“1

pHωn ,Ωnq, we additionally have:

M is a factor,

M is of type III if and only if D t P R
8ř

n“1

`
1 ´ |ωnphit

n q|
˘

“ `8,

if each Mn is injective then so is M.
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FACTORS CONNES INVARIANTS

CONNES INVARIANT T pMq
Let M be a factor. We define T pMq “

 
t P R

ˇ̌
σ
ϕ
t P InnpMq

(
. Then

T pMq is an invariant of M,

M is of type III iff T pMq ‰ R.

CONNES INVARIANT SpMq
Let M be a factor. We define SpMq “ Ş

ϕ

Sp∇ϕ. Then

SpMq is an invariant of M,

if M is of type III then SpMq must be one of the following:

SpMq “ t0u Y tλn
ˇ̌
n P Zu for some λ P s0,1r, type IIIλ

SpMq “ t0,1u, type III0
SpMq “ Rě0. type III1

For λ ą 0 there is only one injective factor of type IIIλ.

For s P SpMq and t P T pMq we have sit “ 1.
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COMPACT QUANTUM GROUPS GENERAL NOTATION

G – a compact quantum group,

CpGq – the associated (unital) C˚-algebra,

h – the Haar measure,

L2pGq – the G.N.S. Hilbert space for h,

πh – the G.N.S. representation of CpGq on L2pGq,
L8pGq “ πh

`
CpGq

˘2
.
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COMPACT QUANTUM GROUPS GENERAL NOTATION

EXAMPLE

If G “ pΓ for a discrete i.c.c. group Γ then L8pGq is a factor of type

II1. We know this because we can directly see that the center of

L8pGq “ vNpΓq is trivial and there is the tracial state

vNpΓq Q x ÞÝÑ xδe xδey P C

(δe — vector of the standard basis of ℓ2pΓq “ L2pGq).

THEOREM (JACEK KRAJCZOK & P.M.S.)

There does not exist a compact quantum group G such that L8pGq
is a factor of type I of dimension strictly grater than one.
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COMPACT QUANTUM GROUPS THE SCALING GROUP AND THE MODULAR GROUP

There are two important (commuting) one-parameter
groups of automorphisms of L8pGq:

the modular group of h denoted by pσh
t qtPR,

the scaling group of G denoted by pτGt qtPR.

In terms of the Woronowicz functionals t fzuzPC they are

σh
t paq “ fit ˚ a ˚ fit

τGt paq “ fit ˚ a ˚ f´it

, t P R, a P PolpGq.

Once we fix for any α P IrrG a unitary representation Uα P α

and an orthonormal basis of Hα diagonalizing the

corresponding ρ-operator:

ρα “ diag
`
ρα,1, . . . ,ρα,dimα

˘
,

the modular and scaling groups are given by

σh
t pUα

i,jq “ ρ
it
α,iU

α
i,jρ

it
α,j

τGt pUα
i,jq “ ρ

it
α,iU

α
i,jρ

´it
α,j

, t P R, i, j P t1, . . . ,dimαu.
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COMPACT QUANTUM GROUPS INFINITE PRODUCTS

Let tHnunPN be a sequence of compact quantum groups.

Let Ωn be the G.N.S. cyclic vector for the Haar measure hn

of Hn.

Then the von Neumann algebra

M “
8â

n“1

`
L
8pHnq,hn

˘

carries a comultiplication defining a compact quantum

group such that the inclusions L8pHnq ãÑ M intertwine

comultiplications.

We denote this compact quantum group by
8Ś

n“1

Hn.

The Haar measure of
8Ś

n“1

Hn is
8Â

n“1

hn.
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COMPACT QUANTUM GROUPS INFINITE PRODUCTS

Let H “
8Ś

n“1

Hn.

For any α1 P IrrHn1
and α2 P IrrHn2

and Uαi P αi we define

α1 b α2 as the class of

`
Uα1

˘
13

`
Uα2

˘
24

P BpHα1
q b BpHα2

q b L
8pHn1

q b L
8pHn2

q
Ă BpHα1

b Hα2
q b L

8pHq.

Similarly we define α1 b ¨ ¨ ¨ b αN for αi P IrrHni
with pairwise

different n1, . . . ,nN .

Such “exterior tensor products” exhaust all classes of irreps

of H.
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COMPACT QUANTUM GROUPS BICROSSED PRODUCTS

Fix a compact quantum group H.

Let Γ be a discrete group acting on L8pHq by

automorphisms of H.

The von Neumann algebra Γ ˙ L8pHq carries a unique

comultiplication such that

L
8pHq ãÑ Γ ˙ L

8pHq and vNpΓq ãÑ Γ ˙ L
8pHq

intertwine comultiplications.

With this comultiplication Γ ˙ L8pHq describes a compact

quantum group which we denote Γ ’ H.

Irreps of Γ ’ H are all of the form

p1 b uγq
`
pid b αqUλ

˘
,

where
α : L8pHq Ñ ℓ8pΓq b L8pHq Ă Γ ˙ L8pHq is the action,
tuγuγPΓ are the unitaries implementing the action,
λ P IrrH and Uλ P BpHλq b L8pHq is a representative of λ.
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COMPACT QUANTUM GROUPS BICROSSED PRODUCTS

EXAMPLE

Let H “ SUqp2q and Γ “ Q. Fix ν P Rzt0u, q P s´1,1r zt0u and let

γ P Γ act on L8pHq by τHνγ. We will denote the resulting compact

quantum group Q ’ SUqp2q by Hν,q.

THEOREM (KRAJCZOK-WASILEWSKI)

We have

Hν,q is a co-amenable compact quantum group.

If ν log |q| R πQ then L8pHν,qq is a factor.

Since there is a tracial weight on L8
`
SUqp2q

˘
invariant under

the scaling group, the algebra L8pHν,qq is not of type III.

Furthermore, assuming ν log |q| R πQ, we have

τ
Hν,q

t is trivial iff t P π
log |q|Z, so Hν,q is not of Kac type,

consequently L8pHν,qq is a factor of type II8.
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EXAMPLES OF TYPE III TYPE IIIλ

THEOREM

For any λ P s0,1r there exists a compact quantum group G such

that L8pGq is the injective factor of type IIIλ.

We take q “
?
λ and ν such that ν log q R πQ.

Put G “
8Ś

n“1

Hν,q.

Then L8pGq is an injective factor.

T
`
L8pGq

˘
“ π

log qZ, so L8pGq is of type III.

S
`
L8pGq

˘
“
 
λ1 ¨ ¨ ¨λN

ˇ̌
N P N, λi P Spp∇hν,q

q, i P t1, . . . ,Nu
(
.

Spp∇hν,q
q “ t0u Y q2Z, so L8pGq is of type IIIq2.
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EXAMPLES OF TYPE III TYPE III0

THEOREM

There exists a family tGsusPs0,1r of compact quantum groups such

that
 
L8pGsq

(
sPs0,1r

are pairwise non-isomorphic injective factors

of type III0.

Let pqnqnPN be the sequence

`
expp´π1!q, . . . , expp´π1!qloooooooooooooooomoooooooooooooooon

l1 times

, expp´π2!q, . . . , expp´π2!qloooooooooooooooomoooooooooooooooon
l2 times

, . . .
˘
,

where lk “
X
expp2πk!qk2s´1

\
.

For each n choose νn P Rzt0u such that νn log qn R πQ.

Gs “
8Ś

n“1

Hνn ,qn .

L8pGsq is an injective factor.
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EXAMPLES OF TYPE III TYPE III0

THEOREM

There exists a family tGsusPs0,1r of compact quantum groups such

that
 
L8pGsq

(
sPs0,1r

are pairwise non-isomorphic injective factors

of type III0.

For each s we have Q Ă T
`
L8pGsq

˘
.

Put

ts “
8ÿ

p“1

tp1´su
p!

.

The map s ÞÑ ts is strictly decreasing.

Then ts1 P T
`
L8pGsq

˘
iff s1 ą s.

This shows that

L8pGsq is not isomorphic to L8pGs1 q if s ‰ s1,
L8pGq is of type III0.
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EXAMPLES OF TYPE III TYPE III1

THEOREM

There exists a compact quantum group G such that L8pGq is the

injective factor of type III1.

Let q1,q2 P s´1,1r zt0u be such that π
log |q1|Q X π

log |q2|Q “ t0u.
Choose νi , so that νi log |qi | R πQ (i “ 1,2).

Put

Hn “
#
Hν1,q1

n is odd

Hν2,q2
n is even

.

G “
8Ś

n“1

Hn.

We have T
`
L8pGq

˘
“ t0u, S

`
L8pGq

˘
“ Rě0.
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THE INVARIANT Tτ

Inn
pGq

DEFINITION

Let G be a (locally) compact quantum group. Define

T τ
InnpGq “

!
t P R

ˇ̌
ˇ τGt P Inn

`
L
8pGq

˘)
.

T τ
InnpGq is an invariant of G.

T τ
InnpGq is a subgroup of R.

T τ
InnpG ˆ Hq “ T τ

InnpGq X T τ
InnpHq.

EXAMPLES

T τ
Inn

`
SUqp2q

˘
“ π

log |q|Z,

T τ
InnpHν,qq “ νQ ` π

log |q|Z.
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THE INVARIANT Tτ

Inn
pGq TYPE IIIλ

THEOREM

For each λ P s0,1r there exists an uncountable family tKλ
j ujPJ of

pairwise non-isomorphic compact quantum groups such that

L8pKλ
j q is the injective factor of type IIIλ.

Take q “
?
λ, ν such that ν log q R πQ, and let Γj “ αj

π
log qZ,

where t1u Y tαjujPJ is a basis of R over Q.

Let G “
8Ś

n“1

Hν,q and let Γj act on G by the scaling

automorphisms.

Put Kλ
j “ Γj ’ G.

L8pKλ
j q is the injective factor of type IIIλ.

T τ
InnpKλ

j q “ Γj ` π
log qZ.

For j ‰ j1 we have Γj ` π
log qZ ‰ Γj1 ` π

log qZ.
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THE INVARIANT Tτ

Inn
pGq TYPE III1

THEOREM

There exists uncountably many pairwise non-isomorphic compact

quantum groups K with L8pKq the injective factor of type III1.

Start with the example of G with L8pGq the injective factor of
type III1 we discussed earlier:

Let q1, q2 P s´1,1r zt0u be such that π
log |q1|Q X π

log |q2|Q “ t0u.
Choose νi, so that νi log |qi | R πQ (i “ 1,2).
Put

Hn “
#
Hν1,q1

n is odd

Hν2,q2
n is even

.

G “
8Ś

n“1

Hn.

Let Γ be a countable subgroup of R and let Γ act on G by

the scaling automorphisms.

Put K “ Γ ’ G.

Then L8pKq is an injective factor and S
`
L8pKq

˘
“ Rě0.

Furthermore T τ
InnpKq “ Γ.
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Thank you for your attention.
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